1
|
Palmer B, Karačić S, Low SL, Janssen K, Färber H, Liesegang M, Bierbaum G, Gee CT. Decay experiments and microbial community analysis of water lily leaf biofilms: Sediment effects on leaf preservation potential. PLoS One 2024; 19:e0315656. [PMID: 39693331 DOI: 10.1371/journal.pone.0315656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
Understanding the intricate dynamics of sediment-mediated microbial interactions and their impact on plant tissue preservation is crucial for unraveling the complexities of leaf decay and preservation processes. To elucidate the earliest stages of leaf preservation, a series of decay experiments was carried out for three months on Nymphaea water lily leaves in aquariums with pond water and one of three distinctly different, sterilized, fine-grained substrates-commercially purchased kaolinite clay or fine sand, or natural pond mud. One aquarium contained only pond water as a control. We use 16S and ITS rRNA gene amplicon sequencing to identify and characterize the complex composition of the bacterial and fungal communities on leaves. Our results reveal that the pond mud substrate produces a unique community composition in the biofilms compared to other substrates. The mud substrate significantly influences microbial communities, as shown by the correlation between high concentrations of minerals in the water and bacterial abundance. Furthermore, more biofilm formers are observed on the leaves exposed to mud after two months, contrasting with declines on other substrates. The mud substrate also enhanced leaf tissue preservation compared to the other sediment types, providing insight into the role of sediment and biofilms in fossilization processes. Notably, leaves on kaolinite clay have the fewest biofilm formers by the end of the experiment. We also identify key biofilm-forming microbes associated with each substrate. The organic-rich mud substrate emerges as a hotspot for biofilm formers, showing that it promotes biofilm formation on leaves and may increase the preservation potential of leaves better than other substrates. The mud's chemical composition, rich in minerals such as silica, iron, aluminum, and phosphate, may slow or suspend decay and facilitate biomineralization, thus paving the way toward leaf preservation. Our study bridges the information gap between biofilms observed on modern leaves and the mineral encrustation on fossil leaves by analyzing the microbial response in biofilms to substrate types in which fossil leaves are commonly found.
Collapse
Affiliation(s)
- Brianne Palmer
- Bonn Organismic Institute of Biology, Division of Palaeontology, University of Bonn, Bonn, Germany
| | - Sabina Karačić
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Shook Ling Low
- Bonn Organismic Institute of Biology, Division of Palaeontology, University of Bonn, Bonn, Germany
- Institute of Botany, Czech Academy of Sciences, Staré Město, Czech Republic
| | - Kathrin Janssen
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Harald Färber
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Moritz Liesegang
- Institute of Geological Sciences, Department of Earth Sciences, Freie Universität Berlin, Berlin, Germany
| | - Gabriele Bierbaum
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Carole T Gee
- Bonn Organismic Institute of Biology, Division of Palaeontology, University of Bonn, Bonn, Germany
| |
Collapse
|
2
|
Povolotsky TL, Levy Barazany H, Shacham Y, Kolodkin-Gal I. Bacterial epigenetics and its implication for agriculture, probiotics development, and biotechnology design. Biotechnol Adv 2024; 75:108414. [PMID: 39019123 DOI: 10.1016/j.biotechadv.2024.108414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
In their natural habitats, organisms encounter numerous external stimuli and must be able to sense and adapt to those stimuli to survive. Unlike mutations, epigenetic changes do not alter the underlying DNA sequence. Instead, they create modifications that promote or silence gene expression. Bacillus subtilis has long been a model organism in studying genetics and development. It is beneficial for numerous biotechnological applications where it is included as a probiotic, in fermentation, or in bio-concrete design. This bacterium has also emerged recently as a model organism for studying bacterial epigenetic adaptation. In this review, we examine the evolving knowledge of epigenetic regulation (restriction-modification systems (RM), orphan methyltransferases, and chromosome condensation) in B. subtilis and related bacteria, and utilize it as a case study to test their potential roles and future applications in genetic engineering and microbial biotechnology. Finally, we suggest how the implementation of these fundamental findings promotes the design of synthetic epigenetic memory circuits and their future applications in agriculture, medicine, and biotechnology.
Collapse
Affiliation(s)
- Tatyana L Povolotsky
- Institute for Chemistry and Biochemistry, Physical and Theoretical Chemistry, Freie Universität Berlin, Altensteinstraße 23A, 14195 Berlin, Germany
| | - Hilit Levy Barazany
- Scojen Institute for Synthetic Biology, Reichman University, Hauniversita 8, Herzeliya, Israel
| | - Yosi Shacham
- Scojen Institute for Synthetic Biology, Reichman University, Hauniversita 8, Herzeliya, Israel
| | - Ilana Kolodkin-Gal
- Scojen Institute for Synthetic Biology, Reichman University, Hauniversita 8, Herzeliya, Israel.
| |
Collapse
|
3
|
Special Issue: Biofilm Composition and Applications. COATINGS 2022. [DOI: 10.3390/coatings12071026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Biofilms can be formed on both biotic and abiotic surfaces, including on living tissues, indwelling medical devices, industrial or portable water system piping, and natural aquatic systems [...]
Collapse
|
4
|
Liu X, Zarfel G, van der Weijden R, Loiskandl W, Bitschnau B, Dinkla IJT, Fuchs EC, Paulitsch-Fuchs AH. Density-dependent microbial calcium carbonate precipitation by drinking water bacteria via amino acid metabolism and biosorption. WATER RESEARCH 2021; 202:117444. [PMID: 34314923 DOI: 10.1016/j.watres.2021.117444] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/21/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Drinking water plumbing systems appear to be a unique environment for microorganisms as they contain few nutrients but a high mineral concentration. Interactions between mineral content and bacteria, such as microbial calcium carbonate precipitation (MCP) however, has not yet attracted too much attention in drinking water sector. This study aims to carefully examine MCP behavior of two drinking water bacteria species, which may potentially link scaling and biofouling processes in drinking water distribution systems. Evidence from cell density evolution, chemical parameters, and microscopy suggest that drinking water isolates can mediate CaCO3 precipitation through previously overlooked MCP mechanisms like ammonification or biosorption. The results also illustrate the active control of bacteria on the MCP process, as the calcium starts to concentrate onto cell surfaces only after reaching a certain cell density, even though the cell surfaces are shown to be the ideal location for the CaCO3 nucleation.
Collapse
Affiliation(s)
- Xiaoxia Liu
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, the Netherlands;; Institute of Hydraulics and Rural Water Management, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Gernot Zarfel
- Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Renata van der Weijden
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, the Netherlands;; Sub-Department of Environmental Technology, Wageningen University, Wageningen, the Netherlands
| | - Willibald Loiskandl
- Institute of Hydraulics and Rural Water Management, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Brigitte Bitschnau
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, Austria
| | - Inez J T Dinkla
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, the Netherlands
| | - Elmar C Fuchs
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, the Netherlands;; Optical Sciences group, Faculty of Science and Technology, University of Twente. Twente. the Netherlands.
| | - Astrid H Paulitsch-Fuchs
- Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria; School of Health Sciences & Social Work, Biomedical Sciences, Carinthia University of Applied Sciences, Klagenfurt, Austria
| |
Collapse
|
5
|
Li S, Yang Z, Hu D, Cao L, He Q. Understanding building-occupant-microbiome interactions toward healthy built environments: A review. FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING 2020; 15:65. [PMID: 33145119 PMCID: PMC7596174 DOI: 10.1007/s11783-020-1357-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/30/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Built environments, occupants, and microbiomes constitute a system of ecosystems with extensive interactions that impact one another. Understanding the interactions between these systems is essential to develop strategies for effective management of the built environment and its inhabitants to enhance public health and well-being. Numerous studies have been conducted to characterize the microbiomes of the built environment. This review summarizes current progress in understanding the interactions between attributes of built environments and occupant behaviors that shape the structure and dynamics of indoor microbial communities. In addition, this review also discusses the challenges and future research needs in the field of microbiomes of the built environment that necessitate research beyond the basic characterization of microbiomes in order to gain an understanding of the causal mechanisms between the built environment, occupants, and microbiomes, which will provide a knowledge base for the development of transformative intervention strategies toward healthy built environments. The pressing need to control the transmission of SARS-CoV-2 in indoor environments highlights the urgency and significance of understanding the complex interactions between the built environment, occupants, and microbiomes, which is the focus of this review.
Collapse
Affiliation(s)
- Shuai Li
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 USA
| | - Zhiyao Yang
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN 47907 USA
| | - Da Hu
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 USA
| | - Liu Cao
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 USA
| | - Qiang He
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 USA
- Institute for a Secure & Sustainable Environment, University of Tennessee, Knoxville, TN 37996 USA
| |
Collapse
|
6
|
Keren-Paz A, Kolodkin-Gal I. A brick in the wall: Discovering a novel mineral component of the biofilm extracellular matrix. N Biotechnol 2020; 56:9-15. [DOI: 10.1016/j.nbt.2019.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/01/2019] [Accepted: 11/02/2019] [Indexed: 01/09/2023]
|
7
|
Karygianni L, Ren Z, Koo H, Thurnheer T. Biofilm Matrixome: Extracellular Components in Structured Microbial Communities. Trends Microbiol 2020; 28:668-681. [PMID: 32663461 DOI: 10.1016/j.tim.2020.03.016] [Citation(s) in RCA: 626] [Impact Index Per Article: 125.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/16/2020] [Accepted: 03/25/2020] [Indexed: 02/04/2023]
Abstract
Biofilms consist of microbial communities embedded in a 3D extracellular matrix. The matrix is composed of a complex array of extracellular polymeric substances (EPS) that contribute to the unique attributes of biofilm lifestyle and virulence. This ensemble of chemically and functionally diverse biomolecules is termed the 'matrixome'. The composition and mechanisms of EPS matrix formation, and its role in biofilm biology, function, and microenvironment are being revealed. This perspective article highlights recent advances about the multifaceted role of the 'matrixome' in the development, physical-chemical properties, and virulence of biofilms. We emphasize that targeting biofilm-specific conditions such as the matrixome could lead to precise and effective antibiofilm approaches. We also discuss the limited knowledge in the context of polymicrobial biofilms, and the need for more in-depth analyses of the EPS matrix in mixed communities that are associated with many human infectious diseases.
Collapse
Affiliation(s)
- L Karygianni
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine University of Zurich, Zurich, Switzerland
| | - Z Ren
- Department of Orthodontics, Divisions of Pediatric Dentistry and Community of Oral Health, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - H Koo
- Department of Orthodontics, Divisions of Pediatric Dentistry and Community of Oral Health, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA; Center for Innovation and Precision Dentistry, University of Pennsylvania School of Dental Medicine, School of Engineering and Applied Sciences, Philadelphia, PA, USA
| | - T Thurnheer
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine University of Zurich, Zurich, Switzerland.
| |
Collapse
|
8
|
Horve PF, Lloyd S, Mhuireach GA, Dietz L, Fretz M, MacCrone G, Van Den Wymelenberg K, Ishaq SL. Building upon current knowledge and techniques of indoor microbiology to construct the next era of theory into microorganisms, health, and the built environment. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2020; 30:219-235. [PMID: 31308484 PMCID: PMC7100162 DOI: 10.1038/s41370-019-0157-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/23/2019] [Accepted: 06/30/2019] [Indexed: 05/06/2023]
Abstract
In the constructed habitat in which we spend up to 90% of our time, architectural design influences occupants' behavioral patterns, interactions with objects, surfaces, rituals, the outside environment, and each other. Within this built environment, human behavior and building design contribute to the accrual and dispersal of microorganisms; it is a collection of fomites that transfer microorganisms; reservoirs that collect biomass; structures that induce human or air movement patterns; and space types that encourage proximity or isolation between humans whose personal microbial clouds disperse cells into buildings. There have been recent calls to incorporate building microbiology into occupant health and exposure research and standards, yet the built environment is largely viewed as a repository for microorganisms which are to be eliminated, instead of a habitat which is inexorably linked to the microbial influences of building inhabitants. Health sectors have re-evaluated the role of microorganisms in health, incorporating microorganisms into prevention and treatment protocols, yet no paradigm shift has occurred with respect to microbiology of the built environment, despite calls to do so. Technological and logistical constraints often preclude our ability to link health outcomes to indoor microbiology, yet sufficient study exists to inform the theory and implementation of the next era of research and intervention in the built environment. This review presents built environment characteristics in relation to human health and disease, explores some of the current experimental strategies and interventions which explore health in the built environment, and discusses an emerging model for fostering indoor microbiology rather than fearing it.
Collapse
Affiliation(s)
- Patrick F Horve
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, 97403, USA
| | - Savanna Lloyd
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, 97403, USA
| | - Gwynne A Mhuireach
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, 97403, USA
| | - Leslie Dietz
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, 97403, USA
| | - Mark Fretz
- Institute for Health and the Built Environment, University of Oregon, Portland, OR, 97209, USA
| | - Georgia MacCrone
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, 97403, USA
| | - Kevin Van Den Wymelenberg
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, 97403, USA
- Institute for Health and the Built Environment, University of Oregon, Portland, OR, 97209, USA
| | - Suzanne L Ishaq
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, 97403, USA.
| |
Collapse
|
9
|
Keren-Paz A, Brumfeld V, Oppenheimer-Shaanan Y, Kolodkin-Gal I. Micro-CT X-ray imaging exposes structured diffusion barriers within biofilms. NPJ Biofilms Microbiomes 2018; 4:8. [PMID: 29675263 PMCID: PMC5904145 DOI: 10.1038/s41522-018-0051-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 03/05/2018] [Accepted: 03/20/2018] [Indexed: 11/09/2022] Open
Abstract
In nature, bacteria predominantly exist as highly structured biofilms, which are held together by extracellular polymeric substance and protect their residents from environmental insults, such as antibiotics. The mechanisms supporting this phenotypic resistance are poorly understood. Recently, we identified a new mechanism maintaining biofilms - an active production of calcite minerals. In this work, a high-resolution and robust µCT technique is used to study the mineralized areas within intact bacterial biofilms. µCT is a vital tool for visualizing bacterial communities that can provide insights into the relationship between bacterial biofilm structure and function. Our results imply that dense and structured calcium carbonate lamina forms a diffusion barrier sheltering the inner cell mass of the biofilm colony. Therefore, µCT can be employed in clinical settings to predict the permeability of the biofilms. It is demonstrated that chemical interference with urease, a key enzyme in biomineralization, inhibits the assembly of complex bacterial structures, prevents the formation of mineral diffusion barriers and increases biofilm permeability. Therefore, biomineralization enzymes emerge as novel therapeutic targets for highly resistant infections.
Collapse
Affiliation(s)
- Alona Keren-Paz
- 1Department of Molecular Genetics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Vlad Brumfeld
- 2Chemical Research Support, Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | - Ilana Kolodkin-Gal
- 1Department of Molecular Genetics, Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
10
|
Dade-Robertson M, Keren-Paz A, Zhang M, Kolodkin-Gal I. Architects of nature: growing buildings with bacterial biofilms. Microb Biotechnol 2017; 10:1157-1163. [PMID: 28815998 PMCID: PMC5609236 DOI: 10.1111/1751-7915.12833] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 12/22/2022] Open
Abstract
In his text 'On Architecture', Vitruvius suggested that architecture is an imitation of nature. Here we discuss what happens when we begin using nature in architecture. We describe recent developments in the study of biofilm structure, and propose combining modern architecture and synthetic microbiology to develop sustainable construction approaches. Recently, Kolodkin-Gal laboratory and others revealed a role for precipitation of calcium carbonate in the maturation and assembly of bacterial communities with complex structures. Importantly, they demonstrated that different secreted organic materials shape the calcium carbonate crystals formed by the bacterial cells. This provides a proof-of-concept for a potential use of bacteria in designing rigid construction materials and altering crystal morphology and function. In this study, we discuss how these recent discoveries may change the current strategies of architecture and construction. We believe that biofilm communities enhanced by synthetic circuits may be used to construct buildings and to sequester carbon dioxide in the process.
Collapse
Affiliation(s)
- Martyn Dade-Robertson
- Faculty of Humanities and Social Sciences, School of Architecture, Planning and Landscape, Newcastle University, Newcastle upon Tyne, UK
| | - Alona Keren-Paz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Meng Zhang
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Ilana Kolodkin-Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|