1
|
Gil-Martínez L, Santos-Mejías A, De la Torre-Ramírez JM, Baños A, Verardo V, Gómez-Caravaca AM. Optimization of a Sonotrode Extraction Method and New Insight of Phenolic Composition of Fucus vesiculosus. Mar Drugs 2025; 23:40. [PMID: 39852542 PMCID: PMC11766535 DOI: 10.3390/md23010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
The optimization of bioactive compound extraction from Fucus vesiculosus using ultrasound-assisted extraction (UAE) via sonotrode was investigated to maximize phenolic recovery and antioxidant activity while promoting a sustainable process. Optimal conditions (40% v/v ethanol in water, 38 min, 36% amplitude) were selected to maximize phenolic recovery while considering environmental and energy sustainability by optimizing extraction efficiency and minimizing solvent and energy usage. HPLC-ESI-QTOF-MS analysis tentatively identified 25 phenolic compounds, including sulfated phenolic acids, phlorotannins, flavonoids, and halophenols, with some reported for the first time in F. vesiculosus, underscoring the complexity of this alga's metabolome. The antioxidant activity of the optimized extract was evaluated through FRAP (143.7 µmol TE/g), DPPH (EC50 105.6 µg/mL), and TEAC (189.1 µmol Trolox/g) assays. The optimized process highlights F. vesiculosus as a valuable source of natural antioxidants, with potential applications in biotechnology, cosmetics, and food industries.
Collapse
Affiliation(s)
- Lidia Gil-Martínez
- Department of Chemistry and Natural Products, DMC Research Center, Camino de Jayena s/n, 18620 Alhendín, Spain; (L.G.-M.); (J.M.D.l.T.-R.)
| | - Alejandro Santos-Mejías
- EpiChron Research Group, Aragon Health Sciences Institute (IACS), IIS Aragón, Miguel Servet University Hospital, 50009 Zaragoza, Spain;
| | - José Manuel De la Torre-Ramírez
- Department of Chemistry and Natural Products, DMC Research Center, Camino de Jayena s/n, 18620 Alhendín, Spain; (L.G.-M.); (J.M.D.l.T.-R.)
| | - Alberto Baños
- Department of Microbiology, DMC Research Center, Camino de Jayena s/n, 18620 Alhendín, Spain;
| | - Vito Verardo
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja s/n, 18071 Granada, Spain
- Institute of Nutrition and Food Technology ‘José Mataix’, Biomedical Research Center, University of Granada, 18071 Granada, Spain;
| | - Ana M. Gómez-Caravaca
- Institute of Nutrition and Food Technology ‘José Mataix’, Biomedical Research Center, University of Granada, 18071 Granada, Spain;
- Department of Analytical Chemistry, University of Granada, Campus of Fuentenueva s/n, 18071 Granada, Spain
| |
Collapse
|
2
|
Sadeghi A, Rajabiyan A, Nabizade N, Meygoli Nezhad N, Zarei-Ahmady A. Seaweed-derived phenolic compounds as diverse bioactive molecules: A review on identification, application, extraction and purification strategies. Int J Biol Macromol 2024; 266:131147. [PMID: 38537857 DOI: 10.1016/j.ijbiomac.2024.131147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/08/2024]
Abstract
Seaweed, a diverse group of marine macroalgae, has emerged as a rich source of bioactive compounds with numerous health-promoting properties. Among these, phenolic compounds have garnered significant attention for their diverse therapeutic applications. This review examines the methodologies employed in the extraction and purification of phenolic compounds from seaweed, emphasizing their importance in unlocking the full potential of these oceanic treasures. The article provides a comprehensive overview of the structural diversity and biological activities of seaweed-derived phenolics, elucidating their antioxidant, anti-inflammatory, and anticancer properties. Furthermore, it explores the impact of extraction techniques, including conventional methods and modern green technologies, on the yield and quality of phenolic extracts. The purification strategies for isolating specific phenolic compounds are also discussed, shedding light on the challenges and advancements in this field. Additionally, the review highlights the potential applications of seaweed-derived phenolics in various industries, such as pharmaceuticals, cosmetics, and functional foods, underscoring the economic value of these compounds. Finally, future perspectives and research directions are proposed to encourage continued exploration of seaweed phenolics, fostering a deeper understanding of their therapeutic potential and promoting sustainable practices in the extraction and purification processes. This comprehensive review serves as a valuable resource for researchers, industry professionals, and policymakers interested in harnessing the untapped potential of phenolic compounds from seaweed for the betterment of human health and environmental sustainability.
Collapse
Affiliation(s)
- Abbas Sadeghi
- Department of Basic Science, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Ali Rajabiyan
- Marine Pharmaceutical Science Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Nafise Nabizade
- Department of Medicinal Chemistry, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Najme Meygoli Nezhad
- Marine Pharmaceutical Science Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Amanollah Zarei-Ahmady
- Marine Pharmaceutical Science Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
3
|
Rašeta M, Mišković J, Berežni S, Kostić S, Kebert M, Matavulj M, Karaman M. Antioxidant proficiency in Serbian mushrooms: a comparative study on Hydnum repandum L. 1753 from mycorrhizal and edible niches. Nat Prod Res 2024:1-8. [PMID: 38598360 DOI: 10.1080/14786419.2024.2341300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
This study aimed to evaluate the antioxidant potential of autochthonous Hydnum repandum through LC-MS/MS profiling, total phenolic content (TP), total protein content (TPR), and antioxidant capabilities (DPPH, ABTS, and FRAP assays) across various extracts (CHCl3, acetone, 70% EtOH, 80% MeOH, and hot water). LC-MS/MS analysis revealed a predominant presence of quinic acid in polar solvents (ranging from 531.37 to 676.07 ng/mL), while EtOH and MeOH extracts exhibited elevated total phenolic levels (27.44 ± 0.32 and 28.29 ± 3.62 mg GAE/g d.w., respectively). Impressively, H. repandum showcased remarkable antioxidant properties, as evidenced by its FRAP values (57.29 to 199.96 mg AAE/g d.w.), ABTS values (5.69 to 29.95 mg TE/g d.w.), and IC50 values in the DPPH assay (91.40 to 372.55 μg/mL), which exhibited a strong correlation with TP. Notably, the acetone extract exhibited the most robust antioxidant activity where the highest TPR was observed, suggesting synergism of primary and secondary metabolites.
Collapse
Affiliation(s)
- Milena Rašeta
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
- Department of Biology and Ecology, ProFungi Laboratory, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Jovana Mišković
- Department of Biology and Ecology, ProFungi Laboratory, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Sanja Berežni
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Saša Kostić
- Institute of Lowland Forestry and Environment, University of Novi Sad, Novi Sad, Serbia
| | - Marko Kebert
- Institute of Lowland Forestry and Environment, University of Novi Sad, Novi Sad, Serbia
| | - Milan Matavulj
- Department of Biology and Ecology, ProFungi Laboratory, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Maja Karaman
- Department of Biology and Ecology, ProFungi Laboratory, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
4
|
Lee ZJ, Xie C, Duan X, Ng K, Suleria HAR. Optimization of Ultrasonic Extraction Parameters for the Recovery of Phenolic Compounds in Brown Seaweed: Comparison with Conventional Techniques. Antioxidants (Basel) 2024; 13:409. [PMID: 38671858 PMCID: PMC11047748 DOI: 10.3390/antiox13040409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Seaweed, in particular, brown seaweed, has gained research interest in the past few years due to its distinctive phenolic profile that has a multitude of bioactive properties. In order to obtain the maximum extraction efficiency of brown seaweed phenolic compounds, Response Surface Methodology was utilized to optimize the ultrasound-assisted extraction (UAE) conditions such as the amplitude, time, solvent:solid ratio, and NaOH concentration. Under optimal conditions, UAE had a higher extraction efficiency of free and bound phenolic compounds compared to conventional extraction (stirred 16 h at 4 °C). This led to higher antioxidant activity in the seaweed extract obtained under UAE conditions. The profiling of phenolic compounds using LC-ESI-QTOF-MS/MS identified a total of 25 phenolics with more phenolics extracted from the free phenolic extraction compared to the bound phenolic extracts. Among them, peonidin 3-O-diglucodise-5-O-glucoside and hesperidin 5,7-O-diglucuronide are unique compounds that were identified in P. comosa, E. radiata and D. potatorum, which are not reported in plants. Overall, our findings provided optimal phenolic extraction from brown seaweed for research into employing brown seaweed as a functional food.
Collapse
Affiliation(s)
| | | | | | | | - Hafiz A. R. Suleria
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville 3052, Australia; (Z.J.L.); (C.X.); (X.D.); (K.N.)
| |
Collapse
|
5
|
Zengin G, Nilofar, Yildiztugay E, Bouyahya A, Cavusoglu H, Gevrenova R, Zheleva-Dimitrova D. A Comparative Study on UHPLC-HRMS Profiles and Biological Activities of Inula sarana Different Extracts and Its Beta-Cyclodextrin Complex: Effective Insights for Novel Applications. Antioxidants (Basel) 2023; 12:1842. [PMID: 37891923 PMCID: PMC10604322 DOI: 10.3390/antiox12101842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Within this particular framework, the extracts obtained from Inula sarana using a variety of solvents, included n-hexane, ethyl acetate, dichloromethane (DCM), 70% ethanol, ethanol, and water. The extracts obtained from n-hexane, ethyl acetate, and DCM were then subjected to a specific method for their incorporation into β-cyclodextrin (β-CD). The establishment of complex formation was validated through the utilization of scanning electron microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). The identification of phytochemical components was executed using UHPLC-HRMS. Furthermore, the total phenolic and flavonoid content was evaluated using the Folin-Ciocalteu assay and the AlCl3 method. Subsequently, the determination of antioxidant capacity was conducted utilizing DPPH, ABTS, CUPRAC, Frap, PBD, and MCA assays. The enzyme inhibitory activities of the samples (extracts and β-CD complexes) were also examined by AChE, BChE, tyrosinase, α-glucosidase, and α-amylase. The findings indicated that water and 70% ethanol extracts contained the highest phenolic content. One hundred and fourteen bioactive compounds were identified by UHPLC-HRMS analysis. This study unveiled a substantial array of flavonoids, phenolic acid-hexosides and caffeoylhexaric acids within I. sarana, marking their initial identification in this context. Among the various extracts tested, the 70% ethanol extract stood out due to its high flavonoid content (jaceosidin, cirsiliol, and eupatilin) and hydroxybenzoic and hydroxycinnamic acid hexosides. This extract also displayed notably enhanced antioxidant activity, with ABTS, CUPRAC, and FRAP test values of 106.50 mg TE/g dry extract, 224.31 mg TE/g dry extract, and 110.40 mg TE/g, respectively. However, the antioxidant values of the complex extracts with β-CD were generally lower than those of the pure extracts, an observation warranting significant consideration. In terms of enzyme inhibition activity, the ethanol and 70% ethanol extracts exhibited higher inhibitory effects on AChE, tyrosinase, and α-glucosidase. Conversely, n-hexane displayed stronger inhibitory activity against BChE. The ethyl acetate extract demonstrated elevated amylase inhibitory activity. However, the antioxidant values of the complex extracts with β-CD were generally lower than those of the pure extracts, a noteworthy observation, while water and extracts from the I. sarana complex with β-CD exhibited minimal or negatable inhibitory activity against specific enzymes.
Collapse
Affiliation(s)
- Gokhan Zengin
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey;
| | - Nilofar
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey;
- Department of Pharmacy, Botanic Garden “Giardino dei Semplici”, Università degli Studi “Gabriele d’Annunzio”, via dei Vestini 31, 66100 Chieti, Italy
| | - Evren Yildiztugay
- Department of Biotechnology, Science Faculty, Selcuk University, Konya 42130, Turkey;
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco;
| | - Halit Cavusoglu
- Department of Physics, Science Faculty, Selcuk University, Konya 42130, Turkey;
| | - Reneta Gevrenova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria;
| | | |
Collapse
|