1
|
Sumampong G, Feau N, Bernier L, Hamelin RC, Liu JJ, Shamoun SF. Genome sequence of Heterobasidion occidentale, a fungus that causes annosus root and butt rot among conifer trees in North America. Microbiol Resour Announc 2024; 13:e0041924. [PMID: 39177369 PMCID: PMC11492984 DOI: 10.1128/mra.00419-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
We report an annotated draft genome of Heterobasidion occidentale, a fungus (Basidiomycota, Agaricomycetes) that has pathogenic and saprophytic lifestyles. This fungus belongs to the H. annosum (Fr.) Bref. sensu lato species complex that comprises several root rot pathogens. Heterobasidion occidentale causes annosus root and butt rot primarily in true fir (Abies spp.) and spruce (Picea spp.) species throughout western North America.
Collapse
Affiliation(s)
- Grace Sumampong
- Département des
Sciences du bois et de la Forêt, Faculté de Foresterie et
Géographie, Université
Laval, Québec,
Canada
- Natural Resources
Canada, Canadian Forest Service, Pacific Forestry
Centre, Victoria,
British Columbia, Canada
| | - Nicolas Feau
- Natural Resources
Canada, Canadian Forest Service, Pacific Forestry
Centre, Victoria,
British Columbia, Canada
| | - Louis Bernier
- Département des
Sciences du bois et de la Forêt, Faculté de Foresterie et
Géographie, Université
Laval, Québec,
Canada
| | - Richard C. Hamelin
- Department of Forest
and Conservation Sciences, Faculty of Forestry, The University of
British Columbia,
Vancouver, British Columbia,
Canada
| | - Jun-Jun Liu
- Natural Resources
Canada, Canadian Forest Service, Pacific Forestry
Centre, Victoria,
British Columbia, Canada
| | - Simon F. Shamoun
- Natural Resources
Canada, Canadian Forest Service, Pacific Forestry
Centre, Victoria,
British Columbia, Canada
| |
Collapse
|
2
|
Liu JJ, Zamany A, Cartwright C, Xiang Y, Shamoun SF, Rancourt B. Transcriptomic Reprogramming and Genetic Variations Contribute to Western Hemlock Defense and Resistance Against Annosus Root and Butt Rot Disease. FRONTIERS IN PLANT SCIENCE 2022; 13:908680. [PMID: 35845706 PMCID: PMC9279933 DOI: 10.3389/fpls.2022.908680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Western hemlock (Tsuga heterophylla) is highly susceptible to Annosus root and butt rot disease, caused by Heterobasidion occidentale across its native range in western North America. Understanding molecular mechanisms of tree defense and dissecting genetic components underlying disease resistance will facilitate forest breeding and disease control management. The aim of this study was to profile host transcriptome reprogramming in response to pathogen infection using RNA-seq analysis. Inoculated seedlings were clearly grouped into three types: quantitative resistant (QR), susceptible (Sus), and un-infected (Uif), based on profiles of H. occidentale genes expressed in host tissues. Following de novo assembly of a western hemlock reference transcriptome with more than 33,000 expressed genes, the defensive transcriptome reprogramming was characterized and a set of differentially expressed genes (DEGs) were identified with gene ontology (GO) annotation. The QR seedlings showed controlled and coordinated molecular defenses against biotic stressors with enhanced biosynthesis of terpenoids, cinnamic acids, and other secondary metabolites. The Sus seedlings showed defense responses to abiotic stimuli with a few biological processes enhanced (such as DNA replication and cell wall organization), while others were suppressed (such as killing of cells of other organism). Furthermore, non-synonymous single nucleotide polymorphisms (ns-SNPs) of the defense- and resistance-related genes were characterized with high genetic variability. Both phylogenetic analysis and principal coordinate analysis (PCoA) revealed distinct evolutionary distances among the samples. The QR and Sus seedlings were well separated and grouped into different phylogenetic clades. This study provides initial insight into molecular defense and genetic components of western hemlock resistance against the Annosus root and butt rot disease. Identification of a large number of genes and their DNA variations with annotated functions in plant resistance and defense promotes the development of genomics-based breeding strategies for improved western hemlock resistance to H. occidentale.
Collapse
Affiliation(s)
- Jun-Jun Liu
- Natural Resources Canada, Canadian Forest Service, Victoria, BC, Canada
| | - Arezoo Zamany
- Natural Resources Canada, Canadian Forest Service, Victoria, BC, Canada
| | - Charlie Cartwright
- British Columbia Ministry of Forests, Cowichan Lake Research Station, Mesachie Lake, BC, Canada
| | - Yu Xiang
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, Canada
| | - Simon F. Shamoun
- Natural Resources Canada, Canadian Forest Service, Victoria, BC, Canada
| | - Benjamin Rancourt
- Natural Resources Canada, Canadian Forest Service, Victoria, BC, Canada
| |
Collapse
|
3
|
Kashif M, Jurvansuu J, Hyder R, Vainio EJ, Hantula J. Phenotypic Recovery of a Heterobasidion Isolate Infected by a Debilitation-Associated Virus Is Related to Altered Host Gene Expression and Reduced Virus Titer. Front Microbiol 2022; 12:661554. [PMID: 35310390 PMCID: PMC8930199 DOI: 10.3389/fmicb.2021.661554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
The fungal genus Heterobasidion includes forest pathogenic species hosting a diverse group of partitiviruses. They include the host debilitating Heterobasidion partitivirus 13 strain an1 (HetPV13-an1), which was originally observed in a slowly growing H. annosum strain 94233. In this study, a relatively fast-growing sector strain 94233-RC3 was isolated from a highly debilitated mycelial culture of 94233, and its gene expression and virus transcript quantities as well as the genomic sequence of HetPV13-an1 were examined. The sequence of HetPV13-an1 genome in 94233-RC3 was identical to that in the original 94233, and thus not the reason for the partial phenotypic recovery. According to RNA-seq analysis, the HetPV13-an1 infected 94233-RC3 transcribed eight genes differently from the partitivirus-free 94233-32D. Three of these genes were downregulated and five upregulated. The number of differentially expressed genes was considerably lower and the changes in their expression were small compared to those of the highly debilitated original strain 94233 with the exception of the most highly upregulated ones, and therefore viral effects on the host transcriptome correlated with the degree of the virus-caused debilitation. The amounts of RdRp and CP transcripts of HetPV13-an1 were considerably lower in 94233-RC3 and also in 94233 strain infected by a closely related mildly debilitating virus HetPV13-an2, suggesting that the virus titer would have a role in determining the effect of HetPV13 viruses on their hosts.
Collapse
Affiliation(s)
| | | | - Rafiqul Hyder
- Natural Resources Institute Finland, Helsinki, Finland
| | - Eeva J Vainio
- Natural Resources Institute Finland, Helsinki, Finland
| | | |
Collapse
|
4
|
Jayawardena RS, Hyde KD, Chen YJ, Papp V, Palla B, Papp D, Bhunjun CS, Hurdeal VG, Senwanna C, Manawasinghe IS, Harischandra DL, Gautam AK, Avasthi S, Chuankid B, Goonasekara ID, Hongsanan S, Zeng X, Liyanage KK, Liu N, Karunarathna A, Hapuarachchi KK, Luangharn T, Raspé O, Brahmanage R, Doilom M, Lee HB, Mei L, Jeewon R, Huanraluek N, Chaiwan N, Stadler M, Wang Y. One stop shop IV: taxonomic update with molecular phylogeny for important phytopathogenic genera: 76–100 (2020). FUNGAL DIVERS 2020. [DOI: 10.1007/s13225-020-00460-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractThis is a continuation of a series focused on providing a stable platform for the taxonomy of phytopathogenic fungi and fungus-like organisms. This paper focuses on one family: Erysiphaceae and 24 phytopathogenic genera: Armillaria, Barriopsis, Cercospora, Cladosporium, Clinoconidium, Colletotrichum, Cylindrocladiella, Dothidotthia,, Fomitopsis, Ganoderma, Golovinomyces, Heterobasidium, Meliola, Mucor, Neoerysiphe, Nothophoma, Phellinus, Phytophthora, Pseudoseptoria, Pythium, Rhizopus, Stemphylium, Thyrostroma and Wojnowiciella. Each genus is provided with a taxonomic background, distribution, hosts, disease symptoms, and updated backbone trees. Species confirmed with pathogenicity studies are denoted when data are available. Six of the genera are updated from previous entries as many new species have been described.
Collapse
|
5
|
Liu J, Shamoun SF, Leal I, Kowbel R, Sumampong G, Zamany A. Characterization of Heterobasidion occidentale transcriptomes reveals candidate genes and DNA polymorphisms for virulence variations. Microb Biotechnol 2018; 11:537-550. [PMID: 29611344 PMCID: PMC5954486 DOI: 10.1111/1751-7915.13259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 11/29/2022] Open
Abstract
Characterization of genes involved in differentiation of pathogen species and isolates with variations of virulence traits provides valuable information to control tree diseases for meeting the challenges of sustainable forest health and phytosanitary trade issues. Lack of genetic knowledge and genomic resources hinders novel gene discovery, molecular mechanism studies and development of diagnostic tools in the management of forest pathogens. Here, we report on transcriptome profiling of Heterobasidion occidentale isolates with contrasting virulence levels. Comparative transcriptomic analysis identified orthologous groups exclusive to H. occidentale and its isolates, revealing biological processes involved in the differentiation of isolates. Further bioinformatics analyses identified an H. occidentale secretome, CYPome and other candidate effectors, from which genes with species- and isolate-specific expression were characterized. A large proportion of differentially expressed genes were revealed to have putative activities as cell wall modification enzymes and transcription factors, suggesting their potential roles in virulence and fungal pathogenesis. Next, large numbers of simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs) were detected, including more than 14 000 interisolate non-synonymous SNPs. These polymorphic loci and species/isolate-specific genes may contribute to virulence variations and provide ideal DNA markers for development of diagnostic tools and investigation of genetic diversity.
Collapse
Affiliation(s)
- Jun‐Jun Liu
- Natural Resources CanadaCanadian Forest ServicePacific Forestry Centre506 West Burnside RoadVictoriaBCV8Z 1M5Canada
| | - Simon Francis Shamoun
- Natural Resources CanadaCanadian Forest ServicePacific Forestry Centre506 West Burnside RoadVictoriaBCV8Z 1M5Canada
| | - Isabel Leal
- Natural Resources CanadaCanadian Forest ServicePacific Forestry Centre506 West Burnside RoadVictoriaBCV8Z 1M5Canada
| | - Robert Kowbel
- Natural Resources CanadaCanadian Forest ServicePacific Forestry Centre506 West Burnside RoadVictoriaBCV8Z 1M5Canada
| | - Grace Sumampong
- Natural Resources CanadaCanadian Forest ServicePacific Forestry Centre506 West Burnside RoadVictoriaBCV8Z 1M5Canada
| | - Arezoo Zamany
- Natural Resources CanadaCanadian Forest ServicePacific Forestry Centre506 West Burnside RoadVictoriaBCV8Z 1M5Canada
| |
Collapse
|