1
|
Ma J, Ji Q, Wang S, Qiu J, Liu Q. Identification and evaluation of a panel of strong constitutive promoters in Listeria monocytogenes for improving the expression of foreign antigens. Appl Microbiol Biotechnol 2021; 105:5135-5145. [PMID: 34086117 PMCID: PMC8175932 DOI: 10.1007/s00253-021-11374-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/10/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022]
Abstract
Attenuated Listeria monocytogenes could be a potential vaccine vector for the immunotherapy of tumors or pathogens. However, the lack of reliable promoters has limited its ability to express foreign antigens. In the present study, 21 promoters were identified from Listeria monocytogenes through RNA-seq analysis under two pH conditions of pH 7.4 and pH 5.5. Based on the constructed fluorescence report system, 7 constitutive promoters exhibited higher strength than Phelp (1.8-fold to 5.4-fold), a previously reported strong promoter. Furthermore, the selected 5 constitutive promoters exhibited higher UreB production activity than Phelp (1.1-fold to 8.3-fold). Notably, a well-characterized constitutive promoter P18 was found with the highest activity of fluorescence intensity and UreB production. In summary, the study provides a panel of strong constitutive promoters for Listeria monocytogenes and offers a theoretical basis for mining constitutive promoters in other organisms. KEY POINTS: • Twenty-one promoters were identified from L. monocytogenes through RNA-seq. • Fluorescent tracer of L. monocytogenes (P18) was performed in vitro and in vivo. • A well-characterized constitutive promoter P18 could improve the expression level of a foreign antigen UreB in L. monocytogenes.
Collapse
Affiliation(s)
- Junfei Ma
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Qianyu Ji
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Shuying Wang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jingxuan Qiu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Qing Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China. .,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
2
|
Nilsson JF, Castellani LG, Draghi WO, Mogro EG, Wibberg D, Winkler A, Hansen LH, Schlüter A, Pühler A, Kalinowski J, Torres Tejerizo GA, Pistorio M. Global transcriptome analysis of Rhizobium favelukesii LPU83 in response to acid stress. FEMS Microbiol Ecol 2020; 97:5998221. [PMID: 33220679 DOI: 10.1093/femsec/fiaa235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/19/2020] [Indexed: 11/13/2022] Open
Abstract
Acidic environments naturally occur worldwide and inappropriate agricultural management may also cause acidification of soils. Low soil pH values are an important barrier in the plant-rhizobia interaction. Acidic conditions disturb the establishment of the efficient rhizobia usually used as biofertilizer. This negative effect on the rhizobia-legume symbiosis is mainly due to the low acid tolerance of the bacteria. Here, we describe the identification of relevant factors in the acid tolerance of Rhizobium favelukesii using transcriptome sequencing. A total of 1924 genes were differentially expressed under acidic conditions, with ∼60% underexpressed. Rhizobium favelukesii acid response mainly includes changes in the energy metabolism and protein turnover, as well as a combination of mechanisms that may contribute to this phenotype, including GABA and histidine metabolism, cell envelope modifications and reverse proton efflux. We confirmed the acid-sensitive phenotype of a mutant in the braD gene, which showed higher expression under acid stress. Remarkably, 60% of the coding sequences encoded in the symbiotic plasmid were underexpressed and we evidenced that a strain cured for this plasmid featured an improved performance under acidic conditions. Hence, this work provides relevant information in the characterization of genes associated with tolerance or adaptation to acidic stress of R. favelukesii.
Collapse
Affiliation(s)
- Juliet F Nilsson
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 49 y 115, 1900 La Plata, Argentina
| | - Lucas G Castellani
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 49 y 115, 1900 La Plata, Argentina
| | - Walter O Draghi
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 49 y 115, 1900 La Plata, Argentina
| | - Ezequiel G Mogro
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 49 y 115, 1900 La Plata, Argentina
| | - Daniel Wibberg
- CeBiTec, Bielefeld University, D-33615, Bielefeld, Germany
| | - Anika Winkler
- CeBiTec, Bielefeld University, D-33615, Bielefeld, Germany
| | - L H Hansen
- Section of Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | | | - Alfred Pühler
- CeBiTec, Bielefeld University, D-33615, Bielefeld, Germany
| | | | - Gonzalo A Torres Tejerizo
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 49 y 115, 1900 La Plata, Argentina
| | - Mariano Pistorio
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 49 y 115, 1900 La Plata, Argentina
| |
Collapse
|
3
|
Li C, Gao X, Peng X, Li J, Bai W, Zhong J, He M, Xu K, Wang Y, Li C. Intelligent microbial cell factory with genetic pH shooting (GPS) for cell self-responsive base/acid regulation. Microb Cell Fact 2020; 19:202. [PMID: 33138821 PMCID: PMC7607686 DOI: 10.1186/s12934-020-01457-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/17/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND In industrial fermentation, pH fluctuation resulted from microbial metabolism influences the strain performance and the final production. The common way to control pH is adding acid or alkali after probe detection, which is not a fine-tuned method and often leads to increased costs and complex downstream processing. Here, we constructed an intelligent pH-sensing and controlling genetic circuits called "Genetic pH Shooting (GPS)" to realize microbial self-regulation of pH. RESULTS In order to achieve the self-regulation of pH, GPS circuits consisting of pH-sensing promoters and acid-/alkali-producing genes were designed and constructed. Designed pH-sensing promoters in the GPS can respond to high or low pHs and generate acidic or alkaline substances, achieving endogenously self-responsive pH adjustments. Base shooting circuit (BSC) and acid shooting circuit (ASC) were constructed and enabled better cell growth under alkaline or acidic conditions, respectively. Furthermore, the genetic circuits including GPS, BSC and ASC were applied to lycopene production with a higher yield without an artificial pH regulation compared with the control under pH values ranging from 5.0 to 9.0. In scale-up fermentations, the lycopene titer in the engineered strain harboring GPS was increased by 137.3% and ammonia usage decreased by 35.6%. CONCLUSIONS The pH self-regulation achieved through the GPS circuits is helpful to construct intelligent microbial cell factories and reduce the production costs, which would be much useful in industrial applications.
Collapse
Affiliation(s)
- Chenyi Li
- Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Xiaopeng Gao
- Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.,School of Life Science, Yan'an University, Shanxi, 716000, People's Republic of China
| | - Xiao Peng
- Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Jinlin Li
- Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Wenxin Bai
- Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Jiadong Zhong
- Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Mengchao He
- School of Life Science, Yan'an University, Shanxi, 716000, People's Republic of China
| | - Ke Xu
- Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.,Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Ying Wang
- Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| | - Chun Li
- Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China. .,School of Life Science, Yan'an University, Shanxi, 716000, People's Republic of China. .,Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
4
|
Li ZW, Liang S, Ke Y, Deng JJ, Zhang MS, Lu DL, Li JZ, Luo XC. The feather degradation mechanisms of a new Streptomyces sp. isolate SCUT-3. Commun Biol 2020; 3:191. [PMID: 32332852 PMCID: PMC7181669 DOI: 10.1038/s42003-020-0918-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 03/30/2020] [Indexed: 01/08/2023] Open
Abstract
Feather waste is the highest protein-containing resource in nature and is poorly reused. Bioconversion is widely accepted as a low-cost and environmentally benign process, but limited by the availability of safe and highly efficient feather degrading bacteria (FDB) for its industrial-scale fermentation. Excessive focuses on keratinase and limited knowledge of other factors have hindered complete understanding of the mechanisms employed by FDB to utilize feathers and feather cycling in the biosphere. Streptomyces sp. SCUT-3 can efficiently degrade feather to products with high amino acid content, useful as a nutrition source for animals, plants and microorganisms. Using multiple omics and other techniques, we reveal how SCUT-3 turns on its feather utilization machinery, including its colonization, reducing agent and protease secretion, peptide/amino acid importation and metabolism, oxygen consumption and iron uptake, spore formation and resuscitation, and so on. This study would shed light on the feather utilization mechanisms of FDBs. Li et a. report a new Streptromyces isolate, SCUT-3 which can efficiently degrade feather into products with high amino acid content, useful as feed for plants, animals and microbes. Using multiple omics and other techniques, they report how SCUT-3 turns on its feather utilization machinery and suggest a number of expressed genes most likely implicated in feather degradation.
Collapse
Affiliation(s)
- Zhi-Wei Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, P. R. China
| | - Shuang Liang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, P. R. China
| | - Ye Ke
- Yingdong College of Life Sciences, Shaoguan University, Shaoguan, Guangdong, P. R. China
| | - Jun-Jin Deng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, P. R. China
| | - Ming-Shu Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, P. R. China
| | - De-Lin Lu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, P. R. China
| | - Jia-Zhou Li
- Zhanjiang Ocean Sciences and Technologies Research Co. LTD, Zhanjiang, Guangdong, P. R. China
| | - Xiao-Chun Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, P. R. China.
| |
Collapse
|
5
|
Guerrero-Castro J, Lozano L, Sohlenkamp C. Dissecting the Acid Stress Response of Rhizobium tropici CIAT 899. Front Microbiol 2018; 9:846. [PMID: 29760688 PMCID: PMC5936775 DOI: 10.3389/fmicb.2018.00846] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/12/2018] [Indexed: 11/27/2022] Open
Abstract
Rhizobium tropici CIAT899 is a nodule-forming α-proteobacterium displaying intrinsic resistance to several abiotic stress conditions such as low pH and high temperatures, which are common in tropical environments. It is a good competitor for Phaseolus vulgaris (common bean) nodule occupancy at low pH values, however little is known about the genetic and physiological basis of the tolerance to acidic conditions. To identify genes in R. tropici involved in pH stress response we combined two different approaches: (1) A Tn5 mutant library of R. tropici CIAT899 was screened and 26 acid-sensitive mutants were identified. For 17 of these mutants, the transposon insertion sites could be identified. (2) We also studied the transcriptomes of cells grown under different pH conditions using RNA-Seq. RNA was extracted from cells grown for several generations in minimal medium at 6.8 or 4.5 (adapted cells). In addition, we acid-shocked cells pre-grown at pH 6.8 for 45 min at pH 4.5. Of the 6,289 protein-coding genes annotated in the genome of R. tropici CIAT 899, 383 were differentially expressed under acidic conditions (pH 4.5) vs. control condition (pH 6.8). Three hundred and fifty one genes were induced and 32 genes were repressed; only 11 genes were induced upon acid shock. The acid stress response of R. tropici CIAT899 is versatile: we found genes encoding response regulators and membrane transporters, enzymes involved in amino acid and carbohydrate metabolism and proton extrusion, in addition to several hypothetical genes. Our findings enhance our understanding of the core genes that are important during the acid stress response in R. tropici.
Collapse
Affiliation(s)
- Julio Guerrero-Castro
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico.,Programa de Doctorado en Ciencias Biomédicas, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Luis Lozano
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Christian Sohlenkamp
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
6
|
Redox-sensing regulator Rex regulates aerobic metabolism, morphological differentiation, and avermectin production in Streptomyces avermitilis. Sci Rep 2017; 7:44567. [PMID: 28303934 PMCID: PMC5355995 DOI: 10.1038/srep44567] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/09/2017] [Indexed: 11/13/2022] Open
Abstract
The regulatory role of redox-sensing regulator Rex was investigated in Streptomyces avermitilis. Eleven genes/operons were demonstrated to be directly regulated by Rex; these genes/operons are involved in aerobic metabolism, morphological differentiation, and secondary metabolism. Rex represses transcription of target genes/operons by binding to Rex operator (ROP) sequences in the promoter regions. NADH reduces DNA-binding activity of Rex to target promoters, while NAD+ competitively binds to Rex and modulates its DNA-binding activity. Rex plays an essential regulatory role in aerobic metabolism by controlling expression of the respiratory genes atpIBEFHAGDC, cydA1B1CD, nuoA1-N1, rex-hemAC1DB, hppA, and ndh2. Rex also regulates morphological differentiation by repressing expression of wblE, which encodes a putative WhiB-family transcriptional regulator. A rex-deletion mutant (Drex) showed higher avermectin production than the wild-type strain ATCC31267, and was more tolerant of oxygen limitation conditions in regard to avermectin production.
Collapse
|
7
|
Taniguchi H, Wendisch VF. Exploring the role of sigma factor gene expression on production by Corynebacterium glutamicum: sigma factor H and FMN as example. Front Microbiol 2015; 6:740. [PMID: 26257719 PMCID: PMC4510997 DOI: 10.3389/fmicb.2015.00740] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/06/2015] [Indexed: 12/25/2022] Open
Abstract
Bacteria are known to cope with environmental changes by using alternative sigma factors binding to RNA polymerase core enzyme. Sigma factor is one of the targets to modify transcription regulation in bacteria and to influence production capacities. In this study, the effect of overexpressing each annotated sigma factor gene in Corynebacterium glutamicum WT was assayed using an IPTG inducible plasmid system and different IPTG concentrations. It was revealed that growth was severely decreased when sigD or sigH were overexpressed with IPTG concentrations higher than 50 μM. Overexpression of sigH led to an obvious phenotypic change, a yellow-colored supernatant. High performance liquid chromatography analysis revealed that riboflavin was excreted to the medium when sigH was overexpressed and DNA microarray analysis confirmed increased expression of riboflavin biosynthesis genes. In addition, genes for enzymes related to the pentose phosphate pathway and for enzymes dependent on flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), or NADPH as cofactor were upregulated when sigH was overexpressed. To test if sigH overexpression can be exploited for production of riboflavin-derived FMN or FAD, the endogenous gene for bifunctional riboflavin kinase/FMN adenyltransferase was co-expressed with sigH from a plasmid. Balanced expression of sigH and ribF improved accumulation of riboflavin (19.8 ± 0.3 μM) and allowed for its conversion to FMN (33.1 ± 1.8 μM) in the supernatant. While a proof-of-concept was reached, conversion was not complete and titers were not high. This study revealed that inducible and gradable overexpression of sigma factor genes is an interesting approach to switch gene expression profiles and to discover untapped potential of bacteria for chemical production.
Collapse
Affiliation(s)
- Hironori Taniguchi
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology, Bielefeld University Bielefeld, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology, Bielefeld University Bielefeld, Germany
| |
Collapse
|