1
|
Tan C, Tian Y, Tao L, Xie J, Wang M, Zhang F, Yu Z, Sheng J, Zhao C. Exploring the Effect of Milk Fat on Fermented Milk Flavor Based on Gas Chromatography-Ion Mobility Spectrometry (GC-IMS) and Multivariate Statistical Analysis. Molecules 2024; 29:1099. [PMID: 38474610 DOI: 10.3390/molecules29051099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Milk fat is a premium nutritional health product, yet there is a lack of high-fat dairy products for daily consumption in the current market. This study investigated the influence of different milk fat contents on the physicochemical and textural properties of fermented milk. The research revealed that an increase in milkfat content significantly improved the water-holding capacity, syneresis, color, hardness, springiness, gumminess, and chewiness of fermented milk, while showing minimal changes in pH and total titratable acidity. Response surface analysis indicated that fermented milk with 25% milk fat, 2.5% inoculum, a fermentation time of 16 h, and a fermentation temperature of 30 °C exhibited the highest overall acceptability. Using GC-IMS technology, 36 volatile compounds were identified, with an increase in milk fat content leading to elevated levels of ketone compounds, and 14 compounds were defined as key aroma compounds (ROAV > 1). Electronic nose distinguished samples with different milk fat contents. The results demonstrate that an increase in milk fat content enhances the physicochemical and flavor attributes of fermented milk. This work provides theoretical references for the production and development of high-fat fermented milk.
Collapse
Affiliation(s)
- Chunlei Tan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- PuEr University, PuEr 665000, China
| | - Liang Tao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Jing Xie
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Mingming Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Feng Zhang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Zhijin Yu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jun Sheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Cunchao Zhao
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Kunming 650201, China
| |
Collapse
|
2
|
De Santis D. Food Flavor Chemistry and Sensory Evaluation. Foods 2024; 13:634. [PMID: 38472747 DOI: 10.3390/foods13050634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 03/14/2024] Open
Abstract
The chemical composition of food plays a crucial role in determining its characteristics and properties [...].
Collapse
Affiliation(s)
- Diana De Santis
- Department for Innovation in Biological, Agro-Food and Forest Systems DIBAF, University of Tuscia, 01100 Viterbo, Italy
| |
Collapse
|
3
|
Wang MS, Fan M, Zheng AR, Wei CK, Liu DH, Thaku K, Wei ZJ. Characterization of a fermented dairy, sour cream: Lipolysis and the release profile of flavor compounds. Food Chem 2023; 423:136299. [PMID: 37178602 DOI: 10.1016/j.foodchem.2023.136299] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/21/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
Lipolysis and flavor development during fermentation of sour cream were studied by evaluating the physicochemical changes, sensory differences and volatile components. The fermentation caused significant changes in pH, viable count and sensory evaluation. The peroxide value (POV) decreased after reaching the maximum value of 1.07 meq/kg at 15 h, while thiobarbituric acid reactive substances (TBARS) increased continuously with the accumulation of secondary oxidation products. The Free fatty acids (FFAs) in sour cream were mainly myristic, palmitic and stearic. GC-IMS was used to identify the flavor properties. A total of 31 volatile compounds were identified, among which the contents of characteristic aromatic substances such as ethyl acetate, 1-octen-3-one and hexanoic acid were increased. The results suggest that lipid changes and flavor formation in sour cream are influenced by fermentation time. Furthermore, flavor compounds may be related to lipolysis such as 1-octen-3-one and 2- heptanol were also observed.
Collapse
Affiliation(s)
- Meng-Song Wang
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, People's Republic of China
| | - Min Fan
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, People's Republic of China
| | - An-Ran Zheng
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, People's Republic of China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Chao-Kun Wei
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, People's Republic of China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Dun-Hua Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, People's Republic of China
| | - Kiran Thaku
- Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Zhao-Jun Wei
- Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| |
Collapse
|
4
|
Controlling of Mycobacterium by Natural Degradant-Combination Models for Sequestering Mycolic Acids in Karish Cheese. Molecules 2022; 27:molecules27248946. [PMID: 36558074 PMCID: PMC9787636 DOI: 10.3390/molecules27248946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Degradation of the mycobacterial complex containing mycolic acids (MAs) by natural bioactive compounds is essential for producing safe and value-added foods with therapeutic activities. This study aimed to determine the degradation efficiency of natural organic acid extracts (i.e., citric, malic, tartaric, and lactic), quadri-mix extract from fruits and probiotics (i.e., lemon, apple, grape, and cell-free supernatant of Lactobacillus acidophilus), and synthetic pure organic acids (i.e., citric, malic, tartaric, and lactic), against MA in vitro in phosphate buffer solution (PBS) and Karish cheese models. The degradation effect was evaluated both individually and in combinations at different concentrations of degradants (1, 1.5, and 2%) and at various time intervals (0, 6, 12, 24, and 48 h). The results show that MA degradation percentage recorded its highest value at 2% of mixed fruit extract quadri-mix with L. acidophilus and reached 99.2% after 48 h both in PBS and Karish cheese, unlike other treatments (i.e., citric + malic + tartaric + lactic), individual acids, and sole extracts at all concentrations. Conversely, organic acid quadri-mix revealed the greatest MA degradation% of 95.9, 96.8, and 97.3% at 1, 1.5, and 2%, respectively, after 48 h. Citric acid was more effective in MA degradation than other acids. The fruit extract quadri-mix combined with L. acidophilus-fortified Karish cheese showed the highest sensorial characteristics; hence, it can be considered a novel food-grade degradant for MA and could be a promising biocontrol candidate against Mycobacterium tuberculosis (Mtb) in food matrices.
Collapse
|
5
|
Kliks J, Białobrzycka Z, Krzyszkowska M, Korycka-Korwek J, Ciepliński M, Kasprzak M. The Aroma Composition of Koryciński Cheese Ripened in Different Temperatures. Molecules 2022; 27:8745. [PMID: 36557877 PMCID: PMC9783123 DOI: 10.3390/molecules27248745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
As a regional product, Koryciński cheese is one of the most important cheeses in the Podlasie region of Poland. In this study, the influence of technological processes, such as ripening, on shaping the organoleptic characteristics of cheese was determined. Korycin-type cheeses are produced from cow's milk according to traditional technology. The ripening process lasted 466 h at 5 °C, 10 °C, and 15 °C. The aging temperature had a decisive influence on the number of esters and organic acids formed, which were analyzed by gas chromatography-mass spectrometry (GC/MS). The organoleptic properties of the cheeses were also related to the ripening temperature.
Collapse
Affiliation(s)
- Jarosław Kliks
- Faculty of Biological Sciences, University of Zielona Gora, Prof. Z. Szafrana 1 Street, 65-417 Zielona Gora, Poland
| | | | | | | | | | | |
Collapse
|
6
|
Santamarina-García G, Amores G, López de Armentia E, Hernández I, Virto M. Relationship between the Dynamics of Gross Composition, Free Fatty Acids and Biogenic Amines, and Microbial Shifts during the Ripening of Raw Ewe Milk-Derived Idiazabal Cheese. Animals (Basel) 2022; 12:3224. [PMID: 36428451 PMCID: PMC9686631 DOI: 10.3390/ani12223224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
This study reports for the first time the relationship between bacterial succession, characterized by high-throughput sequencing (sequencing of V3-V4 16S rRNA regions), and the evolution of gross composition, free fatty acids (FFAs) and biogenic amines (BAs) during cheese ripening. Specifically, Idiazabal PDO cheese, a raw ewe milk-derived semi-hard o hard cheese, was analysed. Altogether, 8 gross parameters were monitored (pH, dry matter, protein, fat, Ca, Mg, P and NaCl) and 21 FFAs and 8 BAs were detected. The ripening time influenced the concentration of most physico-chemical parameters, whereas the producer mainly affected the gross composition and FFAs. Through an O2PLS approach, the non-starter lactic acid bacteria Lactobacillus, Enterococcus and Streptococcus were reported as positively related to the evolution of gross composition and FFAs release, while only Lactobacillus was positively related to BAs production. Several environmental or non-desirable bacteria showed negative correlations, which could indicate the negative impact of gross composition on their growth, the antimicrobial effect of FFAs and/or the metabolic use of FFAs by these genera, and their ability to degrade BAs. Nonetheless, Obesumbacterium and Chromohalobacter were positively associated with the synthesis of FFAs and BAs, respectively. This research work provides novel information that may contribute to the understanding of possible functional relationships between bacterial communities and the evolution of several cheese quality and safety parameters.
Collapse
Affiliation(s)
- Gorka Santamarina-García
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Unibertsitate Ibilbidea 7, 01006 Vitoria-Gasteiz, Basque Country, Spain
| | - Gustavo Amores
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Unibertsitate Ibilbidea 7, 01006 Vitoria-Gasteiz, Basque Country, Spain
| | | | | | | |
Collapse
|
7
|
Sasanam S, Rungsardthong V, Thumthanaruk B, Wijuntamook S, Rattananupap V, Vatanyoopaisarn S, Puttanlek C, Uttapap D, Mussatto SI. Production of process flavorings from methionine, thiamine with d-xylose or dextrose by direct extrusion: Physical properties and volatile profiles. J Food Sci 2022; 87:895-910. [PMID: 35122252 DOI: 10.1111/1750-3841.16060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 11/30/2022]
Abstract
The conventional method to produce process flavoring is non-continuous, time consuming, and generates a high volume of effluent. This research aimed to evaluate the use of methionine, thiamine, and reducing sugars to develop process flavorings by direct extrusion, as a potential alternative to the conventional method. The mixed substrates consisted of methionine: d-xylose (MX), methionine: dextrose (MD), thiamine: d-xylose (TX), and thiamine: dextrose (TD) at 80:20 w/w. Three barrel temperatures of the extruder were controlled at 65, 80, and 50°C, respectively, a screw speed of 30 rpm and feed rate at 3 kg/hr. Appearance, pH, odor, and taste description of the product from each mixture were determined. Volatile compounds, possibly occurred from the Maillard reaction during the extrusion were analyzed by gas chromatography-mass spectrometry. The products exhibited different levels of meaty odor and bitter taste. Those obtained from MD showed the highest L* (lightness, 85.37) and frequency for just-about-right in terms of taste (33.33%) and odor (60.00%). Products from MX and MD presented the highest frequency for intense taste, and higher frequency for color compared to TX and TD. More volatile compounds were detected from the use of methionine than from thiamine. The key meaty odor compounds such as dimethyl disulfide, dimethyl trisulfide, methional, and methanethiol were found in the samples from MX and MD, while only dimethyl disulfide was detected in the mixture of TX and TD. Finally, the results demonstrated that direct extrusion reaction from methionine and d-xylose or dextrose is a highly efficient method to produce meaty process flavorings. PRACTICAL APPLICATION: The manuscript describes the production of process flavorings that exhibited meaty flavors by extrusion process. Physical properties, volatile profiles, and sensory evaluation of the products from methionine, thiamine, d-xylose, and glucose were evaluated. The extruded products from methionine and dextrose exhibited acceptable color, taste, and odor and presented many volatiles compounds contributing to meaty flavors. The results revealed the high potential to use a direct extrusion process with very low effluent, compared to the conventional method, to produce meaty flavors for industrial application.
Collapse
Affiliation(s)
- Sirinapa Sasanam
- Department of Agro-Industrial, Food and Environmental Technology, Faculty of Applied Science, Food and Agro-Industrial Research Center, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand
| | - Vilai Rungsardthong
- Department of Agro-Industrial, Food and Environmental Technology, Faculty of Applied Science, Food and Agro-Industrial Research Center, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand
| | - Benjawan Thumthanaruk
- Department of Agro-Industrial, Food and Environmental Technology, Faculty of Applied Science, Food and Agro-Industrial Research Center, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand
| | | | | | - Savitri Vatanyoopaisarn
- Department of Agro-Industrial, Food and Environmental Technology, Faculty of Applied Science, Food and Agro-Industrial Research Center, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand
| | - Chureerat Puttanlek
- Department of Biotechnology, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, Thailand
| | - Dudsadee Uttapap
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkhuntian, Bangkok, Thailand
| | - Solange I Mussatto
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kongens Lyngby, Denmark
| |
Collapse
|