2
|
Li C, Zhu N, Yang S, He X, Zheng S, Sun Z, Dionysiou DD. A review of clay based photocatalysts: Role of phyllosilicate mineral in interfacial assembly, microstructure control and performance regulation. CHEMOSPHERE 2021; 273:129723. [PMID: 33524745 DOI: 10.1016/j.chemosphere.2021.129723] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/01/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Over the past decades, inspired by the outstanding properties of clay minerals such as abundance, low-cost, environmental benignity, high stability, and regularly arranged silica-alumina framework, researchers put much efforts on the interface assembly and surface modification of natural minerals with bare photocatalysts, i.e. TiO2, g-C3N4, ZnO, MoS2, etc. The clay-based hybrid photocatalysts have resulted in a rich database for their tailor-designed microstructures, characterizations, and environmental-related applications. Therefore, in this study, we took a brief introduction of three representative minerals, i.e. kaolinite, montmorillonite and rectorite, and discussed their basic merits in photocatalysis applications. After that, we summarized the recent advances in construction of stable visible-light driven photocatalysts based on these minerals. The structure-activity relationships between the properties of clay types, pore structure, distribution/dispersion and light absorption, carrier separation efficiency as well as redox performance were illustrated in detail. Such representative information would provide theoretical basis and scientific support for the application of clay based photocatalysts. Finally, we pointed out the major challenges and future directions at the end of this review. Undoubtedly, control and preparation of novel photocatalysts based on clays will continue to witness many breakthroughs in the arena of solar-driven technologies.
Collapse
Affiliation(s)
- Chunquan Li
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, PR China
| | - Ningyuan Zhu
- Zigui Ecological Station for Three Gorges Dam Project, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing, 210008, China
| | - Shanshan Yang
- School of Earth and Space Sciences, Peking University, Beijing, 100871, PR China
| | - Xuwen He
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, PR China
| | - Shuilin Zheng
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, PR China
| | - Zhiming Sun
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, PR China.
| | - Dionysios D Dionysiou
- Department of Chemical and Environmental Engineering (DCEE), University of Cincinnati, Cincinnati, OH, 45221-0012, USA
| |
Collapse
|
3
|
Microbial Resources, Fermentation and Reduction of Negative Externalities in Food Systems: Patterns toward Sustainability and Resilience. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7020054] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
One of the main targets of sustainable development is the reduction of environmental, social, and economic negative externalities associated with the production of foods and beverages. Those externalities occur at different stages of food chains, from the farm to the fork, with deleterious impacts to different extents. Increasing evidence testifies to the potential of microbial-based solutions and fermentative processes as mitigating strategies to reduce negative externalities in food systems. In several cases, innovative solutions might find in situ applications from the farm to the fork, including advances in food matrices by means of tailored fermentative processes. This viewpoint recalls the attention on microbial biotechnologies as a field of bioeconomy and of ‘green’ innovations to improve sustainability and resilience of agri-food systems alleviating environmental, economic, and social undesired externalities. We argue that food scientists could systematically consider the potential of microbes as ‘mitigating agents’ in all research and development activities dealing with fermentation and microbial-based biotechnologies in the agri-food sector. This aims to conciliate process and product innovations with a development respectful of future generations’ needs and with the aptitude of the systems to overcome global challenges.
Collapse
|
4
|
Timmis K, Cavicchioli R, Garcia JL, Nogales B, Chavarría M, Stein L, McGenity TJ, Webster N, Singh BK, Handelsman J, de Lorenzo V, Pruzzo C, Timmis J, Martín JLR, Verstraete W, Jetten M, Danchin A, Huang W, Gilbert J, Lal R, Santos H, Lee SY, Sessitsch A, Bonfante P, Gram L, Lin RTP, Ron E, Karahan ZC, van der Meer JR, Artunkal S, Jahn D, Harper L. The urgent need for microbiology literacy in society. Environ Microbiol 2019; 21:1513-1528. [PMID: 30912268 DOI: 10.1111/1462-2920.14611] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 03/24/2019] [Accepted: 03/24/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Kenneth Timmis
- Institute of Microbiology, Technical University Braunschweig, Germany
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| | - José Luis Garcia
- Department of Environmental Biology, Centro de Investigaciones Biológicas (CIB) (CSIC), Madrid, Spain
| | - Balbina Nogales
- Grupo de Microbiologia, Dept. Biologia, Universitat de les Illes Balears, and Instituto Mediterráneo de Estudios Avanzados 8IMEDEA, UIB-CSIC), Palma de Mallorca, Spain
| | - Max Chavarría
- Escuela de Química, Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José, Costa Rica & Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, Costa Rica
| | - Lisa Stein
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Terry J McGenity
- School of Biological Sciences, University of Essex, Colchester, UK
| | - Nicole Webster
- Australian Institute of Marine Science, Townsville and Australian Centre for Ecogenomics, University of Queensland, Brisbane, Queensland, Australia
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, Australia
| | - Jo Handelsman
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, WI, USA
| | - Victor de Lorenzo
- Systems Biology Program, Centro Nacional de Biotecnologia, CSIC, Madrid, Spain
| | - Carla Pruzzo
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita (DISTAV), Università degli Studi di Genova, Italy
| | - James Timmis
- Athena Institute, Vrije Universiteit Amsterdam, The Netherlands
| | | | - Willy Verstraete
- Center for Microbial Ecology and Technology (CMET), Ghent University, Belgium
| | - Mike Jetten
- Department of Microbiology, Radboud University Nijmegen, The Netherlands
| | - Antoine Danchin
- Institut Cochin INSERM U1016, CNRS UMR8104, Université Paris Descartes, Paris, France
| | - Wei Huang
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - Jack Gilbert
- Dept. of Pediatrics, University of California at San Diego, San Diego, CA, USA
| | - Rup Lal
- Department of Zoology, Molecular Biology Laboratory, University of Delhi, Delhi, India
| | - Helena Santos
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Angela Sessitsch
- Bioresources Unit, AIT Austrian Institute of Technology, Tulln, Austria
| | - Paola Bonfante
- Department of Life Science and Systems Biology, University of Torino, Italy
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Raymond T P Lin
- Department of Microbiology and Immunology, National University of Singapore, Singapore
| | - Eliora Ron
- School of Molecular Cell Biology & Biotechnology, Tel Aviv University, Israel
| | - Z Ceren Karahan
- Department of Medical Microbiology, Ankara University, Turkey
| | | | - Seza Artunkal
- Department of Clinical Microbiology, Haydarpaşa Numune Training Hospital, lstanbul, Turkey
| | - Dieter Jahn
- Institute of Microbiology, Technical University Braunschweig, Germany
| | - Lucy Harper
- Society for Applied Microbiology, London, UK
| |
Collapse
|
5
|
Kim SW, Less JF, Wang L, Yan T, Kiron V, Kaushik SJ, Lei XG. Meeting Global Feed Protein Demand: Challenge, Opportunity, and Strategy. Annu Rev Anim Biosci 2018; 7:221-243. [PMID: 30418803 DOI: 10.1146/annurev-animal-030117-014838] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Feed protein supplements are one of the most expensive and limiting feed ingredients. This review offers a comprehensive analysis of how the expected expansion of animal production, driven by the rising world population and living standards for more animal-sourced foods, is creating a global shortage of feed protein supply. Because ruminants, chickens, and pigs contribute to 96% of the global supply of animal protein and aquaculture is growing fast, means of meeting the feed protein requirements of these species are elaborated. Geographic variation and interdependence among China, Europe, and North America in the demand and supply of feed protein are compared. The potential and current state of exploration into alternative feed proteins, including microalgae, insects, single-cell proteins, and coproducts, are highlighted. Strategic innovations are proposed to upgrade feed protein processing and assessment, improve protein digestion by exogenous enzymes, and genetically select feed-efficient livestock breeds. An overall successful and sustainable solution in meeting global feed protein demands will lead to a substantial net gain of human-edible animal protein with a minimal environmental footprint.
Collapse
Affiliation(s)
- Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, North Carolina 27695, USA;
| | - John F Less
- ADM Animal Nutrition, Decatur, Illinois 62526, USA;
| | - Li Wang
- Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 510640 Guangzhou, China;
| | - Tianhai Yan
- Agri-Food and Biosciences Institute, Hillsborough, County Down, Northern Ireland BT26 6DR, United Kingdom;
| | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway;
| | - Sadasivam J Kaushik
- EcoAqua, Universidad de Las Palmas de Gran Canaria, Taliarte, 35214 Telde, Las Palmas, Canary Islands, Spain;
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, New York 14853, USA;
| |
Collapse
|
6
|
Ayangbenro AS, Olanrewaju OS, Babalola OO. Sulfate-Reducing Bacteria as an Effective Tool for Sustainable Acid Mine Bioremediation. Front Microbiol 2018; 9:1986. [PMID: 30186280 PMCID: PMC6113391 DOI: 10.3389/fmicb.2018.01986] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/07/2018] [Indexed: 11/16/2022] Open
Abstract
Mining industries produce vast waste streams that pose severe environmental pollution challenge. Conventional techniques of treatment are usually inefficient and unsustainable. Biological technique employing the use of microorganisms is a competitive alternative to treat mine wastes and recover toxic heavy metals. Microorganisms are used to detoxify, extract or sequester pollutants from mine waste. Sulfate-reducing microorganisms play a vital role in the control and treatment of mine waste, generating alkalinity and neutralizing the acidic waste. The design of engineered sulfate-reducing bacteria (SRB) consortia will be an effective tool in optimizing degradation of acid mine tailings waste in industrial processes. The understanding of the complex functions of SRB consortia vis-à-vis the metabolic and physiological properties in industrial applications and their roles in interspecies interactions are discussed.
Collapse
Affiliation(s)
| | | | - Olubukola O. Babalola
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
7
|
Timmis K, de Lorenzo V, Verstraete W, Ramos JL, Danchin A, Brüssow H, Singh BK, Timmis JK. The contribution of microbial biotechnology to economic growth and employment creation. Microb Biotechnol 2017; 10:1137-1144. [PMID: 28868756 PMCID: PMC5609265 DOI: 10.1111/1751-7915.12845] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 08/01/2017] [Indexed: 11/29/2022] Open
Abstract
Our communication discusses the profound impact of bio-based economies - in particular microbial biotechnologies - on SDG 8: Promote sustained, inclusive and sustainable economic growth, full and productive employment and decent work for all. A bio-based economy provides significant potential for improving labour supply, education and investment, and thereby for substantially increasing the demographic dividend. This, in turn, improves the sustainable development of economies.
Collapse
Affiliation(s)
- Kenneth Timmis
- Institute of MicrobiologyTechnical University of BraunschweigBraunschweigGermany
| | | | - Willy Verstraete
- Center for Microbial Ecology and Technology (CMET)Ghent UniversityGhentBelgium
| | | | | | | | - Brajesh K. Singh
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithSAAustralia
| | - James Kenneth Timmis
- Student MSc Health PolicyDepartment of Surgery and CancerImperial College LondonUK
| |
Collapse
|
8
|
Verstraete W, De Vrieze J. Microbial technology with major potentials for the urgent environmental needs of the next decades. Microb Biotechnol 2017; 10:988-994. [PMID: 28771931 PMCID: PMC5609260 DOI: 10.1111/1751-7915.12779] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 01/20/2023] Open
Abstract
Several needs in the context of the water-energy-food nexus will become more prominent in the next decades. It is crucial to delineate these challenges and to find opportunities for innovative microbial technologies in the framework of sustainability and climate change. Here, we focus on four key issues, that is the imbalance in the nitrogen cycle, the diffuse emission of methane, the necessity for carbon capture and the deterioration of freshwater reserves. We suggest a set of microbial technologies to deal with each of these issues, such as (i) the production of microbial protein as food and feed, (ii) the control of methanogenic archaea and better use of methanotrophic consortia, (iii) the avoidance of nitrification and (iv) the upgrading of CO2 to microbial bioproducts. The central message is that instead of using crude methods to exploit microorganisms for degradations, the potentials of the microbiomes should be used to create processes and products that fit the demands of the cyclic market economy.
Collapse
Affiliation(s)
- Willy Verstraete
- Center for Microbial Ecology and Technology (CMET)Ghent UniversityCoupure Links 653B‐9000GentBelgium
| | - Jo De Vrieze
- Center for Microbial Ecology and Technology (CMET)Ghent UniversityCoupure Links 653B‐9000GentBelgium
| |
Collapse
|