1
|
Huang Z, Wang Y, McClements DJ, Dong R, Wang Y, Wang Q, Liu H, Yu Q, Xie J, Chen Y. Investigation of the interaction mechanism of citrus pectin-polyphenol-protein complex. Food Chem 2025; 468:142419. [PMID: 39700817 DOI: 10.1016/j.foodchem.2024.142419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/03/2024] [Accepted: 12/08/2024] [Indexed: 12/21/2024]
Abstract
Citrus pectin is an anionic polysaccharide in citrus, which may improve the stability of citrus juices. This study investigated the influence of citrus pectin on the stability of protein-polyphenol complexes in the citrus juice model system and its interaction mechanism by multispectral and molecular dynamics (MD) simulations. Dynamic light scattering (DLS) and differential scanning calorimetry (DSC) showed that the citrus pectin-proanthocyanidin-zein complex improved the model citrus juices' cloud and thermal stability. Molecular dynamics (MD) simulations suggested that both pectin and proanthocyanidin bound to the U-shaped cavity of the zein molecules. Electrostatic and van der Waals forces were predominant in citrus pectin-zein. In contrast, van der Waals forces predominantly drove in proanthocyanidin-zein. This study indicated that citrus pectin could stabilize juice by delaying the onset of protein-polyphenol haze formation, which may provide new strategies for improving the quality, stability, and nutritional profile of fruit juice systems.
Collapse
Affiliation(s)
- Ziyan Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yuting Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | | | - Ruihong Dong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yu Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Qin Wang
- College of Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510000, China
| | - Huifan Liu
- College of Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510000, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
2
|
Xu LJ, Cao QQ, Deng SH, Dong WJ, Zou Q, Xu YQ, Li XH. Effect and mechanism of calcium ions on the astringency in green tea infusion and epigallocatechin gallate solution: An in vitro oral soft tribology study. Food Chem 2025; 477:143442. [PMID: 39999546 DOI: 10.1016/j.foodchem.2025.143442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/11/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
In this study, the effect of calcium ions (Ca2+) on the astringency sensation in green tea infusion was explored using sensory evaluation, in vitro oral soft tribology, and targeted metabolomics. Ca2+ enhanced the astringency intensity (from 2 to 6) and the turbidity (from 10.0 to 83.3), and decreased the particle size (from 1468.0 to 817.65) in cold-brewing tea. Catechins influenced the astringent sensation in the presence of Ca2+ and the content of (-)-Epicatechin, (-)-Epigallocatechin, and (-)-Epigallocatechin gallate (EGCG) solution in green tea infusion after oral processing all reduced. The friction coefficient of hot-brewed tea (μ, 1.6-2.8) was greater than that of cold-brewed tea (μ, 1.0-2.6), and EGCG increased with the enlarged Ca2+ concentrations. Ca2+ increased the astringency mainly through catechins and saliva lubrication. The in vitro soft oral tribology could be usefully explored the enlarged astringency sensation by Ca2+, and applied to the astringency regulation of beverages.
Collapse
Affiliation(s)
- Long-Jie Xu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China; Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, Zhejiang, PR China
| | - Qing-Qing Cao
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, Zhejiang, PR China
| | - Si-Han Deng
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, Zhejiang, PR China
| | - Wen-Jiang Dong
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, Hainan, PR China
| | - Qian Zou
- Hunan tea Yue culture industry Development Group Co., LTD, 102-1, Building 8, Huayuan Hua Center, No. 36, Section 2, Xiangjiang Middle Road, Changsha, 410118, Hu'nan, PR China
| | - Yong-Quan Xu
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, Zhejiang, PR China
| | - Xing-Hui Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China.
| |
Collapse
|
3
|
Thongon R, Netramai S, Kijchavengkul T, Yaijam G, Debhakam R. Mathematical modeling and optimization of pasteurization for the internal pressure and physical quality of canned beer. Heliyon 2023; 9:e21493. [PMID: 38027755 PMCID: PMC10661091 DOI: 10.1016/j.heliyon.2023.e21493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Globally, beer is the most popular alcoholic beverage. To accomplish microbial stabilization and extend the shelf life of beer, it is typically subjected to in-package pasteurization using a tunnel pasteurizer. However, high internal pressure can cause can bulging during pasteurization, leading to significant product loss. In this study, an empirical mathematical model was constructed to describe the effects of can thickness (0.245-0.270 mm), fill volume (320-338 mL), carbon dioxide content (5.70-6.10 g/L), and pasteurization temperature (59-66 °C) on the internal pressure inside canned beer. A laboratory-scale pasteurization setup was used to pasteurize samples based on the worst-case scenario of commercial pasteurization. The mathematical model (R2 = 0.90) showed that all parameters significantly influenced the internal pressure of pasteurized canned beer (p < 0.05). Additionally, the physical, chemical, and biological properties of pasteurized canned beer were assessed. All values fell within an acceptable range of industrial standards. A simplified 2nd-order polynomial equation (R2 = 0.90) was created and verified for industrial use. The data are well represented by the simplified model, which suggests that it could be used for optimization of product- and process parameters to reduce the occurrence of can bulging in commercial pasteurization of canned beer.
Collapse
Affiliation(s)
- Ruthaikamol Thongon
- School of Bioinnovation and Bio-based Product Intelligence, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Siriyupa Netramai
- School of Bioinnovation and Bio-based Product Intelligence, Faculty of Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Thitisilp Kijchavengkul
- School of Bioinnovation and Bio-based Product Intelligence, Faculty of Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Gong Yaijam
- Boonrawd Brewery Co., Ltd., Bangkok 10300, Thailand
| | - Rojrit Debhakam
- Singha Beverage Co., Ltd. (Branch No.00001), Nakhon Pathom 73130, Thailand
| |
Collapse
|
4
|
Bai C, Chen R, Zhang Y, Bai H, Tian L, Sun H, Li D, Wu W. Comparison in structural, physicochemical and functional properties of sweet potato stems and leaves polysaccharide conjugates from different technologies. Int J Biol Macromol 2023; 247:125730. [PMID: 37422248 DOI: 10.1016/j.ijbiomac.2023.125730] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/23/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
In order to better understand the influences of extraction techniques on the yield, characteristics, and bioactivities of polysaccharide conjugates, hot reflux extraction (HRE), ultrasonic-assisted extraction (UAE), microwave-assisted extraction (MAE), complex enzymolysis extraction (CEE), ultra-high pressure extraction (UPE), ultrasonic complex enzymes extraction (UEE) were used to extract sweet potato stems leaves polysaccharide conjugates (SPSPCs), and their physicochemical characteristics, functional properties, antioxidant and hypoglycemic activities were compared. Results showed that compared with HRE conjugate (HR-SPSPC), the yield, content of uronic acid (UAC), total phenol (TPC), total flavonoid (TFC) and sulfate group (SGC), water solubility (WS), percentage of glucuronic acid (GlcA), galacuronic acid (GalA) and galactose (Gal), antioxidant and hypoglycemia activities of UEE polysaccharide conjugates (UE-SPSPC) significant increased, while its molecular weight (Mw), degree of esterification (DE), content of protein (PC) and percentage of glucose (Glc) declined, but monosaccharides and amino acid types, and glycosyl linkages were not much different. Indeed, UE-SPSPC possessed the highest antioxidant activities and hypolipidemic activities among six SPSPCs, which might be due to the high UAC, TPC, TFC, SGC, GlcA, GalA and WS, low Mw, DE and Glc of UE-SPSPC. The results reveal that UEE is an effective extraction and modification technology of polysaccharide conjugates.
Collapse
Affiliation(s)
- Chunlong Bai
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Ruizhan Chen
- College of Chemistry, Changchun Normal University, Changchun 130032, China.
| | - Yu Zhang
- CHINA FAW GROUP CO., LTD, General Institute of FAW Vehicle benchmarking Center, Changchun 130011, China
| | - Helong Bai
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Li Tian
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Hui Sun
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Dongxue Li
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Wenjing Wu
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| |
Collapse
|
5
|
Zhang Z, Yang Y, Huang X, Jin Z, Jiao A. Stabilization of a collagen peptide-cranberry juice by three functional polysaccharides with different charge characteristics. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
6
|
Liu J, Xie J, Lin J, Xie X, Fan S, Han X, Zhang DK, Han L. The Material Basis of Astringency and the Deastringent Effect of Polysaccharides: A Review. Food Chem 2022; 405:134946. [DOI: 10.1016/j.foodchem.2022.134946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
|
7
|
Hawthorn Juice Simulation System for Pectin and Polyphenol Adsorption Behavior: Kinetic Modeling Properties and Identification of the Interaction Mechanism. Foods 2022; 11:foods11182813. [PMID: 36140941 PMCID: PMC9498233 DOI: 10.3390/foods11182813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
The interaction between polyphenols and polysaccharides plays an important role in increasing the turbidity stability of fruit juice and improving unpleasant sensory experiences. The binding adsorption behavior between hawthorn pectin (HP) and polyphenols (epicatechin and chlorogenic acid) accorded with the monolayer adsorption behavior driven by chemical action and were better fitted by pseudo-second order dynamic equation and Langmuir model. The HP binding sites (Qm) and adsorption capacity (Qe) to epicatechin were estimated at 75.188 and 293.627 μg/mg HP, respectively, which was about nine and twelve times higher than that of chlorogenic acid. The interaction between HP and polyphenols exhibited higher turbidity characteristics, particle size and lower zeta potential than epicatechin and chlorogenic acid alone. Meanwhile, according to Fourier Transform Infrared Spectroscopy (FT-IR) analysis, it could be speculated that the interaction between HP and polyphenols resulted in chemical combination. Moreover, ΔH < 0 and TΔS < 0, which indicated that the interaction between HP and polyphenols was mainly driven by hydrogen bonds and van der Waals forces.
Collapse
|
8
|
Tsurunaga Y, Takahashi T, Kanou M, Onda M, Ishigaki M. Removal of astringency from persimmon paste via polysaccharide treatment. Heliyon 2022; 8:e10716. [PMID: 36185145 PMCID: PMC9519491 DOI: 10.1016/j.heliyon.2022.e10716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/31/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022] Open
Abstract
Non-astringent persimmon (Diospyros kaki Thunb.) paste is typically produced by treating astringent persimmon fruit with alcohol or dry ice (to remove tannins) followed by abrasion. However, considering the large yield of astringent persimmons harvested in a short time, this long, laborious method has hindered the use of persimmon paste in food processing. Herein, the addition of polysaccharides was used to produce a non-astringent persimmon paste while maintaining its quality. Among the nine evaluated polysaccharides, high- (HM) and low-methoxyl (LM) pectins, carrageenan, xanthan gum, and sodium alginate exhibited high astringency removal efficiencies. No astringency recurrence was observed after freezing when HM or LM pectin, guar gum, carrageenan, or sodium alginate were added. Moreover, the addition of HM pectin, or LM pectin, or sodium alginate prevented astringency upon heating. Additionally, guar, xanthan, tara gum, or carrageenan effectively inhibited syneresis. Thus, high-quality pastes could be easily and efficiently produced using a combination of polysaccharides.
Collapse
Affiliation(s)
- Yoko Tsurunaga
- Faculty of Human Science, Shimane University, 1060 Nishikawatsu-cho, Matsue City, Shimane 690-8504, Japan
| | - Tetsuya Takahashi
- Faculty of Human Science, Shimane University, 1060 Nishikawatsu-cho, Matsue City, Shimane 690-8504, Japan
| | - Mina Kanou
- Graduate School of Human and Social Sciences, Shimane University, 1060 Nishikawatsu-cho, Matsue City, Shimane 690-8504, Japan
| | - Misaki Onda
- Faculty of Education, Shimane University, 1060 Nishikawatsu-cho, Matsue City, Shimane 690-8504, Japan
| | - Mika Ishigaki
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue City, Shimane 690-8504, Japan
| |
Collapse
|
9
|
Lv D, Zhang L, Chen F, Yin L, Zhu T, Jie Y. Wheat bran arabinoxylan and bovine serum albumin conjugates: Enzymatic synthesis, characterization, and applications in O/W emulsions. Food Res Int 2022; 158:111452. [DOI: 10.1016/j.foodres.2022.111452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/11/2022] [Accepted: 05/31/2022] [Indexed: 11/25/2022]
|
10
|
Kataria A, Sharma S, Khatkar SK. Antioxidative, structural and thermal characterisation of simulated fermented matrix of quinoa, chia and teff with caseinate. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ankita Kataria
- Department of Food Science and Technology Punjab Agricultural University (PAU) Ludhiana 141004 Punjab India
| | - Savita Sharma
- Department of Food Science and Technology Punjab Agricultural University (PAU) Ludhiana 141004 Punjab India
| | - Sunil Kumar Khatkar
- Byproducts Utilization Lab, Department of Dairy Technology College of Dairy Science and Technology, Guru Angad Dev Veterinary & Animal Sciences University (GADVASU) Ludhiana 141004 Punjab India
| |
Collapse
|
11
|
Qu D, Huo XH, Li ZM, Hua M, Lu YS, Chen JB, Li SS, Wen LK, Sun YS. Sediment formation and analysis of the main chemical components of aqueous extracts from different parts of ginseng roots. Food Chem 2022; 379:132146. [DOI: 10.1016/j.foodchem.2022.132146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/20/2021] [Accepted: 01/10/2022] [Indexed: 11/04/2022]
|