1
|
Suarez C, Rosenqvist T, Dimitrova I, Sedlacek CJ, Modin O, Paul CJ, Hermansson M, Persson F. Biofilm colonization and succession in a full-scale partial nitritation-anammox moving bed biofilm reactor. MICROBIOME 2024; 12:51. [PMID: 38475926 DOI: 10.1186/s40168-024-01762-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 01/09/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Partial nitritation-anammox (PNA) is a biological nitrogen removal process commonly used in wastewater treatment plants for the treatment of warm and nitrogen-rich sludge liquor from anaerobic digestion, often referred to as sidestream wastewater. In these systems, biofilms are frequently used to retain biomass with aerobic ammonia-oxidizing bacteria (AOB) and anammox bacteria, which together convert ammonium to nitrogen gas. Little is known about how these biofilm communities develop, and whether knowledge about the assembly of biofilms in natural communities can be applied to PNA biofilms. RESULTS We followed the start-up of a full-scale PNA moving bed biofilm reactor for 175 days using shotgun metagenomics. Environmental filtering likely restricted initial biofilm colonization, resulting in low phylogenetic diversity, with the initial microbial community comprised mainly of Proteobacteria. Facilitative priority effects allowed further biofilm colonization, with the growth of initial aerobic colonizers promoting the arrival and growth of anaerobic taxa like methanogens and anammox bacteria. Among the early colonizers were known 'oligotrophic' ammonia oxidizers including comammox Nitrospira and Nitrosomonas cluster 6a AOB. Increasing the nitrogen load in the bioreactor allowed colonization by 'copiotrophic' Nitrosomonas cluster 7 AOB and resulted in the exclusion of the initial ammonia- and nitrite oxidizers. CONCLUSIONS We show that complex dynamic processes occur in PNA microbial communities before a stable bioreactor process is achieved. The results of this study not only contribute to our knowledge about biofilm assembly and PNA bioreactor start-up but could also help guide strategies for the successful implementation of PNA bioreactors. Video Abstract.
Collapse
Affiliation(s)
- Carolina Suarez
- Division of Water Resources Engineering, Faculty of Engineering LTH, Lund University, Lund, Sweden.
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
| | - Tage Rosenqvist
- Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | | | - Christopher J Sedlacek
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Oskar Modin
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Catherine J Paul
- Division of Water Resources Engineering, Faculty of Engineering LTH, Lund University, Lund, Sweden
- Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | - Malte Hermansson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Frank Persson
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
2
|
Lai X, Li X, Song J, Yuan H, Duan L. Enhanced nitrogen removal performance of nitrogen-rich saline wastewater by marine anammox bacteria: Based on different influent loading strengths. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120330. [PMID: 38364538 DOI: 10.1016/j.jenvman.2024.120330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/20/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024]
Abstract
In an anaerobic sequential batch reactor (SBR), marine anammox bacteria (MAB) were able to enhance microbial activity in nitrogen-rich saline wastewater and it was significantly affected by influent substrate composition and loading strength. This study therefore enhanced nitrogen removal efficiency by adjusting the influent nitrogen loading strength of MAB-inoculated anaerobic SBRs and assessed the correlation with the bacterial community. The results displayed that the system obtained optimal nitrogen removal efficiency (TN = 83.52%, NH4-N = 90.14%, and NO2-N = 83.57%) as the strength of influent nitrogen loading was increased to 201.35 mg L-1 for NH4-N and 266.42 mg L-1 for NO2-N. Moreover, the increase in the strength of influent nitrogen loading also enhanced the anammox 16S rRNA abundance (4.09 × 108 copies g-1) and ladderanes content (22.49 ng g-1dw). Analysis of 15N isotope further illustrated that all systems were dominated by anammox (average ra = 95.22%). In conclusion, these findings provide scientific guidance for the management of eutrophic seawater and contribute to the realization of industrial applications for the treatment of nitrogen-rich saline wastewater.
Collapse
Affiliation(s)
- Xiaoshuang Lai
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China; Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Ecology and Environmental Sciences, Laoshan Laboratory, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Xuegang Li
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Ecology and Environmental Sciences, Laoshan Laboratory, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
| | - Jinming Song
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Ecology and Environmental Sciences, Laoshan Laboratory, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
| | - Huamao Yuan
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Ecology and Environmental Sciences, Laoshan Laboratory, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Liqin Duan
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Ecology and Environmental Sciences, Laoshan Laboratory, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
3
|
Buakaew T, Ratanatamskul C. Effects of microaeration and sludge recirculation on VFA and nitrogen removal, membrane fouling reduction and microbial community of the anaerobic baffled biofilm-membrane bioreactor in treating building wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166248. [PMID: 37582447 DOI: 10.1016/j.scitotenv.2023.166248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/17/2023]
Abstract
A novel anaerobic baffled biofilm-membrane bioreactor (AnBB-MBR) with microaeration of 0.62 LO2/LFeed was developed to improve VFA and nitrogen removal from building wastewater. Three different membrane bioreactor systems - R1: AnBB-MBR (without microaeration); R2: AnBB-MBR with microaeration; and R3: AnBB-MBR with integrated microaeration and sludge recirculation - were operated in parallel at the same hydraulic retention time of 20 h and sludge retention time of 100 d. The microaeration promoted greater microbial richness and diversity, which could significantly enhance the removal of acetic acid and dissolved methane in the R2 and R3 systems. Moreover, the partial nitrification and the ability of anammox (Candidatus Brocadia) to thrive in R2 enabled NH4+-N removal to be enhanced by up to 57.8 %. The worst membrane fouling was found in R1 due to high amount of protein as well as fine particles (0.5-5.0 μm) acting as foulants that contributed to pore blocking. While the integration of sludge recirculation with microaeration in R3 was able to improve the membrane permeate flux slightly as compared to R2. Therefore, the AnBB-MBR integrated with a microaeration system (R2) can be considered as promising technology for building wastewater treatment when considering VFA and nutrient removal and an energy-saving approach with low aeration intensity.
Collapse
Affiliation(s)
- Tanissorn Buakaew
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chavalit Ratanatamskul
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Innovative Waste Treatment and Water Reuse, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
4
|
Owusu-Agyeman I, Plaza E, Elginöz N, Atasoy M, Khatami K, Perez-Zabaleta M, Cabrera-Rodríguez C, Yesil H, Tugtas AE, Calli B, Cetecioglu Z. Conceptual system for sustainable and next-generation wastewater resource recovery facilities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163758. [PMID: 37120021 DOI: 10.1016/j.scitotenv.2023.163758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/12/2023] [Accepted: 04/23/2023] [Indexed: 05/10/2023]
Abstract
Shifting the concept of municipal wastewater treatment to recover resources is one of the key factors contributing to a sustainable society. A novel concept based on research is proposed to recover four main bio-based products from municipal wastewater while reaching the necessary regulatory standards. The main resource recovery units of the proposed system include upflow anaerobic sludge blanket reactor for the recovery of biogas (as product 1) from mainstream municipal wastewater after primary sedimentation. Sewage sludge is co-fermented with external organic waste such as food waste for volatile fatty acids (VFAs) production as precursors for other bio-based production. A portion of the VFA mixture (product 2) is used as carbon sources in the denitrification step of the nitrification/denitrification process as an alternative for nitrogen removal. The other alternative for nitrogen removal is the partial nitrification/anammx process. The VFA mixture is separated with nanofiltration/reverse osmosis membrane technology into low-carbon VFAs and high-carbon VFAs. Polyhydroxyalkanoate (as product 3) is produced from the low-carbon VFAs. Using membrane contactor-based processes and ion-exchange techniques, high-carbon VFAs are recovered as one-type VFA (pure VFA) and in ester forms (product 4). The nutrient-rich fermented and dewatered biosolid is applied as a fertilizer. The proposed units are seen as individual resource recovery systems as well as a concept of an integrated system. A qualitative environmental assessment of the proposed resource recovery units confirms the positive environmental impacts of the proposed system.
Collapse
Affiliation(s)
- Isaac Owusu-Agyeman
- Department of Industrial Biotechnology, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden.
| | - Elzbieta Plaza
- Department of Sustainable Development, Environmental Science and Engineering, KTH-Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Nilay Elginöz
- IVL Swedish Environmental Research Institute, Box 210 60, 100 31 Stockholm, Sweden
| | - Merve Atasoy
- UNLOCK, Wageningen University & Research and Technical University Delft, Wageningen and Delft, Stippeneng 2, 6708 WE Wageningen, the Netherlands
| | - Kasra Khatami
- Department of Industrial Biotechnology, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Mariel Perez-Zabaleta
- Department of Industrial Biotechnology, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | | | - Hatice Yesil
- Department of Environmental Engineering, Marmara University, Maltepe, 34854, Istanbul, Turkey
| | - A Evren Tugtas
- Department of Environmental Engineering, Marmara University, Maltepe, 34854, Istanbul, Turkey
| | - Baris Calli
- Department of Environmental Engineering, Marmara University, Maltepe, 34854, Istanbul, Turkey
| | - Zeynep Cetecioglu
- Department of Industrial Biotechnology, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| |
Collapse
|
5
|
Al-Hazmi HE, Lu X, Grubba D, Majtacz J, Badawi M, Mąkinia J. Sustainable nitrogen removal in anammox-mediated systems: Microbial metabolic pathways, operational conditions and mathematical modelling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161633. [PMID: 36669661 DOI: 10.1016/j.scitotenv.2023.161633] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Anammox-mediated systems have attracted considerable attention as alternative cost-effective technologies for sustainable nitrogen (N) removal from wastewater. This review comprehensively highlights the importance of understanding microbial metabolism in anammox-mediated systems under crucial operation parameters, indicating the potentially wide applications for the sustainable treatment of N-containing wastewater. The partial nitrification-anammox (PN-A), simultaneous PN-A and denitrification (SNAD) processes have demonstrated sustainable N removal from sidestream wastewater. The partial denitrification-anammox (PD-A) and denitrifying anaerobic methane oxidation-anammox (DAMO-A) processes have advanced sustainable N removal efficiency in mainstream wastewater treatment. Moreover, N2O production/emission hotspots are extensively discussed in anammox-based processes and are related to the dominant ammonia-oxidizing bacteria (AOB) and denitrifying heterotrophs. In contrast, N2O is not produced in the metabolism pathways of AnAOB and DAMO-archaea; Moreover, the actual contribution of N2O production by dissimilatory nitrate reduction to ammonium (DNRA) and DAMO-bacteria in their species remains uncertain. Thus, PD-A and DAMO-A processes would achieve reduction in greenhouse gas production, as well as energy consumption for the reliability of N removal efficiencies. In addition to reaction mechanisms, this review covers the mathematical models for simultaneous anammox, partial nitrification and/or denitrification (i.e., PN-A, PD-A, and SNAD). Promising NO3- reduction technologies by endogenous PD, sulfur-driven autotrophic denitrification, and DNRA by anammox are also discussed. In summary, this review provides a better understanding of sustainable N removal in anammox-mediated systems, thereby encouraging future investigation and exploration of the sustainable N bio-treatment from wastewater.
Collapse
Affiliation(s)
- Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Xi Lu
- Three Gorges Smart Water Technology Co., Ltd., 65 LinXin Road, ChangNing District, 200335 Shanghai, China
| | - Dominika Grubba
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Joanna Majtacz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Michael Badawi
- Laboratoire de Physique et Chimie Théoriques UMR CNRS 7019, Université de Lorraine, Nancy, France
| | - Jacek Mąkinia
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
6
|
Ikem J, Chen H, Delatolla R. Design strategy and mechanism of nitrite oxidation suppression of elevated loading rate partial nitritation system. Front Microbiol 2023; 14:1142570. [PMID: 37065113 PMCID: PMC10094160 DOI: 10.3389/fmicb.2023.1142570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/09/2023] [Indexed: 03/30/2023] Open
Abstract
There is a current need for a low operational intensity, effective and small footprint system to achieve stable partial nitritation for subsequent anammox treatment at mainstream municipal wastewaters. This research identifies a unique design strategy using an elevated total ammonia nitrogen (TAN) surface area loading rate (SALR) of 5 g TAN/m2.d to achieve cost-effective, stable, and elevated rates of partial nitritation in a moving bed biofilm reactor (MBBR) system under mainstream conditions. The elevated loaded partial nitritation MBBR system achieves a TAN surface area removal rate (SARR) of 2.01 ± 0.07 g TAN/m2.d and NO2−-N: NH4+-N stoichiometric ratio of 1.15:1, which is appropriate for downstream anammox treatment. The elevated TAN SALR design strategy promotes nitrite-oxidizing bacteria (NOB) activity suppression rather than a reduction in NOB population as the reason for the suppression of nitrite oxidation in the mainstream elevated loaded partial nitritation MBBR system. NOB activity is limited at an elevated TAN SALR likely due to thick biofilm embedding the NOB population and competition for dissolved oxygen (DO) with ammonia-oxidizing bacteria for TAN oxidation to nitrite within the biofilm structure, which ultimately limits the uptake of DO by NOB in the system. Therefore, this design strategy offers a cost-effective and efficient alternative for mainstream partial nitritation MBBR systems at water resource recovery facilities.
Collapse
|
7
|
Mehrani MJ, Kowal P, Sobotka D, Godzieba M, Ciesielski S, Guo J, Makinia J. The coexistence and competition of canonical and comammox nitrite oxidizing bacteria in a nitrifying activated sludge system - Experimental observations and simulation studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161084. [PMID: 36565884 DOI: 10.1016/j.scitotenv.2022.161084] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
The second step of nitrification can be mediated by nitrite oxidizing bacteria (NOB), i.e. Nitrospira and Nitrobacter, with different characteristics in terms of the r/K theory. In this study, an activated sludge model was developed to account for competition between two groups of canonical NOB and comammox bacteria. Heterotrophic denitrification on soluble microbial products was also incorporated into the model. Four 5-week washout trials were carried out at dissolved oxygen-limited conditions for different temperatures (12 °C vs. 20 °C) and main substrates (NH4+-N vs. NO2--N). Due to the aggressive reduction of solids retention time (from 4 to 1 d), the biomass concentrations were continuously decreased and stabilized after two weeks at a level below 400 mg/L. The collected experimental data (N species, biomass concentrations, and microbiological analyses) were used for model calibration and validation. In addition to the standard predictions (N species and biomass), the newly developed model also accurately predicted two microbiological indicators, including the relative abundance of comammox bacteria as well as nitrifiers to heterotrophs ratio. Sankey diagrams revealed that the relative contributions of specific microbial groups to N conversion pathways were significantly shifted during the trial. The contribution of comammox did not exceed 5 % in the experiments with both NH4+-N and NO2--N substrates. This study contributes to a better understanding of the novel autotrophic N removal processes (e.g. deammonification) with nitrite as a central intermediate product.
Collapse
Affiliation(s)
- Mohamad-Javad Mehrani
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza Street 11/12, 80-233 Gdansk, Poland
| | - Przemyslaw Kowal
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza Street 11/12, 80-233 Gdansk, Poland
| | - Dominika Sobotka
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza Street 11/12, 80-233 Gdansk, Poland
| | - Martyna Godzieba
- Department of Environmental Biotechnology, Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Sloneczna 45G, 10-719 Olsztyn, Poland
| | - Slawomir Ciesielski
- Department of Environmental Biotechnology, Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Sloneczna 45G, 10-719 Olsztyn, Poland
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jacek Makinia
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza Street 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
8
|
Winkelhorst M, Cabau-Peinado O, Straathof AJ, Jourdin L. Biomass-specific rates as key performance indicators: A nitrogen balancing method for biofilm-based electrochemical conversion. Front Bioeng Biotechnol 2023; 11:1096086. [PMID: 36741763 PMCID: PMC9892193 DOI: 10.3389/fbioe.2023.1096086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Microbial electrochemical technologies (METs) employ microorganisms utilizing solid-state electrodes as either electron sink or electron source, such as in microbial electrosynthesis (MES). METs reaction rate is traditionally normalized to the electrode dimensions or to the electrolyte volume, but should also be normalized to biomass amount present in the system at any given time. In biofilm-based systems, a major challenge is to determine the biomass amount in a non-destructive manner, especially in systems operated in continuous mode and using 3D electrodes. We developed a simple method using a nitrogen balance and optical density to determine the amount of microorganisms in biofilm and in suspension at any given time. For four MES reactors converting CO2 to carboxylates, >99% of the biomass was present as biofilm after 69 days of reactor operation. After a lag phase, the biomass-specific growth rate had increased to 0.12-0.16 days-1. After 100 days of operation, growth became insignificant. Biomass-specific production rates of carboxylates varied between 0.08-0.37 molC molX -1d-1. Using biomass-specific rates, one can more effectively assess the performance of MES, identify its limitations, and compare it to other fermentation technologies.
Collapse
|
9
|
Chowdhury MMI, Nakhla G. Enhanced mainstream nitrogen removal from synthetic wastewater using gel-immobilized anammox in fluidized bed bioreactors: Process performance and disintegration mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:151373. [PMID: 34748847 DOI: 10.1016/j.scitotenv.2021.151373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Anammox retention, which is crucial for successful nitrogen removal because of slow growth, is still a major challenge. Fixed film processes or gel-immobilization techniques can minimize biomass washout. However, the detachment mechanisms from gel-immobilized beads are still unclear. Despite the widely known advantages of fluidized bed reactor (FBR) with respect to biomass retention, the technology has not been investigated for anammox processes, and thus, the current study evaluated the feasibility of using immobilized anammox gel beads as a carrier media in anammox fluidized bed reactor (AFBR), with a particular focus on understanding detachment mechanisms. The study optimized the packing ratio in AFBR and compared holed and non-holed beads. The optimum packing ratio (on a volumetric basis) was 30% (v/v) with a nitrogen removal rate (NRR) of 0.40 kg N/m3-d at a volumetric nitrogen loading rate (NLR) of 0.51 kg N/m3-d. Biomass detachment rates increased linearly with specific anammox activity (SAA). The fluidized bed reactor employing holed (more porous) anammox gel beads (HFBR) exhibited 20% lower biomass detachment rates than the non-holed fluidized bed reactor (NHFBR). Moreover, the HFBR achieved a maximum NRR of 0.81 kg N/m3-d at NLR of 1.01 kg N/m3-d after 35 days without operational problems, whereas the NHFBR with non-holed anammox gel beads failed after 30 days. The hindrance to diffusion of the generated nitrogen gas was the main mechanism of beads breakup and biomass washout, and thus, the sustainability of the beads hinges on increased external porosity. Therefore, developing microporous gel beads is critical for achieving a high rate stable anammox process that overcomes the limitations of the current technologies.
Collapse
Affiliation(s)
| | - George Nakhla
- Civil and Environmental Engineering, University of Western Ontario, London, ON N6A 5B9, Canada; Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada.
| |
Collapse
|
10
|
Yang S, Peng Y, Zhang S, Han X, Li J, Zhang L. Carrier type induces anammox biofilm structure and the nitrogen removal pathway: Demonstration in a full-scale partial nitritation/anammox process. BIORESOURCE TECHNOLOGY 2021; 334:125249. [PMID: 33975142 DOI: 10.1016/j.biortech.2021.125249] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
In this study, two typical carrier types, microporous and macroporous carriers, were collected from a full-scale partial nitritation/anammox reactor for analysis and comparison of the biofilm structure characteristics, performance and removal nitrogen pathway. For microporous carriers, a thicker biofilm (>5 mm) was obtained with higher biomass and abundance of anammox bacteria as well as a higher nitrogen removal efficiency due to the integration of denitrifying and anammox bacteria. In addition, higher microbial community stability can be expected under varying environmental conditions. In comparison, macroporous carrier biofilm exhibited a lower thickness (0.4-2.3 mm) and lower microbial richness, with a strong network correlation among genera. Analysis showed that the mainly positive correlation between anammox bacteria and ammonium oxidizing bacteria, enhancing coupling partial nitritation and anammox. These findings help further our understanding of the mechanisms of anammox biofilm nitrogen removal and provide a baseline for optimization of the design of carrier structures.
Collapse
Affiliation(s)
- Shenhua Yang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shujun Zhang
- Beijing Drainage Group Co. Ltd (BDG), Beijing 100022, China
| | - Xiaoyu Han
- Beijing Drainage Group Co. Ltd (BDG), Beijing 100022, China
| | - Jialin Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
11
|
Islam Chowdhury MM, Nakhla G. Anammox enrichment: impact of sludge retention time on nitrogen removal. ENVIRONMENTAL TECHNOLOGY 2021; 43:1-12. [PMID: 34240682 DOI: 10.1080/09593330.2021.1951846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Enrichment of anammox bacteria has long been considered to be time-consuming because of the slow growth rate. This study evaluated the impact of sludge retention time (SRT) on the enrichment of anammox bacteria with a focus on nitrogen removal and specific anammox activity (SAA) in sequencing batch reactors (SBR). A total of eight different SRTs in the range of 30-1280 days at nitrogen loading rates (NLR) range from 12.1 to 122.1 mg/L-d were used to evaluate the anammox activity. SAA was negligible during the first 105 days due to denitrification and continued to increase thereafter to peak at 0.22 g N/g VSS-d on day 530 as the solids and hydraulic retention times (SRT and HRT) decreased from 120 to 80 days and 10 to 2 days, respectively. The stability of SAA (0.21 ± 0.02 g N/g VSS-d) from day 503 to day 670 indicates that anammox bacteria should be enriched at SRTs ranging from 30 to 80 days and NLR of 122.1 mg N/L-d. Moreover, the SBR achieved a maximum nitrogen removal efficiency of 86.6% at an SRT of 30 days and an NLR of 122 mg/L-d. Microbial analysis indicated that the two most abundant microorganisms accounting for 48% of the bacterial population are Anammoxoglobus followed by the heterotrophic denitrifier Rhizobiales. The maximum specific growth rate (was estimated as 0.062 d-1, consistent with typical of 0.057 d-1. The average first-order decay rate was estimated as 0.008 d-1, and the half-saturation constants (ks) averaged 16.2 mg NH4-N/L.
Collapse
Affiliation(s)
| | - George Nakhla
- Civil and Environmental Engineering, University of Western Ontario, London, Canada
- Chemical and Biochemical Engineering, University of Western Ontario, London, Canada
| |
Collapse
|
12
|
Agrawal S, Weissbrodt DG, Annavajhala M, Jensen MM, Arroyo JMC, Wells G, Chandran K, Vlaeminck SE, Terada A, Smets BF, Lackner S. Time to act-assessing variations in qPCR analyses in biological nitrogen removal with examples from partial nitritation/anammox systems. WATER RESEARCH 2021; 190:116604. [PMID: 33279744 DOI: 10.1016/j.watres.2020.116604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
Quantitative PCR (qPCR) is broadly used as the gold standard to quantify microbial community fractions in environmental microbiology and biotechnology. Benchmarking efforts to ensure the comparability of qPCR data for environmental bioprocesses are still scarce. Also, for partial nitritation/anammox (PN/A) systems systematic investigations are still missing, rendering meta-analysis of reported trends and generic insights potentially precarious. We report a baseline investigation of the variability of qPCR-based analyses for microbial communities applied to PN/A systems. Round-robin testing was performed for three PN/A biomass samples in six laboratories, using the respective in-house DNA extraction and qPCR protocols. The concentration of extracted DNA was significantly different between labs, ranged between 2.7 and 328 ng mg-1 wet biomass. The variability among the qPCR abundance data of different labs was very high (1-7 log fold) but differed for different target microbial guilds. DNA extraction caused maximum variation (3-7 log fold), followed by the primers (1-3 log fold). These insights will guide environmental scientists and engineers as well as treatment plant operators in the interpretation of qPCR data.
Collapse
Affiliation(s)
- Shelesh Agrawal
- Department of Civil and Environmental Engineering Sciences, Institute IWAR, Chair of Wastewater Engineering, Technical University of Darmstadt, Franziska-Braun-Straße 7, 64287 Darmstadt, Germany.
| | - David G Weissbrodt
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Medini Annavajhala
- Department of Earth and Environmental Engineering, Columbia University, New York, USA
| | - Marlene Mark Jensen
- Department of Environmental Engineering, Microbial Ecology & Technology Laboratory, Technical University of Denmark, Bygningtorvet, Bldg 115, DK-2800, Lyngby, Denmark
| | | | - George Wells
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA
| | - Kartik Chandran
- Department of Earth and Environmental Engineering, Columbia University, New York, USA
| | - Siegfried E Vlaeminck
- Department of Bioscience Engineering, Research Group of Sustainable Energy, Air and Water Technology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Akihiko Terada
- Institute of Global Innovation Research and Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei, Tokyo 184-8588, Japan
| | - Barth F Smets
- Department of Environmental Engineering, Microbial Ecology & Technology Laboratory, Technical University of Denmark, Bygningtorvet, Bldg 115, DK-2800, Lyngby, Denmark
| | - Susanne Lackner
- Department of Civil and Environmental Engineering Sciences, Institute IWAR, Chair of Wastewater Engineering, Technical University of Darmstadt, Franziska-Braun-Straße 7, 64287 Darmstadt, Germany
| |
Collapse
|
13
|
Zheng M, Li S, Ni G, Xia J, Hu S, Yuan Z, Liu Y, Huang X. Critical Factors Facilitating Candidatus Nitrotoga To Be Prevalent Nitrite-Oxidizing Bacteria in Activated Sludge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15414-15423. [PMID: 33180465 DOI: 10.1021/acs.est.0c04192] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nitrite oxidation is the primary pathway that generates nitrate in engineered systems. However, little is known about the role of a novel nitrite-oxidizing bacteria (NOB) genus Candidatus Nitrotoga in activated sludge systems. To elucidate key factors that impact NOB community composition, laboratory-scale sequencing batch reactors (SBRs) were designed and operated under the same conditions as real wastewater treatment plants to achieve considerable nitrogen removal and similar community; then, different conditions including temperature (T), dissolved oxygen (DO), free nitrous acid (FNA), and free ammonia (FA) were applied. The 16S rRNA gene-based PCR and sequence analysis illustrated that Ca. Nitrotoga were abundant even at ambient temperature, thus further challenging the previous conception of them being solely cold-adapted. Ca. Nitrotoga are less competitive than Nitrospira during oxygen deficiency, indicating its lower affinity to dissolved oxygen. Ca. Nitrotoga are the dominant nitrite oxidizers under regular exposure to FNA and FA due to their relatively higher resistance than other NOB toward these two effective biocides. Therefore, this study demonstrates that Ca. Nitrotoga can play an important role in biological nitrogen removal and also highlights the need for multiple strategies for NOB suppression for the next-generation, shortcut nitrogen removal.
Collapse
Affiliation(s)
- Min Zheng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Siqi Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Gaofeng Ni
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jun Xia
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Shihu Hu
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Yanchen Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Pérez J, Laureni M, van Loosdrecht MCM, Persson F, Gustavsson DJI. The role of the external mass transfer resistance in nitrite oxidizing bacteria repression in biofilm-based partial nitritation/anammox reactors. WATER RESEARCH 2020; 186:116348. [PMID: 32911269 DOI: 10.1016/j.watres.2020.116348] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/05/2020] [Accepted: 08/25/2020] [Indexed: 05/26/2023]
Abstract
A model-based study was developed to analyse the behaviour of Moving Bed Biofilm Reactor (MBBR) and Integrated Fixed-Film Activated Sludge (IFAS) reactor configurations for the removal of nitrogen in the main water line of municipal wastewater treatment plants via partial nitritation/anammox (PN/AMX). The basic principles and underlying mechanisms linking operating conditions to process performance were investigated, with particular focus on nitrite oxidizing bacteria (NOB) repression and resulting volumetric conversion rates. The external mass transfer resistance is a major factor differentiating granular sludge PN/AMX processes from MBBR or IFAS systems. The external mass transfer resistance was found to promote the metabolic coupling between anammox (AMX) and ammonia oxidizing bacteria (AOB), crucial for NOB repression in the biofilm. Operation at low bulk DO prevents NOB proliferation in the flocs of IFAS systems as AMX activity limits nitrite availability (the so-called AMX nitrite sink). Importantly, the effectiveness of the AMX nitrite sink strongly depends on the AMX sensitivity to oxygen. Also, over a broad range of operational conditions, the seeding of AOB from the biofilm played a crucial role in maintaining their activity in the flocs. From a practical perspective, while low DO promotes NOB repression, lower nitrogen loads have to be applied to maintain the same effluent quality. Thus, a trade-off between NOB repression and volumetric conversion capacity needs to be defined. To this end, IFAS allow for higher volumetric rates, but the window of operating conditions with effective NOB repression is smaller than that for MBBR. Ultimately, this study identified the principles controlling NOB in MBBR and IFAS systems and the key differences with granular reactors, allowing for the interpretation of (seemingly contradictory) published experimental results.
Collapse
Affiliation(s)
- Julio Pérez
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands; Department of Chemical, Biological and Environmental Engineering, Engineering School, Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain.
| | - Michele Laureni
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands; Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220, Aalborg, Denmark
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands
| | - Frank Persson
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - David J I Gustavsson
- VA SYD, P.O. Box 191, SE-20121 Malmö, Sweden; Sweden Water Research, Ideon Science Park, Scheelevägen 15, SE-22370 Lund, Sweden
| |
Collapse
|
15
|
Orschler L, Agrawal S, Lackner S. Targeted metagenomics reveals extensive diversity of the denitrifying community in partial nitritation anammox and activated sludge systems. Biotechnol Bioeng 2020; 118:433-441. [PMID: 32979228 DOI: 10.1002/bit.27581] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 01/18/2023]
Abstract
The substantial presence of denitrifiers has already been reported in partial nitritation anammox (PNA) systems using the 16S ribosomal RNA (rRNA) gene, but little is known about the phylogenetic diversity based on denitrification pathway functional genes. Therefore, we performed a metagenomic analysis to determine the distribution of denitrification genes and the associated phylogeny in PNA systems and whether a niche separation between PNA and conventional activated sludge (AS) systems exists. The results revealed a distinct abundance pattern of denitrification pathway genes and their association to the microbial species between PNA and AS systems. In contrast, the taxonomic analysis, based on the 16S rRNA gene, did not detect notable variability in denitrifying community composition across samples. In general, narG and nosZa2 genes were dominant in all samples. While the potential for different stages of denitrification was redundant, variation in species composition and lack of the complete denitrification gene pool in each species appears to confer niche separation between PNA and AS systems. This study suggests that targeted metagenomics can help to determine the denitrifying microbial composition at a fine-scale resolution while overcoming current biases in quantitative polymerase chain reaction approaches due to a lack of appropriate primers.
Collapse
Affiliation(s)
- Laura Orschler
- Department of Wastewater Engineering, Institute IWAR, Technical University of Darmstadt, Darmstadt, Germany
| | - Shelesh Agrawal
- Department of Wastewater Engineering, Institute IWAR, Technical University of Darmstadt, Darmstadt, Germany
| | - Susanne Lackner
- Department of Wastewater Engineering, Institute IWAR, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
16
|
Zhang X, Li S, Zheng S, Duan S. Impact of dissolved oxygen and loading rate on NH 3 oxidation and N 2 production mechanisms in activated sludge treatment of sewage. Microb Biotechnol 2020; 14:419-429. [PMID: 32488999 PMCID: PMC7936313 DOI: 10.1111/1751-7915.13599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 01/19/2023] Open
Abstract
Microaerobic activated sludge (MAS) is a one-stage process operated at 0.5-1.0 mg l-1 dissolved oxygen (DO) aiming at simultaneous nitrification and denitrification. We used molecular techniques and a comprehensive nitrogen (N)-transformation activity test to investigate the dominant NH3 -oxidizing and N2 -producing mechanism as well as the dominant ammonia-oxidizing bacteria (AOB) species in sludge samples individually collected from an MAS system and a conventional anoxic/oxic (A/O) system; both systems were operated at a normal loading rate (i.e. 1.0 kg chemical oxygen demand (COD) m-3 day-1 and 0.1 kg NH4 + -N m-3 day-1 ) in our previous studies. The DO levels in both systems (aerobic: conventional A/O system; microaerobic: MAS system) did not affect the dominant NH3 -oxidizing mechanism or the dominant AOB species. This study further demonstrated the feasibility of a higher loading rate (i.e. 2.30 kg COD m-3 day-1 and 0.34 kg NH4 + -N m-3 day-1 ) with the MAS process during sewage treatment, which achieved a 40% reduction in aeration energy consumption than that obtained in the conventional A/O system. The increase in loading rates in the MAS system did not affect the dominant NH3 -oxidizing mechanism but did impact the dominant AOB species. Besides, N2 was predominantly produced by microaerobic denitrification in the MAS system at the two loading rates.
Collapse
Affiliation(s)
- Xueyu Zhang
- MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Shida Li
- MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Shaokui Zheng
- MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Shoupeng Duan
- MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
17
|
Lv Y, Pan J, Huo T, Li J, Liu S. Enhance the treatment of low strength wastewater at low temperature with the coexistence system of AnAOB and heterotrophic bacteria: Performance and bacterial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136799. [PMID: 31982768 DOI: 10.1016/j.scitotenv.2020.136799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
The application of anammox process in mainstream wastewater treatment process is still facing challenges especially at the low temperature. To resolve this problem, the coexistence system of anaerobic ammonia-oxidizing bacteria (AnAOB) and heterotrophic bacteria (HB) was built in this study. The nitrogen removal efficiency mainly maintained at above 90% during the process of temperature reducing from 35 °C to 10 °C. The nitrogen removal rate were 0.30 g N·L-1·d-1 at both 25 and 15 °C and 0.10 g N·L-1·d-1 at 10 °C, respectively. Analysis of 16S rRNA genus sequencing revealed that as the temperature reduced to 10 °C, the Denutrotisoma genera presented a downward trend but Comamonadaceae genera showed an upward trend. At 10 °C, the contrast of anammox activities between granular and flocculent sludge in the system revealed that although the abundance of anammox genera was much lower in flocculent sludge than that in granular sludge, the anammox activities showed no significant discrepancy. And the abundance of Comamonadaceae and Chloroflexales genera were much higher in flocculent sludge than those in granular sludge, presenting their key roles to anammox activity at low temperature. The Circos diagram and Cluster of orthologous Group of protein functional predication showed that the functional abundance related to interaction among microbial communities were higher in flocculent sludge but those related to self-growth was higher in granular sludge. This result indicated the significance of the interactions based on the microbial diversity in the application of annamox process at low temperature.
Collapse
Affiliation(s)
- Yufeng Lv
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100048, China; Department of Environmental Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Juejun Pan
- Department of Environmental Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Tangran Huo
- Department of Environmental Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Jianqi Li
- Department of Environmental Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Sitong Liu
- Department of Environmental Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China.
| |
Collapse
|
18
|
Gustavsson DJI, Suarez C, Wilén BM, Hermansson M, Persson F. Long-term stability of partial nitritation-anammox for treatment of municipal wastewater in a moving bed biofilm reactor pilot system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136342. [PMID: 31982771 DOI: 10.1016/j.scitotenv.2019.136342] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/18/2019] [Accepted: 12/24/2019] [Indexed: 05/21/2023]
Abstract
Nitrogen removal from the mainstream of municipal wastewater with partial nitritation-anammox (PNA) would be highly beneficial with regard to the uses of energy and organic carbon. However, the challenges of process instability, low nitrogen removal rates (NRR) and unwanted aerobic nitrite oxidation need to be solved to reach large-scale implementation. Here, we have operated pilot-scale moving bed biofilm reactors (MBBRs) for mainstream treatment, together with sidestream treatment of sludge liquor from anaerobic digestors, for over 900 days to investigate process stability, reactor performance and microbial community structure at realistic conditions. The MBBR biofilm contained stable and high relative abundances of anammox bacteria (10-32%) consisting of two major Brocadia sp. populations, and several populations of aerobic ammonia-oxidising bacteria (AOB) within Nitrosomonas sp. (0.2-3.1%), as assessed by 16S rDNA amplicon sequencing. In addition, nitrite-oxidising bacteria (NOB) consisting of Nitrospira sp. (0.4-0.8%) and Nitrotoga sp. (up to 0.4%) were present. Nitrogen was removed at a peak rate of 0.66 g N m-2 d-1 (0.13 kg N m-3 d-1) with a nitrate production over ammonium consumption of 15% by the NOB, at operation with continuous aeration at 15 °C. However, during most periods with continuous aeration, the NRR was lower (≈ 0.45 g N m-2 d-1), with larger relative nitrate production (≈40%), presumably due to problems to maintain stable residual ammonium concentrations during wet-weather mainstream flows. Changing reactor operation to intermittent aeration decreased the NRR but did not help in suppressing the NOB. The study shows that with MBBRs, stable mainstream PNA can be attained at realistic NRR, but with need for post-treatment of nitrate, since effective NOB suppression was hard to achieve.
Collapse
Affiliation(s)
- David J I Gustavsson
- VA SYD, P.O. Box 191, SE-20121 Malmö, Sweden; Sweden Water Research, c/o Ideon Science Park, Scheelevägen 15, SE-22370 Lund, Sweden
| | - Carolina Suarez
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-40530 Gothenburg, Sweden; Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Britt-Marie Wilén
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Malte Hermansson
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Frank Persson
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
| |
Collapse
|
19
|
|
20
|
Pereira AD, Fernandes LDA, Castro HMC, Leal CD, Carvalho BGP, Dias MF, Nascimento AMA, Chernicharo CADL, Araújo JCD. Nitrogen removal from food waste digestate using partial nitritation-anammox process: Effect of different aeration strategies on performance and microbial community dynamics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 251:109562. [PMID: 31542618 DOI: 10.1016/j.jenvman.2019.109562] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/31/2019] [Accepted: 09/07/2019] [Indexed: 06/10/2023]
Abstract
The feasibility of employing anammox and partial nitritation-anammox (PN/A) processes for nitrogen removal from food waste (FW) digestate was investigated in this study. The effects of different aeration strategies on the microbial community were also investigated. To achieve this, after anammox enrichment (Phase 1), the reactor was fed with digestate supplemented with nitrite (Phase 2), and subsequently different aeration strategies were evaluated to establish PN/A. Aeration strategies with high anoxic periods (30 and 45 min) in relation to aerobic periods (15 min) coupled with low air flow rates (0.026 L min-1. Lreator-1) were found to be better for establishing PN/A, as coefficients of produced nitrate/removed ammonium were closer to those reported previously (0.17 and 0.21). Aeration conditions considerably altered the microbial community. Candidatus Brocadia was replaced by Candidatus Jettenia, after the first aeration strategies. These results support the feasibility of FW digestate treatment using anammox and PN/A processes and provide a better understanding of the effect of aeration on microbial dynamics in PN/A reactors.
Collapse
Affiliation(s)
- Alyne Duarte Pereira
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil.
| | - Luyara de Almeida Fernandes
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Helena Maria Campos Castro
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Cíntia Dutra Leal
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Brenda Gonçalves Piteira Carvalho
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Marcela França Dias
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Andréa Maria Amaral Nascimento
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Carlos Augusto de Lemos Chernicharo
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Juliana Calábria de Araújo
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antonio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
21
|
Improving nitrogen removal in an IFAS nitritation–anammox reactor treating lagoon supernatant by manipulating biocarrier filling ratio and hydraulic retention time. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Mardanov AV, Beletsky AV, Ravin NV, Botchkova EA, Litti YV, Nozhevnikova AN. Genome of a Novel Bacterium " Candidatus Jettenia ecosi" Reconstructed From the Metagenome of an Anammox Bioreactor. Front Microbiol 2019; 10:2442. [PMID: 31736891 PMCID: PMC6828613 DOI: 10.3389/fmicb.2019.02442] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/10/2019] [Indexed: 11/13/2022] Open
Abstract
The microbial community of a laboratory-scale bioreactor based on the anammox process was investigated by using metagenomic approaches and fluorescent in situ hybridization (FISH). The bioreactor was initially inoculated with activated sludge from the denitrifying bioreactor of a municipal wastewater treatment station. By constantly increasing the ammonium and nitrite load, a microbial community containing the novel species of anammox bacteria "Candidatus Jettenia ecosi" developed in the bioreactor after 5 years when the maximal daily nitrogen removal rate reached 8.5 g/L. Sequencing of the metagenome of anammox granules and the binning of the contigs obtained, allowed a high quality draft genome of the dominant anammox bacterium, "Candidatus Jettenia ecosi" to be assembled. Annotation of the 3.9 Mbp long genome revealed 3970 putative protein-coding genes, 45 tRNA genes, and genes for 16S/23S rRNAs. Analysis of the genome of "Candidatus Jettenia ecosi" revealed genes involved in anammox metabolism, including nitrite and ammonium transporters, copper-containing nitrite reductase, a nitrate reductase complex, hydrazine synthase, and hydrazine dehydrogenase. Autotrophic carbon fixation could be accomplished through the Wood Ljungdahl pathway. The composition of the community was investigated through a search of 16S rRNA sequences in the metagenome and FISH analysis of the anammox granules. The presence of the members of Ignavibacteriae, Betaproteobacteria, Chloroflexi and other microbial lineages reflected the complexity of the microbial processes in the studied bioreactor performed by anammox Planctomycetes, fermentative bacteria, and denitrifiers.
Collapse
Affiliation(s)
- Andrey V. Mardanov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey V. Beletsky
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Nikolai V. Ravin
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina A. Botchkova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Yuriy V. Litti
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Alla N. Nozhevnikova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
23
|
Li Y, Yu T, Kang D, Shan X, Zheng P, Hu Z, Ding A, Wang R, Zhang M. Sources of anammox granular sludge and their sustainability in treating low-strength wastewater. CHEMOSPHERE 2019; 226:229-237. [PMID: 30928715 DOI: 10.1016/j.chemosphere.2019.03.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/28/2019] [Accepted: 03/10/2019] [Indexed: 06/09/2023]
Abstract
Anaerobic ammonium oxidation (anammox) has been widely applied in the treatment of high-strength nitrogen wastewaters. However, few engineering practices were reported to treat low-strength nitrogen wastewaters. In this study, three types of anammox granular sludge (GS) were separately collected from the expanded granular sludge bed (EGSB) reactors treating nitrogen wastewaters at high (H-), moderate (M-) and low (L-) nitrogen loading rates (NLRs), and employed for the treatment of low-strength nitrogen wastewater in sequencing batch advanced nitrogen removal (ANR) systems. The ANR system with M-GS (namely M-ANR system) was most useful. At the initial biomass concentration of 2.43 g-VSS·L-1, cycle length of 8 h and influent total nitrogen (TN) concentration of less than 15 mg·L-1, the performance data were as follows: effluent TN of less than 1 mg·L-1, TN removal efficiency of more than 92.8%, the nitrogen removal rate (NRR) of 0.039 kg-N·m-3·d-1. The efficient performance lasted as long as 46 cycles, indicating the sustainability of the M-ANR system. The advanced microscopic analysis and metagenomic analysis were applied to reveal the successful but non-permanent treatment by the M-ANR system. The long-time lag between biomass decay and sludge activity decay provided a window period for the good performance of M-ANR system. However, the weak support of oligotrophic habitat for anaerobic ammonium oxidizing bacteria community was doomed to the degradation of anammox GS, resulting in gradual loss of their activities. A periodic addition of fresh M-GS or a periodic rejuvenation cultivation in the eutrophic habitat is necessary to achieve a permanent performance.
Collapse
Affiliation(s)
- Yiyu Li
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Tao Yu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Da Kang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Xiaoyu Shan
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, USA
| | - Ping Zheng
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China.
| | - Zhiqiang Hu
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, USA
| | - Aqiang Ding
- Department of Environmental Engineering, Chongqing University, Chongqing, China
| | - Ru Wang
- Department of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Meng Zhang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Thickness determines microbial community structure and function in nitrifying biofilms via deterministic assembly. Sci Rep 2019; 9:5110. [PMID: 30911066 PMCID: PMC6434030 DOI: 10.1038/s41598-019-41542-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/11/2019] [Indexed: 11/10/2022] Open
Abstract
Microbial biofilms are ubiquitous in aquatic environments where they provide important ecosystem functions. A key property believed to influence the community structure and function of biofilms is thickness. However, since biofilm thickness is inextricably linked to external factors such as water flow, temperature, development age and nutrient conditions, its importance is difficult to quantify. Here, we designed an experimental system in a wastewater treatment plant whereby nitrifying biofilms with different thicknesses (50 or 400 µm) were grown in a single reactor, and thus subjected to identical external conditions. The 50 and 400 µm biofilm communities were significantly different. This beta-diversity between biofilms of different thickness was primarily caused by deterministic factors. Turnover (species replacement) contributed more than nestedness (species loss) to the beta-diversity, i.e. the 50 µm communities were not simply a subset of the 400 µm communities. Moreover, the two communities differed in the composition of nitrogen-transforming bacteria and in nitrogen transformation rates. The study illustrates that biofilm thickness alone is a key driver for community composition and ecosystem function, which has implications for biotechnological applications and for our general understanding of biofilm ecology.
Collapse
|
25
|
Wang X, Yang R, Guo Y, Zhang Z, Kao CM, Chen S. Investigation of COD and COD/N ratio for the dominance of anammox pathway for nitrogen removal via isotope labelling technique and the relevant bacteria. JOURNAL OF HAZARDOUS MATERIALS 2019; 366:606-614. [PMID: 30576999 DOI: 10.1016/j.jhazmat.2018.12.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/03/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
This study aimed to investigate the importance of COD (chemical oxygen demand) and ratio of COD and nitrogen (COD/N) in influencing the dominance of anammox pathway to N-removal in anammox systems, which had been widely researched and results were not yet conclusive. Results showed that N-removal efficiency increased with increasing organic substrate, while the anammox contribution to N-removal decreased as confirmed by isotope labelling technique. Excessively high TN (total nitrogen) concentrations were detrimental to N-removal, and TN of 600 mg L-1 was optimized. Specific COD of 300 mg L-1 (a threshold value above which anammox was less active) was synergistic for N-removal. Moreover, Illumina sequencing and qPCR techniques uncovered that while the microbial community composition was relatively stable for all treatments, abundances of denitrifier were positively correlated with increase of COD, which was counter-productive for anammox abundance. Structure equation model indicated that COD was more important with respect to maintain the anammox stability than the COD/N ratio. Furthermore, experiment and model fittings revealed that anammox contributed more than 80% of N-removal when COD was below 55.7 mg L-1, and approximately 50% at 220-300 mg L-1 COD, respectively. These data formed a reference for regulation of anammox systems in real-world applications.
Collapse
Affiliation(s)
- Xiaojun Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Ruili Yang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yan Guo
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhaoji Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Chih Ming Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| | - Shaohua Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
26
|
Operation mode of a step-feed anoxic/oxic process with distribution of carbon source from anaerobic zone on nutrient removal and microbial properties. Sci Rep 2019; 9:1153. [PMID: 30718641 PMCID: PMC6362077 DOI: 10.1038/s41598-018-37841-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/14/2018] [Indexed: 11/08/2022] Open
Abstract
This study investigated the operation mode of a step-feed anoxic/oxic (A/O) process with distribution of the carbon source from the anaerobic zone in terms of the treatment effects on sewage with low carbon and high nitrogen and phosphorus. After seven phases of operation, an optimal flow distribution ratio of 75%:25% was obtained from the anaerobic zone, and the concentrations of chemical oxygen demand, ammonia nitrogen, total nitrogen, and total phosphorous in the effluent were 20.8, 0.64, 14.2, and 0.89 mg/L, respectively. The presence of an internal reflux system in the deaeration zone improved the treatment. 16S rRNA high-throughput sequencing revealed that the microbial communities in aerobic zone I(O1) of the first-step A/O sludge were different from those in aerobic zone I (O2) of the second-step A/O sludge, whereas microbial communities of the seed sludge were similar to those in O2 of the second-step A/O sludge. The richness and diversity of microbial communities in O1 of the first-step A/O sludge samples were higher than those in O2 of the second-step A/O and seed sludge. At the optimal flow distribution ratio, the microbial abundance and treatment removal efficiency were the highest.
Collapse
|
27
|
Wongkiew S, Park MR, Chandran K, Khanal SK. Aquaponic Systems for Sustainable Resource Recovery: Linking Nitrogen Transformations to Microbial Communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12728-12739. [PMID: 30264997 DOI: 10.1021/acs.est.8b04177] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Aquaponics is a technology for food production (fish and vegetables/fruits) with concomitant remediation of nitrogen-rich aquaculture effluent. There is, however, a critical need to improve the nitrogen use efficiency (NUE) in aquaponics. Here, we employed quantitative polymerase chain reactions and next-generation sequencing to evaluate the bacterial communities and their links to nitrogen transformations for improving NUEs in four bench-scale plant-based floating-raft aquaponics (pak choi, lettuce, chive, and tomato) and three pH levels (7.0, 6.0, and 5.2). Low relative abundance of nitrifiers in plant roots and biofilters suggested nitrogen loss, which decreased NUE in aquaponics. Low pH level was a major factor that shifted the microbial communities and reduced the relative abundance of nitrifiers in aquaponic systems, leading to total ammonia nitrogen accumulation in recirculating water. In plant roots, the abundance of nitrite-oxidizing bacteria (e.g., Nitrospira spp.) did not decrease at low pH levels, suggesting the benefit of growing plants in aquaponics for efficient nitrification and improving NUE. These findings on microbial communities and nitrogen transformations provided complementary strategies to improve the performance of the aquaponics regarding water quality and extent of nutrient recovery from aquaculture effluent.
Collapse
Affiliation(s)
- Sumeth Wongkiew
- Department of Molecular Biosciences and Bioengineering , University of Hawai'i at Ma̅noa , 1955 East-West Road , Honolulu , Hawai'i 96822 , United States
| | - Mee-Rye Park
- Department of Earth and Environmental Engineering , Columbia University , 500 West 120th Street , New York , New York 10027 , United States
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
- Biological Systems and Engineering Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Kartik Chandran
- Department of Earth and Environmental Engineering , Columbia University , 500 West 120th Street , New York , New York 10027 , United States
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering , University of Hawai'i at Ma̅noa , 1955 East-West Road , Honolulu , Hawai'i 96822 , United States
| |
Collapse
|
28
|
Yue X, Liu Z, Yu G, Li Q, Tang J. Performance and microbial community of the completely autotrophic nitrogen removal over nitrite process with a submerged aerated biological filter. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 78:515-522. [PMID: 30207993 DOI: 10.2166/wst.2018.316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Stable performance is a technical problem in the completely autotrophic nitrogen removal over nitrite (CANON) process with one single stage, which needs to be addressed. In the current work, a laboratory-scale submerged aerated biological filter (SABF) with a 3-L working volume was introduced into the CANON process to enhance its stable performance for 290 days under the following conditions: temperature of 30 ± 1 °C and dissolved oxygen (DO) level of 0.2-0.8 mg·L-1. The results showed that the average ammonium nitrogen removal efficiencies (ANRE) and total nitrogen removal efficiencies (TNRE) were 97.4% and 75.7%, respectively. A 16S rRNA gene high-throughput sequencing technology confirmed the phyla Proteobacteria and Planctomycetes as the ammonium oxidizing bacteria (AOB) and anaerobic ammonia-oxidizing bacteria (AnAOB) of this CANON process with SABF, respectively. The major contributor to nitrogen removal was the genus Candidatus Brocadia, in Brocadiae. The aim is to present an effective strategy as a reference for the design of full-scale plant for the CANON process.
Collapse
Affiliation(s)
- Xiu Yue
- Shenyang Institute of Automation in Guangzhou, Chinese Academy of Sciences, Guangzhou 511458, China E-mail:
| | - Zhuhan Liu
- Shenyang Institute of Automation in Guangzhou, Chinese Academy of Sciences, Guangzhou 511458, China E-mail:
| | - Guangping Yu
- Shenyang Institute of Automation in Guangzhou, Chinese Academy of Sciences, Guangzhou 511458, China E-mail:
| | - Qianhua Li
- Shenyang Institute of Automation in Guangzhou, Chinese Academy of Sciences, Guangzhou 511458, China E-mail:
| | - Jiali Tang
- Shenyang Institute of Automation in Guangzhou, Chinese Academy of Sciences, Guangzhou 511458, China E-mail:
| |
Collapse
|
29
|
Wang X, Yan Y, Gao D. The threshold of influent ammonium concentration for nitrate over-accumulation in a one-stage deammonification system with granular sludge without aeration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:843-852. [PMID: 29653428 DOI: 10.1016/j.scitotenv.2018.04.053] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/04/2018] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
Low-strength ammonium is still a challenge for the mainstream deammonification because of nitrate over-accumulation. In this study, the threshold of influent ammonium concentration of one-stage deammonification system with granular sludge was investigated, by stepwise decreasing influent ammonium from high concentrations (280mg/L to 140mg/L) to the low concentration (70mg/L) in 108d at 32°C without aeration. Results showed that, under 70mg/L NH4+-N, ΔNO3--N/ΔNH4+-N ratio increased to 0.2, deviated from the theoretical value of 0.11, with ammonium and TN removal efficiencies of 91% and 71%, respectively. However, under both high ammonium concentrations (280mg/L and 140mg/L), nitrate production stabilized at only 13%. Chloroflexi, Planctomycetes and Proteobacteria contributed >70% of the communities under all three ammonium concentrations. As influent ammonium decreasing, the relative abundances of bacteria for anammox, aerobic oxidizing and denitrifying decreased, while NOB (nitrite oxidizing bacteria) abundance increased greatly. So 70mg/L was the threshold of influent ammonium concentration for stable deammonification without organic influent. It was the decrease of functional bacteria and overgrowth of NOB that worsen the deammonification performance under low-strength ammonium.
Collapse
Affiliation(s)
- Xiaolong Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yuegen Yan
- Puritek (Nanjing) Co. Ltd, Nanjing 210023, China
| | - Dawen Gao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
30
|
Yang Y, Zhang L, Cheng J, Zhang S, Li X, Peng Y. Microbial community evolution in partial nitritation/anammox process: From sidestream to mainstream. BIORESOURCE TECHNOLOGY 2018; 251:327-333. [PMID: 29289877 DOI: 10.1016/j.biortech.2017.12.079] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/21/2017] [Accepted: 12/25/2017] [Indexed: 06/07/2023]
Abstract
This study investigated the microbial evolution in a mainstream partial nitritation/anammox (PN/A) reactor started by inoculation from sidestream PN/A. The reactor was fed with pre-treated sewage and operated for 120 days at room temperature (24-26 °C). It was found that for both sidestream and mainstream PN/A, anammox bacteria preferentially grew in granular sludge while ammonium-oxidizing bacteria (AOB) were mainly resided in flocculent sludge. After 120 days operation, the abundance of anammox bacteria in the reactor decreased from 6.6 × 1011 to 3.2 × 1011 copies/L. Besides, a shift of dominant anammox genera from Ca. Brocadia to Ca. Kuenenia was observed. In contrast, the dominant genera of AOB was Nitrosomonas throughout the operation. Furthermore, high-throughput sequencing revealed that heterotrophs constitute the majority of microorganisms in PN/A reactor. Especially, Chloroflexi, which can utilize cell decay materials from autotrophs, were enriched under mainstream conditions. This study provided a better understanding of the microorganisms in mainstream PN/A process.
Collapse
Affiliation(s)
- Yandong Yang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China; School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| | - Jun Cheng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shujun Zhang
- Beijing Drainage Group Co. Ltd (BDG), Beijing 100022, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
31
|
Val Del Rio A, Pichel A, Fernandez-Gonzalez N, Pedrouso A, Fra-Vázquez A, Morales N, Mendez R, Campos JL, Mosquera-Corral A. Performance and microbial features of the partial nitritation-anammox process treating fish canning wastewater with variable salt concentrations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 208:112-121. [PMID: 29253740 DOI: 10.1016/j.jenvman.2017.12.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 10/31/2017] [Accepted: 12/04/2017] [Indexed: 06/07/2023]
Abstract
The partial nitritation-anammox (PN-AMX) process applied to wastewaters with high NaCl concentration was studied until now using simulated media, without considering the effect of organic matter concentration and the shift in microbial populations. This research work presents results on the application of this process to the treatment of saline industrial wastewater. Obtained results indicated that the PN-AMX process has the capability to recover its initial activity after a sudden/acute salt inhibition event (up to 16 g NaCl/L). With a progressive salt concentration increase for 150 days, the PN-AMX process was able to remove the 80% of the nitrogen at 7-9 g NaCl/L. The microbiological data indicated that NaCl and ammonia concentrations and temperature are important factors shaping PN-AMX communities. Thus, the NOB abundance (Nitrospira) decreases with the increase of the salt concentration, while heterotrophic denitrifiers are able to outcompete anammox after a peak of organic matter in the feeding.
Collapse
Affiliation(s)
- Angeles Val Del Rio
- Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, E- 15705 Santiago de Compostela, Spain.
| | - Andres Pichel
- Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, E- 15705 Santiago de Compostela, Spain.
| | - Nuria Fernandez-Gonzalez
- Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, E- 15705 Santiago de Compostela, Spain.
| | - Alba Pedrouso
- Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, E- 15705 Santiago de Compostela, Spain.
| | - Andrea Fra-Vázquez
- Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, E- 15705 Santiago de Compostela, Spain.
| | - Nicolas Morales
- Aqualia, Guillarei WWTP, Camino de la Veiga s/n, E-36720 Tui, Spain.
| | - Ramon Mendez
- Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, E- 15705 Santiago de Compostela, Spain.
| | - Jose Luis Campos
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Avda Padre Hurtado 750, Viña del Mar, E- 2503500, Chile.
| | - Anuska Mosquera-Corral
- Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, E- 15705 Santiago de Compostela, Spain.
| |
Collapse
|
32
|
Wang X, Gao D. The transformation from anammox granules to deammonification granules in micro-aerobic system by facilitating indigenous ammonia oxidizing bacteria. BIORESOURCE TECHNOLOGY 2018; 250:439-448. [PMID: 29195156 DOI: 10.1016/j.biortech.2017.11.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 06/07/2023]
Abstract
Granular deammonification process is a good way to retain aerobic and anaerobic ammonia oxidizing bacteria (AOB and anammox bacteria) and exhaust flocculent nitrite oxidizing bacteria (NOB). In this study, to facilitate indigenous AOB growth on anammox granules, by stepwise reducing influent nitrite, anammox granules were effectively transformed into deammonification granules in a micro-aerobic EGSB in 100 days. Total nitrogen removal efficiency of 90% and nitrogen removal rate of 2.3 g N/L/d were reached at stable deammonification stage. High influent FA and limited oxygen supply contributed suppression for Nitrospira-like NOB. In transition stages, Proteobacteria and Chloroflexi were always dominated. Anammox abundance decreased, while AOB abundance grew fast. Anammox bacteria and AOB were dominated by Brocadia fulgida and Nitrosomonas europaea, respectively. Denitrification activity and bacteria existed although without influent organic. The final AOB abundance was about 4.55-13.8 times more than anammox bacteria abundance, with almost equal potential activities.
Collapse
Affiliation(s)
- Xiaolong Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dawen Gao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
33
|
Persson F, Suarez C, Hermansson M, Plaza E, Sultana R, Wilén BM. Community structure of partial nitritation-anammox biofilms at decreasing substrate concentrations and low temperature. Microb Biotechnol 2016; 10:761-772. [PMID: 27863060 PMCID: PMC5481546 DOI: 10.1111/1751-7915.12435] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/15/2016] [Accepted: 09/28/2016] [Indexed: 11/28/2022] Open
Abstract
Partial nitritation-anammox (PNA) permits energy effective nitrogen removal. Today PNA is used for treatment of concentrated and warm side streams at wastewater treatment plants, but not the more diluted and colder main stream. To implement PNA in the main stream, better knowledge about microbial communities at the typical environmental conditions is necessary. In order to investigate the response of PNA microbial communities to decreasing substrate availability, we have operated a moving bed biofilm reactor (MBBR) at decreasing reactor concentrations (311-27 mg-N l-1 of ammonium) and low temperature (13°C) for 302 days and investigated the biofilm community using high throughput amplicon sequencing; quantitative PCR; and fluorescence in situ hybridization. The anammox bacteria (Ca. Brocadia) constituted a large fraction of the biomass with fewer aerobic ammonia oxidizing bacteria (AOB) and even less nitrite oxidizing bacteria (NOB; Nitrotoga, Nitrospira and Nitrobacter). Still, NOB had considerable impact on the process performance. The anammox bacteria, AOB and NOB all harboured more than one population, indicating some diversity, and the heterotrophic bacterial community was diverse (seven phyla). Despite the downshifts in substrate availability, changes in the relative abundance and composition of anammox bacteria, AOB and NOB were small and also the heterotrophic community showed little changes in composition. This indicates stability of PNA MBBR communities towards decreasing substrate availability and suggests that even heterotrophic bacteria are integral components of these communities.
Collapse
Affiliation(s)
- Frank Persson
- Division of Water Environment Technology, Department of Civil and Environmental Engineering, Chalmers University of Technology, SE-41296, Gothenburg, Sweden
| | - Carolina Suarez
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Malte Hermansson
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Elzbieta Plaza
- Department of Sustainable Development, Environmental Science and Engineering (SEED), Royal Institute of Technology (KTH), Teknikringen 76, SE-100 44, Stockholm, Sweden
| | - Razia Sultana
- Department of Sustainable Development, Environmental Science and Engineering (SEED), Royal Institute of Technology (KTH), Teknikringen 76, SE-100 44, Stockholm, Sweden
| | - Britt-Marie Wilén
- Division of Water Environment Technology, Department of Civil and Environmental Engineering, Chalmers University of Technology, SE-41296, Gothenburg, Sweden
| |
Collapse
|