1
|
García-Paz FDM, Del Moral S, Morales-Arrieta S, Ayala M, Treviño-Quintanilla LG, Olvera-Carranza C. Multidomain chimeric enzymes as a promising alternative for biocatalysts improvement: a minireview. Mol Biol Rep 2024; 51:410. [PMID: 38466518 DOI: 10.1007/s11033-024-09332-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/07/2024] [Indexed: 03/13/2024]
Abstract
Searching for new and better biocatalysts is an area of study in constant development. In nature, mechanisms generally occurring in evolution, such as genetic duplication, recombination, and natural selection processes, produce various enzymes with different architectures and properties. The recombination of genes that code proteins produces multidomain chimeric enzymes that contain two or more domains that sometimes enhance their catalytic properties. Protein engineering has mimicked this process to enhance catalytic activity and the global stability of enzymes, searching for new and better biocatalysts. Here, we present and discuss examples from both natural and synthetic multidomain chimeric enzymes and how additional domains heighten their stability and catalytic activity. Moreover, we also describe progress in developing new biocatalysts using synthetic fusion enzymes and revise some methodological strategies to improve their biological fitness.
Collapse
Affiliation(s)
- Flor de María García-Paz
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001 Col. Chamilpa CP 62210, Cuernavaca, Morelos, México
| | - Sandra Del Moral
- Investigador por México-CONAHCyT, Unidad de Investigación y Desarrollo en Alimentos, Tecnológico Nacional de México, Campus Veracruz. MA de Quevedo 2779, Col. Formando Hogar, CP 91960, Veracruz, Veracruz, México
| | - Sandra Morales-Arrieta
- Departamento de Biotecnología, Universidad Politécnica del Estado de Morelos, Boulevard Cuauhnáhuac No. 566 Col. Lomas del Texcal CP 62550, Jiutepec, Morelos, México
| | - Marcela Ayala
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001 Col. Chamilpa CP 62210, Cuernavaca, Morelos, México
| | - Luis Gerardo Treviño-Quintanilla
- Departamento de Biotecnología, Universidad Politécnica del Estado de Morelos, Boulevard Cuauhnáhuac No. 566 Col. Lomas del Texcal CP 62550, Jiutepec, Morelos, México
| | - Clarita Olvera-Carranza
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001 Col. Chamilpa CP 62210, Cuernavaca, Morelos, México.
| |
Collapse
|
2
|
Mello TP, Barcellos IC, Aor AC, Branquinha MH, Santos ALS. Extracellularly Released Molecules by the Multidrug-Resistant Fungal Pathogens Belonging to the Scedosporium Genus: An Overview Focused on Their Ecological Significance and Pathogenic Relevance. J Fungi (Basel) 2022; 8:1172. [PMID: 36354939 PMCID: PMC9693033 DOI: 10.3390/jof8111172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 09/10/2024] Open
Abstract
The multidrug-resistant species belonging to the Scedosporium genus are well recognized as saprophytic filamentous fungi found mainly in human impacted areas and that emerged as human pathogens in both immunocompetent and immunocompromised individuals. It is well recognized that some fungi are ubiquitous organisms that produce an enormous amount of extracellular molecules, including enzymes and secondary metabolites, as part of their basic physiology in order to satisfy their several biological processes. In this context, the molecules secreted by Scedosporium species are key weapons for successful colonization, nutrition and maintenance in both host and environmental sites. These biologically active released molecules have central relevance on fungal survival when colonizing ecological places contaminated with hydrocarbons, as well as during human infection, particularly contributing to the invasion/evasion of host cells and tissues, besides escaping from the cellular and humoral host immune responses. Based on these relevant premises, the present review compiled the published data reporting the main secreted molecules by Scedosporium species, which operate important physiopathological events associated with pathogenesis, diagnosis, antimicrobial activity and bioremediation of polluted environments.
Collapse
Affiliation(s)
- Thaís P. Mello
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
| | - Iuri C. Barcellos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
| | - Ana Carolina Aor
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
| | - Marta H. Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
- Rede Micologia RJ—Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-901, Brazil
| | - André L. S. Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
- Rede Micologia RJ—Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-901, Brazil
| |
Collapse
|
3
|
Fu R, Tang W, Zhang H, Zhang Y, Wang D, Chen W. Study on the mechanism of inhibiting patulin production by fengycin. Open Life Sci 2022; 17:372-379. [PMID: 35528279 PMCID: PMC9019426 DOI: 10.1515/biol-2022-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/02/2021] [Accepted: 01/03/2022] [Indexed: 11/15/2022] Open
Abstract
Penicillium expansum is the main cause of apple rot. Besides, it can also produce mycotoxin patulin (PAT). Therefore, the search for substances that can inhibit the activity and toxigenicity of P. expansum has become a hot research topic. This study investigates the inhibitory effects of fengycin on patulin production in P. expansum. P. expansum was cultured under different environments with different concentrations of fengycin. The patulin content produced per unit weight of P. expansum mycelium was detected and determined by high pressure liquid chromatography (HPLC). Synergy brands (SYBR) GreenI Real-time PCR was used to detect the expression levels of 6-methylsalicylic acid synthase (6-MSAS) and isoepoxydon dehydrogenase (IDH), which were the key genes of producing patulin of P. expansum mycelium, in the conditions treated by fengycin and untreated. After fengycin treatments, not only the patulin content in every unit weight of P. expansum mycelium but also the expression level of 6-MSAS decreased significantly. The expression level of 6-MSAS of treatment was 0.11 folds of control. However, the expression level of IDH treated by fengycin decreased slightly. Fengycin could inhibit the P. expansum from producing patulin by downregulating the expression of key synthetic genes 6-MSAS.
Collapse
Affiliation(s)
- Ruimin Fu
- College of Health Management, Henan Finance University , Zhengzhou , Henan , China
- College of Life Science, Shaanxi Normal University , Xi’an , Shaanxi , China
| | - Wei Tang
- College of Health Management, Henan Finance University , Zhengzhou , Henan , China
| | - Hong Zhang
- College of Health Management, Henan Finance University , Zhengzhou , Henan , China
| | - Yulian Zhang
- College of Health Management, Henan Finance University , Zhengzhou , Henan , China
| | - Ding Wang
- College of Health Management, Henan Finance University , Zhengzhou , Henan , China
| | - Wuling Chen
- College of Life Science, Shaanxi Normal University , Xi’an , Shaanxi , China
| |
Collapse
|
4
|
Malico AA, Nichols L, Williams GJ. Synthetic biology enabling access to designer polyketides. Curr Opin Chem Biol 2020; 58:45-53. [PMID: 32758909 DOI: 10.1016/j.cbpa.2020.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/08/2020] [Accepted: 06/11/2020] [Indexed: 12/18/2022]
Abstract
The full potential of polyketide discovery has yet to be reached owing to a lack of suitable technologies and knowledge required to advance engineering of polyketide biosynthesis. Recent investigations on the discovery, enhancement, and non-natural use of these biosynthetic gene clusters via computational biology, metabolic engineering, structural biology, and enzymology-guided approaches have facilitated improved access to designer polyketides. Here, we discuss recent successes in gene cluster discovery, host strain engineering, precursor-directed biosynthesis, combinatorial biosynthesis, polyketide tailoring, and high-throughput synthetic biology, as well as challenges and outlooks for rapidly generating useful target polyketides.
Collapse
Affiliation(s)
- Alexandra A Malico
- Department of Chemistry, NC State University, Raleigh, NC, 27695, United States
| | - Lindsay Nichols
- Department of Chemistry, NC State University, Raleigh, NC, 27695, United States
| | - Gavin J Williams
- Department of Chemistry, NC State University, Raleigh, NC, 27695, United States; Comparative Medicine Institute, NC State University, Raleigh, NC, 27695, United States.
| |
Collapse
|