1
|
Jalali M, Abedi M, Tabarsa M, Moreno DA. Morphological and biochemical characteristics of wild red-fleshed apples (Malus sieversii f. niedzwetzkyana) in the North and Northeast of Iran. BMC PLANT BIOLOGY 2024; 24:899. [PMID: 39349996 PMCID: PMC11441265 DOI: 10.1186/s12870-024-05608-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Red-flesh apples (Malus sieversii f. niedzwetzkyana) have attracted attention from consumers and researchers due to their pleasant appearance and taste. These exotic apples are rich sources of nutrients and health-promoting polyphenols and phenolics. This study aimed to investigate morphological (40 quantitative and 13 qualitative traits) and biochemical (5 traits) characteristics of four socioeconomically important red-fleshed apple populations in North and Northeast region of Iran, which are understudied and under serious extinction risk. RESULTS The examined characters exhibited wide and statistically significant variations, especially in leaf color (68.86%) and the number of seeds per fruit (61.61%), and more dramatically in the total flavonoids (146.64%) and total phenolics contents (105.81%). There were also strong variations in fresh fruit weight and fruit length, diameter, and flesh thickness. Red, with 34 accessions, was the dominant ripe fruit skin color. All biochemical traits also showed high variations, particularly in total flavonoid content. Red-fleshed Gavramak and Kalateh Khij apples contained the highest biochemical and morphological values, respectively. Principal component analysis (PCA) revealed that the first five principal components together accounted for more than 60.83% variation of the total observed variations. Moreover, the cluster dendrogram analysis based on Ward's method indicated three different clusters based on the characters measured, indicating high variation among the accessions. CONCLUSION red-flesh apples can be considered suitable sources of natural antioxidants with great potential as healthy foods and nutraceutical applications. Based on the commercial characters, Red-fleshed Gavramak and Kalateh Khij apples showed the highest fruit quality with proper size and thus can be suggested as superior for cultivation or use in breeding programs due to having higher quality fruits.
Collapse
Affiliation(s)
- Majid Jalali
- Department of Range Management, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran Province, Iran
| | - Mehdi Abedi
- Department of Range Management, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran Province, Iran.
| | - Mehdi Tabarsa
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Mazandaran Province, Iran
| | - Diego A Moreno
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), CEBAS, CSIC, Campus Universitario de Espinardo -25, Murcia, 30100, Spain
| |
Collapse
|
2
|
Girotto OS, Furlan OO, Moretti Junior RC, Goulart RDA, Baldi Junior E, Barbalho-Lamas C, Fornari Laurindo L, Barbalho SM. Effects of apples ( Malus domestica) and their derivatives on metabolic conditions related to inflammation and oxidative stress and an overview of by-products use in food processing. Crit Rev Food Sci Nutr 2024:1-32. [PMID: 39049560 DOI: 10.1080/10408398.2024.2372690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Apple (Malus domestica) is the third most produced fruit worldwide. It is a well-known source of bioactive compounds mainly represented by hydroxycinnamic acids, flavan-3-ols, dihydrochalcones, dehydroascorbic acid, carotenoids, chlorogenic acid, epicatechin, and phloridzin. Due to the lack of a recent evaluation of the clinical trials associated with apple consumption, this review investigated the effects of this fruit on metabolic conditions related to inflammation and oxidative stress and reviewed the applications of apple waste on food products. Thirty-three studies showed that apples or its derivatives exhibit anti-inflammatory and antioxidant actions, improve blood pressure, body fat, insulin resistance, dyslipidemia, and reduce cardiovascular risks. Apples have a great economic impact due to its several applications in the food industry and as a food supplement since it has impressive nutritional value. Dietary fiber from the fruit pomace can be used as a substitute for fat in food products or as an improver of fiber content in meat products. It can also be used in bakery and confectionary products or be fermented to produce alcohol. Pomace phytocompounds can also be isolated and applied as antioxidants in food products. The potential for the use of apples and by-products in the food industry can reduce environmental damage.
Collapse
Affiliation(s)
- Otávio Simões Girotto
- Department of Biochemistry, School of Medicine, University of Marília (UNIMAR), Marília, SP, Brazil
| | - Otávio Oliveira Furlan
- Department of Biochemistry, School of Medicine, University of Marília (UNIMAR), Marília, SP, Brazil
| | | | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation - UNIMAR, Marília, SP, Brazil
| | - Edgar Baldi Junior
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation - UNIMAR, Marília, SP, Brazil
| | - Caroline Barbalho-Lamas
- Department of Gerontology, School of Gerontology, Universidade Federal de São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, SP, Brazil
| | - Sandra M Barbalho
- Department of Biochemistry, School of Medicine, University of Marília (UNIMAR), Marília, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation - UNIMAR, Marília, SP, Brazil
- School of Food and Technonolgy of Marilia (FATEC), São Paulo, Brazil
| |
Collapse
|
3
|
Perta N, Torrieri Di Tullio L, Cugini E, Fattibene P, Rapanotti MC, Borromeo I, Forni C, Malaspina P, Cacciamani T, Di Marino D, Rossi L, De Luca A. Hydroxytyrosol Counteracts Triple Negative Breast Cancer Cell Dissemination via Its Copper Complexing Properties. BIOLOGY 2023; 12:1437. [PMID: 37998036 PMCID: PMC10669715 DOI: 10.3390/biology12111437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
Polyphenols have gained increasing attention for their therapeutic potential, particularly in conditions like cancer, due to their established antioxidant and anti-inflammatory properties. Recent research highlights their ability to bind to transition metals, such as copper. This is particularly noteworthy given the key role of copper both in the initiation and progression of cancer. Copper can modulate the activity of kinases required for the epithelial-mesenchymal transition (EMT), a process fundamental to tumor cell dissemination. We have previously demonstrated the copper-binding capacity of oleuropein, a secoiridoid found in Olea europaea. In the present study, we investigated the effect of hydroxytyrosol, the primary oleuropein metabolite, on the metastatic potential of three triple-negative breast cancer cell lines (MDA-MB-231, MDA-MB-468, and SUM159). We found that hydroxytyrosol modulated the intracellular copper levels, influencing both the epithelial and mesenchymal markers, by downregulating copper-dependent AKT phosphorylation, a member of the EMT signaling cascade, through Western blot, RT-qPCR, and immunofluorescence. Indeed, by optical spectra, EPR, and in silico approaches, we found that hydroxytyrosol formed a complex with copper, acting as a chelating agent, thus regulating its homeostasis and affecting the copper-dependent signaling cascades. While our results bring to light the copper-chelating properties of hydroxytyrosol capable of countering tumor progression, they also provide further confirmation of the key role of copper in promoting the aggressiveness of triple-negative breast cancer cells.
Collapse
Affiliation(s)
- Nunzio Perta
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (N.P.); (T.C.); (D.D.M.)
- New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Laura Torrieri Di Tullio
- Istituto Superiore di Sanità, Core Facilities, Viale Regina Elena, 299, 00185 Rome, Italy; (L.T.D.T.); (P.F.)
- PhD School in Biochemistry, Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome “Sapienza”, Viale Regina Elena, 332, 00185 Rome, Italy
| | - Elisa Cugini
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford, 8, 00133 Rome, Italy; (E.C.); (M.C.R.)
| | - Paola Fattibene
- Istituto Superiore di Sanità, Core Facilities, Viale Regina Elena, 299, 00185 Rome, Italy; (L.T.D.T.); (P.F.)
| | - Maria Cristina Rapanotti
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford, 8, 00133 Rome, Italy; (E.C.); (M.C.R.)
| | - Ilaria Borromeo
- PhD School in Evolutionary Biology and Ecology, Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy;
| | - Cinzia Forni
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (C.F.); (P.M.); (L.R.)
| | - Patrizia Malaspina
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (C.F.); (P.M.); (L.R.)
| | - Tiziana Cacciamani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (N.P.); (T.C.); (D.D.M.)
- New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Daniele Di Marino
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (N.P.); (T.C.); (D.D.M.)
- New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
- Neuronal Death and Neuroprotection Unit, Department of Neuroscience, Mario Negri Institute for Pharmacological Research-IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Luisa Rossi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (C.F.); (P.M.); (L.R.)
| | - Anastasia De Luca
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (C.F.); (P.M.); (L.R.)
| |
Collapse
|
4
|
Patel A, Rasheed A, Reilly I, Pareek Z, Hansen M, Haque Z, Simon-Fajardo D, Davies C, Tummala A, Reinhardt K, Bustabad A, Shaw M, Robins J, Vera Gomez K, Suphakorn T, Camacho Gemelgo M, Law A, Lin K, Hospedales E, Haley H, Perez Martinez JP, Khan S, DeCanio J, Padgett M, Abramov A, Nanjundan M. Modulation of Cytoskeleton, Protein Trafficking, and Signaling Pathways by Metabolites from Cucurbitaceae, Ericaceae, and Rosaceae Plant Families. Pharmaceuticals (Basel) 2022; 15:1380. [PMID: 36355554 PMCID: PMC9698530 DOI: 10.3390/ph15111380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 10/22/2023] Open
Abstract
One promising frontier within the field of Medical Botany is the study of the bioactivity of plant metabolites on human health. Although plant metabolites are metabolic byproducts that commonly regulate ecological interactions and biochemical processes in plant species, such metabolites also elicit profound effects on the cellular processes of human and other mammalian cells. In this regard, due to their potential as therapeutic agents for a variety of human diseases and induction of toxic cellular responses, further research advances are direly needed to fully understand the molecular mechanisms induced by these agents. Herein, we focus our investigation on metabolites from the Cucurbitaceae, Ericaceae, and Rosaceae plant families, for which several plant species are found within the state of Florida in Hillsborough County. Specifically, we compare the molecular mechanisms by which metabolites and/or plant extracts from these plant families modulate the cytoskeleton, protein trafficking, and cell signaling to mediate functional outcomes, as well as a discussion of current gaps in knowledge. Our efforts to lay the molecular groundwork in this broad manner hold promise in supporting future research efforts in pharmacology and drug discovery.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Meera Nanjundan
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| |
Collapse
|
5
|
Yuste S, Ludwig IA, Romero MP, Motilva MJ, Rubió L. New red-fleshed apple cultivars: a comprehensive review of processing effects, (poly)phenol bioavailability and biological effects. Food Funct 2022; 13:4861-4874. [PMID: 35419577 DOI: 10.1039/d2fo00130f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Red-fleshed apple cultivars with an enhanced content of anthocyanins have recently attracted the interest of apple producers and consumers due to their attractive color and promising added health benefits. In this paper, we provide the first comprehensive overview of new hybrid red-fleshed apples, mainly focusing on their (poly)phenolic composition, the effect of processing, the (poly)phenolic bioavailability and the biological effects. Evidence so far from in vitro and in vivo studies supports their added beneficial effects compared to common apples on health outcomes such as cancer, cardiovascular disease, inflammation and immune function, which are mainly related to their specific (poly)phenol composition.
Collapse
Affiliation(s)
- Silvia Yuste
- Antioxidants Research Group, Food Technology Department, Agrotecnio-RECERCA Center, University of Lleida, Av/Alcalde Rovira Roure, 191, 25198 Lleida, Spain.
| | - Iziar A Ludwig
- Departamento de Ciencias de la Alimentación y Fisiología, Facultad de Farmacia y Nutrición, Universidad de Navarra, 31008 Pamplona, Spain.
| | - María-Paz Romero
- Antioxidants Research Group, Food Technology Department, Agrotecnio-RECERCA Center, University of Lleida, Av/Alcalde Rovira Roure, 191, 25198 Lleida, Spain.
| | - María-José Motilva
- Instituto de Ciencias de la Vid y del Vino-ICVV (Consejo Superior de Investigaciones Científicas-CSIC, Gobierno de La Rioja, Universidad de La Rioja), Finca "La Grajera", Carretera de Burgos km 6, 26007 Logroño, La Rioja, Spain
| | - Laura Rubió
- Antioxidants Research Group, Food Technology Department, Agrotecnio-RECERCA Center, University of Lleida, Av/Alcalde Rovira Roure, 191, 25198 Lleida, Spain.
| |
Collapse
|