Yang BL, Zhu P, Li YR, Xu MM, Wang H, Qiao LC, Xu HX, Chen HJ. Total flavone of
Abelmoschus manihot suppresses epithelial-mesenchymal transition
via interfering transforming growth factor-β1 signaling in Crohn’s disease intestinal fibrosis.
World J Gastroenterol 2018;
24:3414-3425. [PMID:
30122880 PMCID:
PMC6092575 DOI:
10.3748/wjg.v24.i30.3414]
[Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 02/06/2023] Open
Abstract
AIM
To explore the role and mechanism of total flavone of Abelmoschus manihot (TFA) on epithelial-mesenchymal transition (EMT) progress of Crohn’s disease (CD) intestinal fibrosis.
METHODS
First, CCK-8 assay was performed to assess TFA on the viability of intestinal epithelial (IEC-6) cells and select the optimal concentrations of TFA for our further studies. Then cell morphology, wound healing and transwell assays were performed to examine the effect of TFA on morphology, migration and invasion of IEC-6 cells treated with TGF-β1. In addition, immunofluorescence, real-time PCR analysis (qRT-PCR) and western blotting assays were carried out to detect the impact of TFA on EMT progress. Moreover, western blotting assay was performed to evaluate the function of TFA on the Smad and MAPK signaling pathways. Further, the role of co-treatment of TFA and si-Smad or MAPK inhibitors has been examined by qRT-PCR, western blotting, morphology, wound healing and transwell assays.
RESULTS
In this study, TFA promoted transforming growth factor-β1 (TGF-β1)-induced (IEC-6) morphological change, migration and invasion, and increased the expression of epithelial markers and reduced the levels of mesenchymal markers, along with the inactivation of Smad and MAPK signaling pathways. Moreover, we revealed that si-Smad and MAPK inhibitors effectively attenuated TGF-β1-induced EMT in IEC-6 cells. Importantly, co-treatment of TFA and si-Smad or MAPK inhibitors had better inhibitory effects on TGF-β1-induced EMT in IEC-6 cells than either one of them.
CONCLUSION
These findings could provide new insight into the molecular mechanisms of TFA on TGF-β1-induced EMT in IEC-6 cells and TFA is expected to advance as a new therapy to treat CD intestinal fibrosis.
Collapse