1
|
Yu X, Wu J, Qiu Z, Shi Y, Lin L, Wang X, Zhang L. Evaluation of edible quality and processing suitability of segmented products from silver carp under different thermal processing methods. Food Res Int 2025; 201:115623. [PMID: 39849778 DOI: 10.1016/j.foodres.2024.115623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/27/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
This study investigated the edible quality differences in muscle segments of silver carp (Hypophthalmichthys molitrix) and established an evaluation model for processing suitability. The results showed that steamed dorsal meat had the highest levels of total free amino acids, umami amino acids, and total volatile compounds. Fried tail meat exhibited the highest content of sweet amino acids and equivalent umami concentration (EUC) values, which were superior in all fried meat parts compared to those that were steamed. Key quality indicators for steaming included L*, crude protein, 5'-inosine monophosphate (IMP), (E)-2-Nonenal, and lysine, while IMP, moisture, 2-acetyl-1-pyrroline, and proline were key quality indicators for frying. The established processing suitability evaluation model accurately predicted overall sensory acceptability. Dorsal and belly portions of H. molitrix were best suited for steaming, whereas the tail was more suitable for frying.
Collapse
Affiliation(s)
- Xinlei Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, PR China
| | - Jingjing Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, PR China
| | - Zehui Qiu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, PR China
| | - Yuyao Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, PR China
| | - Liu Lin
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, PR China
| | - Xichang Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, PR China
| | - Long Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, PR China; Xiweijia Biotechnology Co., Ltd., Yueyang, Hunan 414024, PR China.
| |
Collapse
|
2
|
Liu Y, Fu Z, Tan Y, Luo Y, Li X, Hong H. Protein oxidation-mediated changes in digestion profile and nutritional properties of myofibrillar proteins from bighead carp (Hypophthalmichthys nobilis). Food Res Int 2023; 174:113546. [PMID: 37986513 DOI: 10.1016/j.foodres.2023.113546] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/26/2023] [Accepted: 10/01/2023] [Indexed: 11/22/2023]
Abstract
Digestibility is an important factor in accessing the nutritional quality and potential health benefits of protein. In this study, exudates were utilized to incubate myofibrillar proteins (MPs) for simulating the oxidation of MPs in frozen-thawed fish fillets. An in vitro gastrointestinal system was used to investigate the effect of protein oxidation on the digestion profile and nutritional properties of MPs. Results showed that exudates treatment caused the moderate oxidation of MPs and its digestibility thus increased, hydroxyl radical generation system treatment reduced the digestibility significantly. The analysis of SDS-PAGE, tricine-SDS-PAGE, amino acid composition, and peptidomics of digestion products indicates that protein oxidation decreases digestibility by causing protein cross-linking, degradation, and amino acid residues conversion. Additionally, protein oxidation reduces nutritional value of MPs via several ways including loss of essential amino acids, the proportion increase of macromolecular peptides (>2 kDa) in digests, and the percentage decrease of potential bioactive peptides in digests. The present study provides an intuitive insight into the impact of protein oxidation in frozen/thawed fillets on the digestibility of MPs, emphasizing the importance of mitigating protein oxidation to preserve their nutritional quality.
Collapse
Affiliation(s)
- Yueyue Liu
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zixin Fu
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuqing Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xingmin Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
3
|
Gao S, Liu Y, Fu Z, Zhang H, Zhang L, Li B, Tan Y, Hong H, Luo Y. Uncovering quality changes of salted bighead carp fillets during frozen storage: The potential role of time-dependent protein denaturation and oxidation. Food Chem 2023; 414:135714. [PMID: 36808024 DOI: 10.1016/j.foodchem.2023.135714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/21/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
This study aimed to find the specific relationship between quality traits and myofibrillar proteins (MPs) alteration of salted fish during frozen storage. Protein denaturation and oxidation occurred in frozen fillets, with the denaturation occurring before oxidation. In the pre-phase of storage (0-12 weeks), protein structural changes (secondary structure and surface hydrophobicity) were closely related to the water-holding capacity (WHC) and textural properties of fillets. The MPs oxidation (sulfhydryl loss, carbonyl and Schiff base formation) were dominated and associated with changes in pH, color, WHC, and textural properties during the later stage of frozen storage (12-24 weeks). Besides, the brining at 0.5 M improved the WHC of fillets with less undesirable changes in MPs and quality traits compared to other concentrations. The 12 weeks was an advisable storage time for salted frozen fish and our results might provide an available suggestion for fish preservation in aquatic industry.
Collapse
Affiliation(s)
- Song Gao
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yueyue Liu
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zixin Fu
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Huijuan Zhang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Longteng Zhang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Bo Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuqing Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Research and Development Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| |
Collapse
|
4
|
Gao S, Fu Z, Zhang L, Li B, Tan Y, Hong H, Luo Y. Oxidation and side-chain modifications decrease gastrointestinal digestibility and transport of proteins from salted bighead carp fillets after frozen storage. Food Chem 2023; 428:136747. [PMID: 37413834 DOI: 10.1016/j.foodchem.2023.136747] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023]
Abstract
This study examined the effects of protein oxidation on digestion behavior. The oxidation levels and in vitro digestibility of myofibrillar proteins from fresh-brined and frozen bighead carp fillets were investigated, and the intestinal transport property was characterized by comparing the peptides on both sides of the intestinal membrane. Frozen fillets showed high oxidation levels, low amino acid content and in vitro protein digestibility, which were further increased by brining. After storage, the number of modified peptides from myosin heavy chain (MHC) increased over 10-fold in NaCl-treated samples (2.0 M). Various types of side-chain modifications in amino acids were identified, such as di-oxidation, α-aminoadipic semialdehyde (AAS), γ-glutamic semialdehyde (GGS), and protein-malondialdehyde (MDA) adducts, mainly originating from MHC. The Lysine/Arginine-MDA adducts, AAS, and GGS decreased protein digestibility and their intestinal transportation. These findings suggest that oxidation impacts protein digestion and should be considered in food processing and preservation strategies.
Collapse
Affiliation(s)
- Song Gao
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zixin Fu
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Longteng Zhang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Bo Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuqing Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Research and Development Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| |
Collapse
|
5
|
Si R, Wu D, Na Q, He J, Yi L, Ming L, Guo F, Ji R. Effects of Various Processing Methods on the Nutritional Quality and Carcinogenic Substances of Bactrian Camel ( Camelus bactrianus) Meat. Foods 2022; 11:3276. [PMID: 37431023 PMCID: PMC9602032 DOI: 10.3390/foods11203276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/03/2022] [Accepted: 10/18/2022] [Indexed: 09/04/2024] Open
Abstract
Bactrian camel (Camelus bactrianus) meat, as a product of national geographical indication, is mainly produced in the northwest regions of China. This study systematically evaluated the edible quality, nutritional quality, and carcinogenic substances of Bactrian camel meat using different heating times in four thermal processing methods (steaming, boiling, frying, and microwaving). Compared with the control group (uncooked), the thermal processing of meat demonstrated lower redness and moisture content; higher shear force values and protein, fat, and ash contents; and sharply increased the levels of amino acids and fatty acids. The moisture content of the fried and microwave-treated meat was significantly lower than that of the steamed and boiled meat (p < 0.05). Steamed meat was higher in protein but had a lower fat content than the other three processing methods (p < 0.05). Compared with frying and microwaving, meat from steaming and boiling showed higher levels of essential amino acids and lower shear force values. However, the smoke generated during frying led to the formation of large amounts of polycyclic aromatic hydrocarbons (PAHs) and nitrites, and the levels of these substances increased with heating time. In addition, with the extension of the heating time, the shear force of the meat also increased gradually (p < 0.05). In summary, steaming and boiling were proven to be suitable processing methods for preserving better nutritional values while delivering less carcinogenic risk. With our results, we have established a nutritional database for Bactrian camel meat, providing a reference for selecting a suitable thermal processing method.
Collapse
Affiliation(s)
- Rendalai Si
- Key Laboratory of Dairy Biotechnology and Bioengineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Dandan Wu
- Key Laboratory of Dairy Biotechnology and Bioengineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Qin Na
- Key Laboratory of Dairy Biotechnology and Bioengineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jing He
- Key Laboratory of Dairy Biotechnology and Bioengineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Li Yi
- Key Laboratory of Dairy Biotechnology and Bioengineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Liang Ming
- Key Laboratory of Dairy Biotechnology and Bioengineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Fucheng Guo
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Rimutu Ji
- Key Laboratory of Dairy Biotechnology and Bioengineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Institute of Camel Research, Alxa 737300, China
| |
Collapse
|
6
|
Zhang H, Huang X, Zhang Y, Zou X, Tian L, Hong H, Luo Y, Tan Y. Silver carp (Hypophthalmichthys molitrix) by-product hydrolysates: A new nitrogen source for Bifidobacterium animalis ssp. lactis BB-12. Food Chem 2022; 404:134630. [DOI: 10.1016/j.foodchem.2022.134630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/23/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022]
|
7
|
Effects of the BHA and basil essential oil on nutritional, chemical, and sensory characteristics of sunflower oil and sardine (Sardina pilchardus) fillets during repeated deep-frying. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Sodium chloride-induced oxidation of bighead carp (Aristichthys nobilis) fillets: The role of mitochondria and underlying mechanisms. Food Res Int 2022; 152:110915. [DOI: 10.1016/j.foodres.2021.110915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 11/19/2022]
|