1
|
Cai Y, Huang P, Venturi V, Xiong R, Wang Z, Wang W, Huang X, Hu H, Zhang X. Global Gac/Rsm regulatory system activates the biosynthesis of mupirocin by controlling the MupR/I quorum sensing system in Pseudomonas sp. NCIMB 10586. Appl Environ Microbiol 2025:e0189624. [PMID: 39846735 DOI: 10.1128/aem.01896-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/11/2024] [Indexed: 01/24/2025] Open
Abstract
The biosynthesis of mupirocin, a clinically significant antibiotic produced by Pseudomonas sp. NCIMB 10586, is activated by the N-acyl homoserine lactone (AHL) MupR/I quorum sensing (QS) system. However, to date, limited research has focused on the influence of global regulators such as the GacS/A two-component system (TCS) on the MupR/I QS system or mupirocin biosynthesis. In this study, we characterized the regulatory components of the Gac/Rsm transduction system in the mupirocin-producing model strain NCIMB 10586 and investigated their interconnection with the MupR/I QS circuit and subsequent mupirocin biosynthesis. The production of mupirocin was hampered by either gacS inactivation, gacA inactivation, or the double-mutant of the sRNAs ( RsmY and RsmZ). Similarly, the expressions of mupR and mupI, and AHL synthesis significantly decreased in gacS, gacA, or rsmY/Z mutants, indicating that the GacS/A system stimulates mupirocin biosynthesis via the MupR/I QS system. Five CsrA family proteins, RsmA/E/I/F/N, were found in strain NCIMB 10586, and the single and multiple mutants of rsmA/E/I/F/N showed different phenotypes with respect to mupirocin production. Our results revealed that mupirocin biosynthesis was likely to be negatively regulated by RsmA/E/I, but positively regulated by RsmF. Additionally, the RsmF protein was shown to interact with the 5' leader of mupR mRNA. In summary, the Gac/Rsm system positively regulates the biosynthesis of mupirocin mainly through the MupR/I QS system, and the model of the regulatory mechanism is proposed. The elucidation of the Gac/Rsm-MupR/I regulatory pathway could help devise ways for improving mupirocin production through genetic engineering.IMPORTANCEThe Gac/Rsm regulatory system plays a global regulatory role in bacterial physiology and metabolism, including secondary metabolism. Mupirocin is a clinically important antibiotic, produced by Pseudomonas sp. NCIMB 10586, whose biosynthesis is activated by the MupR/I quorum sensing system. Global regulators have important impacts on the gene expression of secondary metabolic gene clusters and QS genes, and the GacS/A two-component system is one of the main regulators across Pseudomonas species, which significantly influences antibiotic production. Our study presented that the expressions of QS genes and mup gene cluster were downregulated in gacS, gacA, or rsmY/Z mutants compared to the wild-type. The inactivation of rsmA/E/I/F/N in NCIMB 10586, encoding CsrA family proteins, showed different regulatory traits of mupirocin production, in which the RsmF protein could interact with the 5' UTR region of mupR mRNA. These findings provide the understanding of the regulatory role of Gac/Rsm on mupirocin biosynthesis and mupR/I QS system and lay foundations for further improving mupirocin production.
Collapse
Affiliation(s)
- Yuyuan Cai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Peng Huang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- African Genome Center, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | - Runyao Xiong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xianqing Huang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Gallegos MT, Garavaglia M, Valverde C. Small Regulatory RNAs of the Rsm Clan in Pseudomonas. Mol Microbiol 2024; 122:563-582. [PMID: 39282792 DOI: 10.1111/mmi.15313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 10/17/2024]
Abstract
Bacteria of the genus Pseudomonas are ubiquitous on Earth due to their great metabolic versatility and adaptation to fluctuating environments and different hosts. Some groups are important animal/human and plant pathogens, whereas others are studied for their biotechnological applications, including bioremediation, biological control of phytopathogens and plant growth promotion. Notably, their adaptability is mediated by various signal transduction systems, with the post-transcriptional Gac-Rsm cascade playing a key role. This pervasive Pseudomonas pathway controls major transitions at the population level, such as motile/sessile lifestyle, primary/secondary metabolism or replicative/infective behaviour. A hallmark of the Gac-Rsm cascade is the participation of small, regulatory, non-coding RNAs of the Rsm clan. These RNAs are synthetised in response to cell-density-dependent autoinducer signals channelled through the GacS/GacA two-component system, and they counteract, by molecular mimicry, the translational control that RNA-binding proteins of the RsmA family exert over hundreds of mRNAs. Rsm RNAs have been investigated in a few Pseudomonas model species, evidencing the presence of a variable number and families of genes depending on the taxonomic clade. However, the global picture of the distribution of these riboregulators at the genus level was unknown until now. We have undertaken a comprehensive survey and annotation of the vast array of gene sequences encoding members of the Rsm RNA clan in 245 complete genomes that cover 28 phylogenomic clades across the entire genus. The properties of the different families of rsm genes, their phylogenetic radiation, as well as the features of their promoters and adjacent regions, are discussed. The novel insights presented in our manuscript will significantly boost research on the biology of these prevalent RNAs in understudied species of the genus Pseudomonas and closely related genera.
Collapse
Affiliation(s)
- María Trinidad Gallegos
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - Matías Garavaglia
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas, Centro de Bioquímica y Microbiología del Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes-CONICET, Buenos Aires, Argentina
| | - Claudio Valverde
- Laboratorio de Bioinsumos, Instituto de Biotecnología, Universidad Nacional de Hurlingham, Hurlingham, Buenos Aires, Argentina
| |
Collapse
|
3
|
Zhou L, Höfte M, Hennessy RC. Does regulation hold the key to optimizing lipopeptide production in Pseudomonas for biotechnology? Front Bioeng Biotechnol 2024; 12:1363183. [PMID: 38476965 PMCID: PMC10928948 DOI: 10.3389/fbioe.2024.1363183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
Lipopeptides (LPs) produced by Pseudomonas spp. are specialized metabolites with diverse structures and functions, including powerful biosurfactant and antimicrobial properties. Despite their enormous potential in environmental and industrial biotechnology, low yield and high production cost limit their practical use. While genome mining and functional genomics have identified a multitude of LP biosynthetic gene clusters, the regulatory mechanisms underlying their biosynthesis remain poorly understood. We propose that regulation holds the key to unlocking LP production in Pseudomonas for biotechnology. In this review, we summarize the structure and function of Pseudomonas-derived LPs and describe the molecular basis for their biosynthesis and regulation. We examine the global and specific regulator-driven mechanisms controlling LP synthesis including the influence of environmental signals. Understanding LP regulation is key to modulating production of these valuable compounds, both quantitatively and qualitatively, for industrial and environmental biotechnology.
Collapse
Affiliation(s)
- Lu Zhou
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Rosanna C. Hennessy
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Sani A, Qin WQ, Li JY, Liu YF, Zhou L, Yang SZ, Mu BZ. Structural diversity and applications of lipopeptide biosurfactants as biocontrol agents against phytopathogens: A review. Microbiol Res 2024; 278:127518. [PMID: 37897841 DOI: 10.1016/j.micres.2023.127518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/30/2023]
Abstract
Amphipathic compounds known as biosurfactants are able to reduce surface and interfacial tensions. These substances produced by microbial organisms perform the same functions as chemical surfactants with several enhancements, the most significant of which is biocontrol activity. Lipopeptide is one of the five biosurfactants from natural resources and is identified as the best alternative for chemical surfactants and the major topic of interest for both scientific and industrial communities due to their increasingly growing potential applications in biological and commercial fields. These are the biological compounds with very less toxicity level that increase their importance in the pesticide industry. In this article we summarize the structural diversity of the microbial lipopeptide biosurfactants and focus on their applications as biocontrol agents in plants, covering (1) an intensive study of the structural diversity of lipopeptide biosurfactants originated primarily by the Bacillus, Pseudomonas, Cyanobacteria, and Actinomycetes species is presented, (2) the comparative study of advantages and disadvantages of characterization techniques and physicochemical properties which have a major role in biocontrol activity of microbial lipopeptides, and (3) their wide range biocontrol applications as systemic resistance inducers against different plant diseases, resistance against phytopathogens by alteration of wettability of plant surfaces and antimicrobial activities of important bioactive lipopeptides produced from Bacillus strains.
Collapse
Affiliation(s)
- Asma Sani
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; Engineering Research Center for Microbial Enhanced Oil Recovery, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Wan-Qi Qin
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; Engineering Research Center for Microbial Enhanced Oil Recovery, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Jia-Yi Li
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; Engineering Research Center for Microbial Enhanced Oil Recovery, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Yi-Fan Liu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China; Engineering Research Center for Microbial Enhanced Oil Recovery, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Lei Zhou
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China; Engineering Research Center for Microbial Enhanced Oil Recovery, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Shi-Zhong Yang
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China; Engineering Research Center for Microbial Enhanced Oil Recovery, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Bo-Zhong Mu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China; Engineering Research Center for Microbial Enhanced Oil Recovery, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
5
|
Ferreiro MD, Behrmann LV, Corral A, Nogales J, Gallegos MT. Exploring the expression and functionality of the rsm sRNAs in Pseudomonas syringae pv. tomato DC3000. RNA Biol 2021; 18:1818-1833. [PMID: 33406981 PMCID: PMC8583166 DOI: 10.1080/15476286.2020.1871217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/08/2020] [Accepted: 12/29/2020] [Indexed: 12/18/2022] Open
Abstract
The Gac-rsm pathway is a global regulatory network that governs mayor lifestyle and metabolic changes in gamma-proteobacteria. In a previous study, we uncovered the role of CsrA proteins promoting growth and repressing motility, alginate production and virulence in the model phytopathogen Pseudomonas syringae pv. tomato (Pto) DC3000. Here, we focus on the expression and regulation of the rsm regulatory sRNAs, since Pto DC3000 exceptionally has seven variants (rsmX1-5, rsmY and rsmZ). The presented results offer further insights into the functioning of the complex Gac-rsm pathway and the interplay among its components. Overall, rsm expressions reach maximum levels at high cell densities, are unaffected by surface detection, and require GacA for full expression. The rsm levels of expression and GacA-dependence are determined by the sequences found in their -35/-10 promoter regions and GacA binding boxes, respectively. rsmX5 stands out for being the only rsm in Pto DC3000 whose high expression does not require GacA, constituting the main component of the total rsm pool in a gacA mutant. The deletion of rsmY and rsmZ had minor effects on Pto DC3000 motility and virulence phenotypes, indicating that rsmX1-5 can functionally replace them. On the other hand, rsmY or rsmZ overexpression in a gacA mutant did not revert its phenotype. Additionally, a negative feedback regulatory loop in which the CsrA3 protein promotes its own titration by increasing the levels of several rsm RNAs in a GacA-dependent manner has been disclosed as part of this work.
Collapse
Affiliation(s)
- María-Dolores Ferreiro
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental Del Zaidín (EEZ-CSIC), Granada, Spain
| | - Lara Vanessa Behrmann
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental Del Zaidín (EEZ-CSIC), Granada, Spain
| | - Ana Corral
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental Del Zaidín (EEZ-CSIC), Granada, Spain
| | - Joaquina Nogales
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental Del Zaidín (EEZ-CSIC), Granada, Spain
| | - María-Trinidad Gallegos
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental Del Zaidín (EEZ-CSIC), Granada, Spain
| |
Collapse
|
6
|
Li E, de Jonge R, Liu C, Jiang H, Friman VP, Pieterse CMJ, Bakker PAHM, Jousset A. Rapid evolution of bacterial mutualism in the plant rhizosphere. Nat Commun 2021; 12:3829. [PMID: 34158504 PMCID: PMC8219802 DOI: 10.1038/s41467-021-24005-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
While beneficial plant-microbe interactions are common in nature, direct evidence for the evolution of bacterial mutualism is scarce. Here we use experimental evolution to causally show that initially plant-antagonistic Pseudomonas protegens bacteria evolve into mutualists in the rhizosphere of Arabidopsis thaliana within six plant growth cycles (6 months). This evolutionary transition is accompanied with increased mutualist fitness via two mechanisms: (i) improved competitiveness for root exudates and (ii) enhanced tolerance to the plant-secreted antimicrobial scopoletin whose production is regulated by transcription factor MYB72. Crucially, these mutualistic adaptations are coupled with reduced phytotoxicity, enhanced transcription of MYB72 in roots, and a positive effect on plant growth. Genetically, mutualism is associated with diverse mutations in the GacS/GacA two-component regulator system, which confers high fitness benefits only in the presence of plants. Together, our results show that rhizosphere bacteria can rapidly evolve along the parasitism-mutualism continuum at an agriculturally relevant evolutionary timescale.
Collapse
Affiliation(s)
- Erqin Li
- grid.5477.10000000120346234Utrecht University, Department of Biology, Plant-Microbe Interactions, Utrecht, The Netherlands ,grid.14095.390000 0000 9116 4836Freie Universität Berlin, Institut für Biologie, Berlin, Germany ,grid.452299.1Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - Ronnie de Jonge
- grid.5477.10000000120346234Utrecht University, Department of Biology, Plant-Microbe Interactions, Utrecht, The Netherlands ,grid.11486.3a0000000104788040VIB Center for Plant Systems Biology, Ghent, Belgium ,grid.5342.00000 0001 2069 7798Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
| | - Chen Liu
- grid.5477.10000000120346234Utrecht University, Department of Biology, Plant-Microbe Interactions, Utrecht, The Netherlands
| | - Henan Jiang
- grid.5477.10000000120346234Utrecht University, Department of Biology, Plant-Microbe Interactions, Utrecht, The Netherlands
| | - Ville-Petri Friman
- grid.5685.e0000 0004 1936 9668University of York, Department of Biology, York, UK
| | - Corné M. J. Pieterse
- grid.5477.10000000120346234Utrecht University, Department of Biology, Plant-Microbe Interactions, Utrecht, The Netherlands
| | - Peter A. H. M. Bakker
- grid.5477.10000000120346234Utrecht University, Department of Biology, Plant-Microbe Interactions, Utrecht, The Netherlands
| | - Alexandre Jousset
- grid.5477.10000000120346234Utrecht University, Department of Biology, Ecology and Biodiversity, Utrecht, The Netherlands
| |
Collapse
|
7
|
Li E, de Jonge R, Liu C, Jiang H, Friman VP, Pieterse CMJ, Bakker PAHM, Jousset A. Rapid evolution of bacterial mutualism in the plant rhizosphere. Nat Commun 2021. [PMID: 34158504 DOI: 10.1038/s41467-012-24005-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
While beneficial plant-microbe interactions are common in nature, direct evidence for the evolution of bacterial mutualism is scarce. Here we use experimental evolution to causally show that initially plant-antagonistic Pseudomonas protegens bacteria evolve into mutualists in the rhizosphere of Arabidopsis thaliana within six plant growth cycles (6 months). This evolutionary transition is accompanied with increased mutualist fitness via two mechanisms: (i) improved competitiveness for root exudates and (ii) enhanced tolerance to the plant-secreted antimicrobial scopoletin whose production is regulated by transcription factor MYB72. Crucially, these mutualistic adaptations are coupled with reduced phytotoxicity, enhanced transcription of MYB72 in roots, and a positive effect on plant growth. Genetically, mutualism is associated with diverse mutations in the GacS/GacA two-component regulator system, which confers high fitness benefits only in the presence of plants. Together, our results show that rhizosphere bacteria can rapidly evolve along the parasitism-mutualism continuum at an agriculturally relevant evolutionary timescale.
Collapse
Affiliation(s)
- Erqin Li
- Utrecht University, Department of Biology, Plant-Microbe Interactions, Utrecht, The Netherlands
- Freie Universität Berlin, Institut für Biologie, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - Ronnie de Jonge
- Utrecht University, Department of Biology, Plant-Microbe Interactions, Utrecht, The Netherlands.
- VIB Center for Plant Systems Biology, Ghent, Belgium.
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium.
| | - Chen Liu
- Utrecht University, Department of Biology, Plant-Microbe Interactions, Utrecht, The Netherlands
| | - Henan Jiang
- Utrecht University, Department of Biology, Plant-Microbe Interactions, Utrecht, The Netherlands
| | | | - Corné M J Pieterse
- Utrecht University, Department of Biology, Plant-Microbe Interactions, Utrecht, The Netherlands
| | - Peter A H M Bakker
- Utrecht University, Department of Biology, Plant-Microbe Interactions, Utrecht, The Netherlands
| | - Alexandre Jousset
- Utrecht University, Department of Biology, Ecology and Biodiversity, Utrecht, The Netherlands.
| |
Collapse
|
8
|
Ferreiro MD, Gallegos MT. Distinctive features of the Gac-Rsm pathway in plant-associated Pseudomonas. Environ Microbiol 2021; 23:5670-5689. [PMID: 33939255 DOI: 10.1111/1462-2920.15558] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 02/04/2023]
Abstract
Productive plant-bacteria interactions, either beneficial or pathogenic, require that bacteria successfully sense, integrate and respond to continuously changing environmental and plant stimuli. They use complex signal transduction systems that control a vast array of genes and functions. The Gac-Rsm global regulatory pathway plays a key role in controlling fundamental aspects of the apparently different lifestyles of plant beneficial and phytopathogenic Pseudomonas as it coordinates adaptation and survival while either promoting plant health (biocontrol strains) or causing disease (pathogenic strains). Plant-interacting Pseudomonas stand out for possessing multiple Rsm proteins and Rsm RNAs, but the physiological significance of this redundancy is not yet clear. Strikingly, the components of the Gac-Rsm pathway and the controlled genes/pathways are similar, but the outcome of its regulation may be opposite. Therefore, identifying the target mRNAs bound by the Rsm proteins and their mode of action (repression or activation) is essential to explain the resulting phenotype. Some technical considerations to approach the study of this system are also given. Overall, several important features of the Gac-Rsm cascade are now understood in molecular detail, particularly in Pseudomonas protegens CHA0, but further questions remain to be solved in other plant-interacting Pseudomonas.
Collapse
Affiliation(s)
- María-Dolores Ferreiro
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - María-Trinidad Gallegos
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| |
Collapse
|
9
|
Takeuchi K, Tsuchiya W, Fujimoto Z, Yamada K, Someya N, Yamazaki T. Discovery of an Antibiotic-Related Small Protein of Biocontrol Strain Pseudomonas sp. Os17 by a Genome-Mining Strategy. Front Microbiol 2020; 11:605705. [PMID: 33324389 PMCID: PMC7726476 DOI: 10.3389/fmicb.2020.605705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 10/26/2020] [Indexed: 11/13/2022] Open
Abstract
Many root-colonizing Pseudomonas spp. exhibiting biocontrol activities produce a wide range of secondary metabolites that exert antibiotic effects against other microbes, nematodes, and insects in the rhizosphere. The expression of these secondary metabolites depends on the Gac/Rsm signal transduction pathway. Based on the findings of a previous genomic study on newly isolated biocontrol pseudomonad strains, we herein investigated the novel gene cluster OS3, which consists of four genes (Os1348–Os1351) that are located upstream of putative efflux transporter genes (Os1352–Os1355). Os1348 was predicted to encode an 85-aa small precursor protein, the expression of which was under the control of GacA, and an X-ray structural analysis suggested that the Os1348 protein formed a dimer. The mutational loss of the Os1348 gene decreased the antibiotic activity of Pseudomonas sp. Os17 without changing its growth rate. The Os1349–1351 genes were predicted to be involved in post-translational modifications. Intracellular levels of the Os1348 protein in the deficient mutant of each gene differed from that in wild-type cells. These results suggest that Os1348 is involved in antibiotic activity and that the structure or expression of this protein is under the control of downstream gene products.
Collapse
Affiliation(s)
- Kasumi Takeuchi
- Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Wataru Tsuchiya
- Structural Biology Team, Advanced Analysis Center, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Zui Fujimoto
- Structural Biology Team, Advanced Analysis Center, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Kosumi Yamada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Nobutaka Someya
- Division of Vegetable Production System, Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Toshimasa Yamazaki
- Structural Biology Team, Advanced Analysis Center, National Agriculture and Food Research Organization, Tsukuba, Japan
| |
Collapse
|
10
|
Latour X. The Evanescent GacS Signal. Microorganisms 2020; 8:microorganisms8111746. [PMID: 33172195 PMCID: PMC7695008 DOI: 10.3390/microorganisms8111746] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/18/2022] Open
Abstract
The GacS histidine kinase is the membrane sensor of the major upstream two-component system of the regulatory Gac/Rsm signal transduction pathway. This pathway governs the expression of a wide range of genes in pseudomonads and controls bacterial fitness and motility, tolerance to stress, biofilm formation, and virulence or plant protection. Despite the importance of these roles, the ligands binding to the sensor domain of GacS remain unknown, and their identification is an exciting challenge in this domain. At high population densities, the GacS signal triggers a switch from primary to secondary metabolism and a change in bacterial lifestyle. It has been suggested, based on these observations, that the GacS signal is a marker of the emergence of nutritional stress and competition. Biochemical investigations have yet to characterize the GacS signal fully. However, they portray this cue as a low-molecular weight, relatively simple and moderately apolar metabolite possibly resembling, but nevertheless different, from the aliphatic organic acids acting as quorum-sensing signaling molecules in other Proteobacteria. Significant progress in the development of metabolomic tools and new databases dedicated to Pseudomonas metabolism should help to unlock some of the last remaining secrets of GacS induction, making it possible to control the Gac/Rsm pathway.
Collapse
Affiliation(s)
- Xavier Latour
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), Normandy University (University of Rouen Normandy), 55 rue Saint-Germain, 27000 Evreux, France;
- Research Federation NORVEGE Fed4277, Normandy University, F-76821 Mont-Saint-Aignan, France
| |
Collapse
|
11
|
Fungal-Associated Molecules Induce Key Genes Involved in the Biosynthesis of the Antifungal Secondary Metabolites Nunamycin and Nunapeptin in the Biocontrol Strain Pseudomonas fluorescens In5. Appl Environ Microbiol 2020; 86:AEM.01284-20. [PMID: 32826219 DOI: 10.1128/aem.01284-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/12/2020] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas fluorescens In5 synthesizes the antifungal cyclic lipopeptides (CLPs) nunamycin and nunapeptin, which are similar in structure and genetic organization to the pseudomonas-derived phytotoxins syringomycin and syringopeptin. Regulation of syringomycin and syringopeptin is dependent on the two-component global regulatory system GacS-GacA and the SalA, SyrF, and SyrG transcription factors, which activate syringomycin synthesis in response to plant signal molecules. Previously, we demonstrated that a specific transcription factor, NunF, positively regulates the synthesis of nunamycin and nunapeptin in P. fluorescens In5 and that the nunF gene is upregulated by fungal-associated molecules. This study focused on further unravelling the complex regulation governing CLP synthesis in P. fluorescens In5. Promoter fusions were used to show that the specific activator NunF is dependent on the global regulator of secondary metabolism GacA and is regulated by fungal-associated molecules and low temperatures. In contrast, GacA is stimulated by plant signal molecules leading to the hypothesis that P. fluorescens is a hyphosphere-associated bacterium carrying transcription factor genes that respond to signals indicating the presence of fungi and oomycetes. Based on these findings, we present a model for how synthesis of nunamycin and nunapeptin is regulated by fungal- and oomycete-associated molecules.IMPORTANCE Cyclic lipopeptide (CLP) synthesis gene clusters in pseudomonads display a high degree of synteny, and the structures of the peptides synthesized are very similar. Accordingly, the genomic island encoding the synthesis of syringomycin and syringopeptin in P. syringae pv. syringae closely resembles that of P. fluorescens In5, which contains genes coding for synthesis of the antifungal and anti-oomycete peptides nunamycin and nunapeptin, respectively. However, the regulation of syringomycin and syringopeptin synthesis is different from that of nunamycin and nunapeptin synthesis. While CLP synthesis in the plant pathogen P. syringae pv. syringae is induced by plant signal molecules, such compounds do not significantly influence synthesis of nunamycin and nunapeptin in P. fluorescens In5. Instead, fungal-associated molecules positively regulate antifungal peptide synthesis in P. fluorescens In5, while the synthesis of the global regulator GacA in P. fluorescens In5 is positively regulated by plant signal molecules but not fungal-associated molecules.
Collapse
|
12
|
Sobrero PM, Valverde C. Comparative Genomics and Evolutionary Analysis of RNA-Binding Proteins of the CsrA Family in the Genus Pseudomonas. Front Mol Biosci 2020; 7:127. [PMID: 32754614 PMCID: PMC7366521 DOI: 10.3389/fmolb.2020.00127] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/02/2020] [Indexed: 12/15/2022] Open
Abstract
Gene expression is adjusted according to cellular needs through a combination of mechanisms acting at different layers of the flow of genetic information. At the posttranscriptional level, RNA-binding proteins are key factors controlling the fate of nascent and mature mRNAs. Among them, the members of the CsrA family are small dimeric proteins with heterogeneous distribution across the bacterial tree of life, that act as global regulators of gene expression because they recognize characteristic sequence/structural motifs (short hairpins with GGA triplets in the loop) present in hundreds of mRNAs. The regulatory output of CsrA binding to mRNAs is counteracted in most cases by molecular mimic, non-protein coding RNAs that titrate the CsrA dimers away from the target mRNAs. In γ-proteobacteria, the regulatory modules composed by CsrA homologs and the corresponding antagonistic sRNAs, are mastered by two-component systems of the GacS-GacA type, which control the transcription and the abundance of the sRNAs, thus constituting the rather linear cascade Gac-Rsm that responds to environmental or cellular signals to adjust and coordinate the expression of a set of target genes posttranscriptionally. Within the γ-proteobacteria, the genus Pseudomonas has been shown to contain species with different number of active CsrA (RsmA) homologs and of molecular mimic sRNAs. Here, with the help of the increasing availability of genomic data we provide a comprehensive state-of-the-art picture of the remarkable multiplicity of CsrA lineages, including novel yet uncharacterized paralogues, and discuss evolutionary aspects of the CsrA subfamilies of the genus Pseudomonas, and implications of the striking presence of csrA alleles in natural mobile genetic elements (phages and plasmids).
Collapse
Affiliation(s)
- Patricio Martín Sobrero
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas, Centro de Bioquímica y Microbiología del Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| | - Claudio Valverde
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas, Centro de Bioquímica y Microbiología del Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| |
Collapse
|
13
|
Götze S, Stallforth P. Structure, properties, and biological functions of nonribosomal lipopeptides from pseudomonads. Nat Prod Rep 2020; 37:29-54. [DOI: 10.1039/c9np00022d] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bacteria of the genusPseudomonasdisplay a fascinating metabolic diversity. In this review, we focus our attention on the natural product class of nonribosomal lipopeptides, which help pseudomonads to colonize a wide range of ecological niches.
Collapse
Affiliation(s)
- Sebastian Götze
- Faculty 7: Natural and Environmental Sciences
- Institute for Environmental Sciences
- University Koblenz Landau
- 76829 Landau
- Germany
| | - Pierre Stallforth
- Junior Research Group Chemistry of Microbial Communication
- Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute (HKI)
- 07745 Jena
- Germany
| |
Collapse
|
14
|
Ferreiro MD, Nogales J, Farias GA, Olmedilla A, Sanjuán J, Gallegos MT. Multiple CsrA Proteins Control Key Virulence Traits in Pseudomonas syringae pv. tomato DC3000. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:525-536. [PMID: 29261011 DOI: 10.1094/mpmi-09-17-0232-r] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The phytopathogenic bacterium Pseudomonas syringae pv. tomato DC3000 has a complex Gac-rsm global regulatory pathway that controls virulence, motility, production of secondary metabolites, carbon metabolism, and quorum sensing. However, despite the fact that components of this pathway are known, their physiological roles have not yet been established. Regarding the CsrA/RsmA type proteins, five paralogs, three of which are well conserved within the Pseudomonas genus (csrA1, csrA2, and csrA3), have been found in the DC3000 genome. To decipher their function, mutants lacking the three most conserved CsrA proteins have been constructed and their physiological outcomes examined. We show that they exert nonredundant functions and demonstrate that CsrA3 and, to a lesser extent, CsrA2 but not CsrA1 alter the expression of genes involved in a variety of pathways and systems important for motility, exopolysaccharide synthesis, growth, and virulence. Particularly, alginate synthesis, syringafactin production, and virulence are considerably de-repressed in a csrA3 mutant, whereas growth in planta is impaired. We propose that the linkage of growth and symptom development is under the control of CsrA3, which functions as a pivotal regulator of the DC3000 life cycle, repressing virulence traits and promoting cell division in response to environmental cues.
Collapse
Affiliation(s)
- María-Dolores Ferreiro
- 1 Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain; and
| | - Joaquina Nogales
- 1 Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain; and
| | - Gabriela A Farias
- 1 Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain; and
- 2 Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - Adela Olmedilla
- 2 Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - Juan Sanjuán
- 1 Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain; and
| | - María Trinidad Gallegos
- 1 Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain; and
| |
Collapse
|
15
|
Sobrero PM, Muzlera A, Frescura J, Jofré E, Valverde C. A matter of hierarchy: activation of orfamide production by the post-transcriptional Gac-Rsm cascade of Pseudomonas protegens CHA0 through expression upregulation of the two dedicated transcriptional regulators. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:599-611. [PMID: 28703431 DOI: 10.1111/1758-2229.12566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/21/2017] [Indexed: 06/07/2023]
Abstract
In this work, we surveyed the genome of P. protegens CHA0 in order to identify novel mRNAs possibly under the control of the Gac-Rsm cascade that might, for their part, serve to elucidate as-yet-unknown functions involved in the biocontrol of plant pathogens and/or in cellular processes required for fitness in natural environments. In view of the experimental evidence from former studies on the Gac-Rsm cascade, we developed a computational screen supported by a combination of sequence, structural and evolutionary constraints that led to a dataset of 43 potential novel mRNA targets. We then confirmed several mRNA targets experimentally and next focused on two of the respective genes that are physically linked to the orfamide biosynthetic gene cluster and whose predicted open-reading frames resembled cognate LuxR-type transcriptional regulators of cyclic lipopeptide clusters in related pseudomonads. In this report, we demonstrate that in strain CHA0, orfamide production is stringently dependent on a functional Gac-Rsm cascade and that both mRNAs encoding transcriptional regulatory proteins are under direct translational control of the RsmA/E proteins. Our results have thus revealed a hierarchical control over the expression of orfamide biosynthetic genes with the final transcriptional control subordinated to the global Gac-Rsm post-transcriptional regulatory system.
Collapse
Affiliation(s)
- Patricio Martín Sobrero
- CONICET, Departamento de Ciencia y Tecnología, Laboratorio de Bioquímica, Microbiología e Interacciones Biológicas en el Suelo. Roque Sáenz Peña 352, Bernal B1876BXD, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Andrés Muzlera
- CONICET, Departamento de Ciencia y Tecnología, Laboratorio de Bioquímica, Microbiología e Interacciones Biológicas en el Suelo. Roque Sáenz Peña 352, Bernal B1876BXD, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Julieta Frescura
- CONICET, Departamento de Ciencia y Tecnología, Laboratorio de Bioquímica, Microbiología e Interacciones Biológicas en el Suelo. Roque Sáenz Peña 352, Bernal B1876BXD, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Edgardo Jofré
- CONICET, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Departmento de Ciencias Naturales. Ruta Nacional 36 Km 601, Universidad Nacional de Río Cuarto, 5800 Río Cuarto, Córdoba, Argentina
| | - Claudio Valverde
- CONICET, Departamento de Ciencia y Tecnología, Laboratorio de Bioquímica, Microbiología e Interacciones Biológicas en el Suelo. Roque Sáenz Peña 352, Bernal B1876BXD, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| |
Collapse
|
16
|
Olorunleke FE, Kieu NP, De Waele E, Timmerman M, Ongena M, Höfte M. Coregulation of the cyclic lipopeptides orfamide and sessilin in the biocontrol strain Pseudomonas sp. CMR12a. Microbiologyopen 2017. [PMID: 28621084 PMCID: PMC5635164 DOI: 10.1002/mbo3.499] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cyclic lipopeptides (CLPs) are synthesized by nonribosomal peptide synthetases (NRPS), which are often flanked by LuxR‐type transcriptional regulators. Pseudomonas sp. CMR12a, an effective biocontrol strain, produces two different classes of CLPs namely sessilins and orfamides. The orfamide biosynthesis gene cluster is flanked up‐ and downstream by LuxR‐type regulatory genes designated ofaR1 and ofaR2, respectively, whereas the sessilin biosynthesis gene cluster has one LuxR‐type regulatory gene which is situated upstream of the cluster and is designated sesR. Our study investigated the role of these three regulators in the biosynthesis of orfamides and sessilins. Phylogenetic analyses positioned OfaR1 and OfaR2 with LuxR regulatory proteins of similar orfamide‐producing Pseudomonas strains and the SesR with that of the tolaasin producer, Pseudomonas tolaasii. LC‐ESI‐MS analyses revealed that sessilins and orfamides are coproduced and that production starts in the late exponential phase. However, sessilins are secreted earlier and in large amounts, while orfamides are predominantly retained in the cell. Deletion mutants in ofaR1 and ofaR2 lost the capacity to produce both orfamides and sessilins, whereas the sesR mutant showed no clear phenotype. Additionally, RT‐PCR analysis showed that in the sessilin cluster, a mutation in either ofaR1 or ofaR2 led to weaker transcripts of the biosynthesis genes, sesABC, and putative transporter genes, macA1B1. In the orfamide cluster, mainly the biosynthesis genes ofaBC were affected, while the first biosynthesis gene ofaA and putative macA2B2 transport genes were still transcribed. A mutation in either ofaR1, ofaR2, or sesR genes did not abolish the transcription of any of the other two.
Collapse
Affiliation(s)
- Feyisara E Olorunleke
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Nam P Kieu
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Evelien De Waele
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Marc Timmerman
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Marc Ongena
- Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Monica Höfte
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
17
|
Small RNAs regulate the biocontrol property of fluorescent Pseudomonas strain Psd. Microbiol Res 2017; 196:80-88. [DOI: 10.1016/j.micres.2016.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/19/2016] [Accepted: 12/18/2016] [Indexed: 01/11/2023]
|
18
|
Cheng X, Cordovez V, Etalo DW, van der Voort M, Raaijmakers JM. Role of the GacS Sensor Kinase in the Regulation of Volatile Production by Plant Growth-Promoting Pseudomonas fluorescens SBW25. FRONTIERS IN PLANT SCIENCE 2016; 7:1706. [PMID: 27917180 PMCID: PMC5114270 DOI: 10.3389/fpls.2016.01706] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 10/31/2016] [Indexed: 05/25/2023]
Abstract
In plant-associated Pseudomonas species, the production of several secondary metabolites and exoenzymes is regulated by the GacS/GacA two-component regulatory system (the Gac-system). Here, we investigated if a mutation in the GacS sensor kinase affects the production of volatile organic compounds (VOCs) in P. fluorescens SBW25 (Pf.SBW25) and how this impacts on VOCs-mediated growth promotion and induced systemic resistance of Arabidopsis and tobacco. A total of 205 VOCs were detected by Gas Chromatography Mass Spectrometry for Pf. SBW25 and the gacS-mutant grown on two different media for 3 and 6 days. Discriminant function analysis followed by hierarchical clustering revealed 24 VOCs that were significantly different in their abundance between Pf.SBW25 and the gacS-mutant, which included three acyclic alkenes (3-nonene, 4-undecyne, 1-undecene). These alkenes were significantly reduced by the gacS mutation independently of the growth media and of the incubation time. For Arabidopsis, both Pf.SBW25 and the gacS-mutant enhanced, via VOCs, root and shoot biomass, induced systemic resistance against leaf infections by P. syringae and rhizosphere acidification to the same extent. For tobacco, however, VOCs-mediated effects on shoot and root growth were significantly different between Pf.SBW25 and the gacS-mutant. While Pf.SBW25 inhibited tobacco root growth, the gacS-mutant enhanced root biomass and lateral root formation relative to the non-treated control plants. Collectively these results indicate that the sensor kinase GacS is involved in the regulation of VOCs production in Pf.SBW25, affecting plant growth in a plant species-dependent manner.
Collapse
Affiliation(s)
- Xu Cheng
- Laboratory of Phytopathology, Wageningen UniversityWageningen, Netherlands
| | - Viviane Cordovez
- Department of Microbial Ecology, Netherlands Institute of EcologyWageningen, Netherlands
| | - Desalegn W. Etalo
- Department of Microbial Ecology, Netherlands Institute of EcologyWageningen, Netherlands
| | | | - Jos M. Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of EcologyWageningen, Netherlands
- Institute of Biology Leiden, Leiden UniversityLeiden, Netherlands
| |
Collapse
|
19
|
Burenina OY, Elkina DA, Hartmann RK, Oretskaya TS, Kubareva EA. Small noncoding 6S RNAs of bacteria. BIOCHEMISTRY (MOSCOW) 2015; 80:1429-46. [DOI: 10.1134/s0006297915110048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Song C, Sundqvist G, Malm E, de Bruijn I, Kumar A, van de Mortel J, Bulone V, Raaijmakers JM. Lipopeptide biosynthesis in Pseudomonas fluorescens is regulated by the protease complex ClpAP. BMC Microbiol 2015; 15:29. [PMID: 25885431 PMCID: PMC4332742 DOI: 10.1186/s12866-015-0367-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 01/29/2015] [Indexed: 11/10/2022] Open
Abstract
Background Lipopeptides (LP) are structurally diverse compounds with potent surfactant and broad-spectrum antibiotic activities. In Pseudomonas and other bacterial genera, LP biosynthesis is governed by large multimodular nonribosomal peptide synthetases (NRPS). To date, relatively little is known about the regulatory genetic network of LP biosynthesis. Results This study provides evidence that the chaperone ClpA, together with the serine protease ClpP, regulates the biosynthesis of the LP massetolide in Pseudomonas fluorescens SS101. Whole-genome transcriptome analyses of clpA and clpP mutants showed their involvement in the transcription of the NRPS genes massABC and the transcriptional regulator massAR. In addition, transcription of genes associated with cell wall and membrane biogenesis, energy production and conversion, amino acid transport and metabolism, and pilus assembly were altered by mutations in clpA and clpP. Proteome analysis allowed the identification of additional cellular changes associated to clpA and clpP mutations. The expression of proteins of the citrate cycle and the heat shock proteins DnaK and DnaJ were particularly affected. Combined with previous findings, these results suggest that the ClpAP complex regulates massetolide biosynthesis via the pathway-specific, LuxR-type regulator MassAR, the heat shock proteins DnaK and DnaJ, and proteins of the TCA cycle. Conclusions Combining transcriptome and proteome analyses provided new insights into the regulation of LP biosynthesis in P. fluorescens and led to the identification of specific missing links in the regulatory pathways. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0367-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chunxu Song
- Laboratory of Phytopathology, Wageningen University, 6708 PB, Wageningen, the Netherlands. .,Department of Microbial Ecology, Netherlands Institute of Ecology, Droevendaalsesteeg 10, 6708 PB, Wageningen, the Netherlands.
| | - Gustav Sundqvist
- Division of Glycoscience, Royal Institute of Technology (KTH), AlbaNova University Centre, SE-106 91, Stockholm, Sweden.
| | - Erik Malm
- Division of Glycoscience, Royal Institute of Technology (KTH), AlbaNova University Centre, SE-106 91, Stockholm, Sweden.
| | - Irene de Bruijn
- Department of Microbial Ecology, Netherlands Institute of Ecology, Droevendaalsesteeg 10, 6708 PB, Wageningen, the Netherlands.
| | - Aundy Kumar
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Judith van de Mortel
- Laboratory of Phytopathology, Wageningen University, 6708 PB, Wageningen, the Netherlands. .,Current address: HAS University of Applied Sciences, 5911 KJ, Venlo, the Netherlands.
| | - Vincent Bulone
- Division of Glycoscience, Royal Institute of Technology (KTH), AlbaNova University Centre, SE-106 91, Stockholm, Sweden.
| | - Jos M Raaijmakers
- Laboratory of Phytopathology, Wageningen University, 6708 PB, Wageningen, the Netherlands. .,Department of Microbial Ecology, Netherlands Institute of Ecology, Droevendaalsesteeg 10, 6708 PB, Wageningen, the Netherlands.
| |
Collapse
|