1
|
Kandiyil SP, Jose A, Mohanan C, Illam SP, Raghavamenon AC. Virgin coconut oil mitigates ageing-associated oxidative stress and dyslipidaemia in male Wistar rats. Nutr Metab Cardiovasc Dis 2024; 34:2834-2841. [PMID: 39358108 DOI: 10.1016/j.numecd.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND AND AIM Ageing often leads to the deterioration of physiological functions, including a decline in antioxidant defences, which can result in various health complications. Exogenous antioxidants have been recognised for their potential to alleviate these age-related health complications. Virgin coconut oil (VCO), known for its antioxidant, anti-inflammatory and anti-lipidemic efficacies, has gained recognition as a functional food with promising benefits. However, the safety of VCO consumption among individuals of the aged and diseased population remains to be fully established. METHODS AND RESULTS Five experimental groups were established, consisting of one control group and four groups administered either "2 mL" or "4 mL" per kg body weight of "HP-VCO" or "F-VCO" daily for six weeks. Body weight, water, and feed intake were monitored. After six weeks, animals were euthanized, blood and organs were collected for analysis. Oxidative stress and dyslipidemia markers were analysed, and liver tissues underwent histological examination. HP-VCO-administered animals exhibited increased serum total cholesterol and triglycerides, whereas F-VCO-fed animals showed reduced triglyceride levels. LDL-cholesterol levels decreased in all VCO-fed groups, accompanied by increased HDL-cholesterol levels. Additionally, all treated groups showed a slight increase in the HMG Co. A/mevalonate ratio. Both VCO-fed animals displayed elevated reduced glutathione levels and reduced glutathione - S transferase activity. Consistent with these findings, decreased conjugated dienes and thiobarbituric acid reactive substances confirmed the improved redox status. CONCLUSION The study indicated that F-VCO is advantageous over VCO prepared by hot pressing as it offers protection against oxidative stress and related degenerative diseases.
Collapse
Affiliation(s)
- Sruthi Panniyan Kandiyil
- Amala Cancer Research Centre (Affiliated to University of Calicut, Thenjhiapalam P O, Malapuram), Amala Nagar P.O., Thrissur 680555, Kerala, India
| | - Anit Jose
- St. Joseph's College, Irinjalakuda, Thrissur 680661, Kerala, India
| | - Chanjana Mohanan
- Centre for Professional and Advanced Studies (CPAS) School of Medical Education (SME), Kottayam Kerala, India
| | - Soorya Parathodi Illam
- Amala Cancer Research Centre (Affiliated to University of Calicut, Thenjhiapalam P O, Malapuram), Amala Nagar P.O., Thrissur 680555, Kerala, India
| | - Achuthan C Raghavamenon
- Amala Cancer Research Centre (Affiliated to University of Calicut, Thenjhiapalam P O, Malapuram), Amala Nagar P.O., Thrissur 680555, Kerala, India.
| |
Collapse
|
2
|
N P D, Kondengadan MS, Sweilam SH, Rahman MH, Muhasina KM, Ghosh P, Bhargavi D, Palati DJ, Maiz F, Duraiswamy B. Neuroprotective role of coconut oil for the prevention and treatment of Parkinson's disease: potential mechanisms of action. Biotechnol Genet Eng Rev 2024; 40:3346-3378. [PMID: 36208039 DOI: 10.1080/02648725.2022.2122296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Neurodegenerative disease (ND) is a clinical condition in which neurons degenerate with a consequent loss of functions in the affected brain region. Parkinson's disease (PD) is the second most progressive ND after Alzheimer's disease (AD), which affects the motor system and is characterized by the loss of dopaminergic neurons from the nigrostriatal pathway in the midbrain, leading to bradykinesia, rigidity, resting tremor, postural instability and non-motor symptoms such as cognitive declines, psychiatric disturbances, autonomic failures, sleep difficulties, and pain syndrome. Coconut oil (CO) is an edible oil obtained from the meat of Cocos nucifera fruit that belongs to the palm family and contains 92% saturated fatty acids. CO has been shown to mediate oxidative stress, neuroinflammation, mitochondrial dysfunction, apoptosis and excitotoxicity-induced effects in PD in various in vitro and in vivo models as a multi-target bioagent. CO intake through diet has also been linked to a decreased incidence of PD in people. During digestion, CO is broken down into smaller molecules, like ketone bodies (KBs). The KBs then penetrate the blood-brain barrier (BBB) and are used as a source of energy its ability to cross BBB made this an important class of natural remedies for the treatment of ND. The current review describes the probable neuroprotective potential pathways of CO in PD, either prophylactic or therapeutic. In addition, we briefly addressed the important pathogenic pathways that might be considered to investigate the possible use of CO in neurodegeneration such as AD and PD.
Collapse
Affiliation(s)
- Deepika N P
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamilnadu, India
| | | | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Badr City, Egypt
| | | | - K M Muhasina
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamilnadu, India
| | - Puja Ghosh
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamilnadu, India
| | - Divya Bhargavi
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamilnadu, India
| | - Divya Jyothi Palati
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamilnadu, India
| | - Fathi Maiz
- Department of Physics, Faculty of Science, King Khalid University, Abha, Saudi Arabia, P.O. Box 9004
- Laboratory of Thermal Processes, Center for Energy Research and Technology, Borj-Cedria, BP:95 Tunisia
| | - B Duraiswamy
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamilnadu, India
| |
Collapse
|
3
|
Enye LA, Edem EE, Onyeogaziri LI, Yusuf A, Ikpade BO, Ikuelogbon DA, Kunlere OE, Adedokun MA. Tiger nut/coconut dietary intervention as antidotal nutritional remediation strategy against neurobehavioural deficits following organophosphate-induced gut-brain axis dysregulation in mice. Toxicol Rep 2024; 12:23-40. [PMID: 38193024 PMCID: PMC10772296 DOI: 10.1016/j.toxrep.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/24/2023] [Accepted: 12/08/2023] [Indexed: 01/10/2024] Open
Abstract
Organophosphate poisoning remains a global health crisis without efficacious treatments to prevent neurotoxicity. We examined whether antidotal tiger nut and coconut dietary intervention could ameliorate neurobehavioral deficits from organophosphate dichlorvos-induced gut-brain axis dysregulation in a mouse model. Mice were divided into groups given control diet, dichlorvos-contaminated diets, or dichlorvos plus nut-enriched diets. They were exposed to a DDVP-contaminated diet for 4 weeks before exposure to the treatment diets for another 8 weeks. This was followed by behavioural assessments for cognitive, motor, anxiety-, and depressive-like behaviours. Faecal samples (pre- and post-treatment), as well as blood, brain, and gut tissues, were collected for biochemical assessments following euthanasia. Dichlorvos-exposed mice displayed impairments in cognition, motor function, and mood along with disrupted inflammatory and antioxidant responses, neurotrophic factor levels, and acetylcholinesterase activity in brain and intestinal tissues. Weight loss and altered short-chain fatty acid levels additionally indicated gut dysfunction. However, intervention with tiger nut and/or coconut- enriched diet after dichlorvos exposure attenuated these neurobehavioral, and biochemical alterations. Our findings demonstrate organophosphate-induced communication disruptions between the gut and brain pathways that manifest in neuropsychiatric disturbances. Overall, incorporating fibre-rich nuts may represent an antidotal dietary strategy to reduce neurotoxicity and prevent brain disorders associated with organophosphate poisoning.
Collapse
Affiliation(s)
- Linus Anderson Enye
- Stress & Neuroimmunology Group, Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Edem Ekpenyong Edem
- Stress & Neuroimmunology Group, Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Lydia Ijeoma Onyeogaziri
- Stress & Neuroimmunology Group, Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Augustine Yusuf
- Stress & Neuroimmunology Group, Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Bliss Oluwafunmi Ikpade
- Stress & Neuroimmunology Group, Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | | | - Oladunni Eunice Kunlere
- Stress & Neuroimmunology Group, Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Mujeeb Adekunle Adedokun
- Stress & Neuroimmunology Group, Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| |
Collapse
|
4
|
Prabha S, Tamoli S, Raghavamenon AC, Manu KA. Virgin Coconut Oil Alleviates Dextran Sulphate-Induced Inflammatory Bowel Disease and Modulates Inflammation and Immune Response in Mice. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:261-271. [PMID: 37905950 DOI: 10.1080/27697061.2023.2266742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/29/2023] [Indexed: 11/02/2023]
Abstract
OBJECTIVE Virgin coconut oil (VCNO), an unrefined kernel oil from Cocos nucifera L., has considerable medicinal and nutritive value. Experimental evidence suggests its antioxidant, anti-inflammatory, chemoprotective, analgesic, and hypolipidemic effects. Presently, the effect of VCNO on ameliorating dextran sodium sulfate (DSS)-induced inflammatory bowel disease and cyclophosphamide (CTX)-induced immunosuppression in experimental animals was analyzed. METHOD DSS (4%) was administered to BALB/c mice through drinking water for 12 days to induce inflammatory bowel disease, and VCNO (500, 750, and 1000 mg/kg bwt) was supplemented orally for 12 days. For anti-inflammatory studies, lipopolysaccharide (LPS, 250 µg/animal) was injected into the intraperitoneal cavity of Swiss albino mice followed by 7 days' pretreatment of VCNO (500, 750, and 1000 mg/kg bwt). To understand the mechanism of action, serum from all animals was collected after 6 hours of LPS challenge and levels of proinflammatory cytokines were analyzed using enzyme-inked immunosorbent assay. In addition to this, immunosuppression was induced by CTX (50 mg/kg bwt, po) in Swiss albino mice. RESULTS Oral administration of VCNO effectively reversed the pathologies associated with inflammatory bowel disease induced by DSS, including loss of body weight, increased disease activity index, shortening of colon length, diarrhea, and rectal bleeding. Histopathological examination showed that VCNO restored the damage in colon tissue induced by DSS. Similar trends were noticed in levels of myeloperoxidase and mRNA expression of proinflammatory cytokines in colon tissue. In addition to this, supplementation of VCNO markedly reduced the hike in the level of serum proinflammatory cytokines in LPS-challenged mice. Further, administration of VCNO effectively increased spleen and thymus indexes and stimulated the production of interferon-γ in serum. CONCLUSIONS Overall, this study revealed that VCNO alleviates inflammatory bowel disease and inflammation; concurrently, it can revert immunosuppression.
Collapse
Affiliation(s)
- Silpa Prabha
- Department of Immunology, Amala Cancer Research Centre, Amala Nagar, Thrissur, India
| | - Sanjay Tamoli
- Department of Medical Services, Target Institute of Medical Education and Research, Mumbai, India
| | | | | |
Collapse
|
5
|
Zeng YQ, He JT, Hu BY, Li W, Deng J, Lin QL, Fang Y. Virgin coconut oil: A comprehensive review of antioxidant activity and mechanisms contributed by phenolic compounds. Crit Rev Food Sci Nutr 2022; 64:1052-1075. [PMID: 35997296 DOI: 10.1080/10408398.2022.2113361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Virgin coconut oil (VCO) is obtained by processing mature coconut cores with mechanical or natural methods. In recent years, VCO has been widely used in the food, pharmaceutical, and cosmetic industries because of its excellent functional activities. VCO has biological functions such as antioxidant, anti-inflammatory, antibacterial, and antiviral, and also has potential therapeutic effects on many chronic degenerative diseases. Among these functions, the antioxidant is the most basic and important function, which is mainly determined by phenolic compounds and medium-chain fatty acids (MCFAs). This review aims to elucidate the antioxidant functions of each phenolic compound in VCO, and discuss the antioxidant mechanisms of VCO in terms of the role of phenolic compounds with fat, intestinal microorganisms, and various organs. Besides, the composition of VCO and its application in various industries are summarized, and the biological functions of VCO are generalized, which should lay a foundation for further research on the antioxidant activity of VCO and provide a theoretical basis for the development of food additives with antioxidant activity.
Collapse
Affiliation(s)
- Yu-Qing Zeng
- Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Jin-Tao He
- Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Bo-Yong Hu
- Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Wen Li
- Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Jing Deng
- Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Qin-Lu Lin
- Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Yong Fang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, China
| |
Collapse
|
6
|
de Vasconcelos MHA, Tavares RL, Torres Junior EU, Dorand VAM, Batista KS, Toscano LT, Silva AS, de Magalhães Cordeiro AMT, de Albuquerque Meireles BRL, da Silva Araujo R, Alves AF, de Souza Aquino J. Extra virgin coconut oil (Cocos nucifera L.) exerts anti-obesity effect by modulating adiposity and improves hepatic lipid metabolism, leptin and insulin resistance in diet-induced obese rats. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|