1
|
Ye Q, Shen Y, Zhang Q, Wu X, Guo W. Life-cycle assessment of flue gas CO 2 fixation from coal-fired power plant and coal chemical plant by microalgae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157728. [PMID: 35917957 DOI: 10.1016/j.scitotenv.2022.157728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/26/2022] [Revised: 07/01/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
The technology of flue gas CO2 fixation by microalgae is highly attractive in the era of CO2 neutrality. However, CO2 emission along the whole process has yet to be sufficiently evaluated. Here, a life-cycle assessment was performed to evaluate the energy conversion characteristics and environmental impacts of flue gas CO2 fixation from coal-fired power plant (Case 1) and coal chemical plant (Case 2) by microalgae. The results show that total energy consumption and CO2 gas emissions for Case 1 are 27.5-38.0 MJ/kg microalgae power (MP) and 5.7-7.7 kg CO2 equiv/kg MP, respectively, which are lower than that for Case 2 (122.5-181.3 MJ/kg MP and 32.7-48.6 kg CO2 equiv/kg MP). The CO2 gas aeration rate and microalgae growth rate are the two most sensitive parameters for the energy conversion and net CO2 emission. Therefore, increasing the CO2 aeration efficiency and microalgae growth rate are key to advance the technology of flue gas CO2 fixation by microalgae which will contribute to carbon naturality.
Collapse
Affiliation(s)
- Qing Ye
- College of Energy, Soochow University, Suzhou 215006, China
| | - Yu Shen
- College of Energy, Soochow University, Suzhou 215006, China
| | - Qi Zhang
- College of Energy, Soochow University, Suzhou 215006, China
| | - Xi Wu
- College of Energy, Soochow University, Suzhou 215006, China
| | - Wangbiao Guo
- Microbial Sciences Institute, Department of Microbial Pathogenesis, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
2
|
Kumar S, Jia D, Kubar AA, Zou X, Huang Z, Rao M, Kuang C, Ye J, Chen C, Chu F, Cheng J. Butterfly Baffle-Enhanced Solution Mixing and Mass Transfer for Improved Microalgal Growth in Double-Column Photobioreactor. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Affiliation(s)
- Santosh Kumar
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Dongwei Jia
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Ameer Ali Kubar
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Xiangbo Zou
- Guangdong Energy Group Science and Technology Research Institute Co., Ltd., Guangzhou 510630, China
| | - Zhimin Huang
- Guangdong Yudean Zhanjiang Biomass Power Co., Ltd., Zhanjiang 524300, China
| | - Mumin Rao
- Guangdong Energy Group Science and Technology Research Institute Co., Ltd., Guangzhou 510630, China
| | - Cao Kuang
- Guangdong Energy Group Science and Technology Research Institute Co., Ltd., Guangzhou 510630, China
| | - Ji Ye
- Guangdong Energy Group Science and Technology Research Institute Co., Ltd., Guangzhou 510630, China
| | - Chuangting Chen
- Guangdong Energy Group Science and Technology Research Institute Co., Ltd., Guangzhou 510630, China
| | - Feifei Chu
- College of Standardization, China Jiliang University, Hangzhou 310018, China
| | - Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
3
|
Cui J, Xie Y, Sun T, Chen L, Zhang W. Deciphering and engineering photosynthetic cyanobacteria for heavy metal bioremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:144111. [PMID: 33352345 DOI: 10.1016/j.scitotenv.2020.144111] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/07/2020] [Revised: 11/22/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
Environmental pollution caused by heavy metals has received worldwide attentions due to their ubiquity, poor degradability and easy bioaccumulation in host cells. As one potential solution, photosynthetic cyanobacteria have been considered as promising remediation chassis and widely applied in various bioremediation processes of heavy-metals. Meanwhile, deciphering resistant mechanisms and constructing tolerant chassis towards heavy metals could greatly contribute to the successful application of the cyanobacteria-based bioremediation in the future. In this review, first we summarized recent application of cyanobacteria in heavy metals bioremediation using either live or dead cells. Second, resistant mechanisms and strategies for enhancing cyanobacterial bioremediation of heavy metals were discussed. Finally, potential challenges and perspectives for improving bioremediation of heavy metals by cyanobacteria were presented.
Collapse
Affiliation(s)
- Jinyu Cui
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
| | - Yaru Xie
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, PR China; Law School of Tianjin University, Tianjin 300072, PR China.
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China.
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, PR China; Law School of Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
4
|
Kumar S, Cheng J, Ali Kubar A, Guo W, Song Y, Liu S, Chen S, Tian J. Orange light spectra filtered through transparent colored polyvinyl chloride sheet enhanced pigment content and growth of Arthrospira cells. BIORESOURCE TECHNOLOGY 2021; 319:124179. [PMID: 33038649 DOI: 10.1016/j.biortech.2020.124179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/05/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Microalgae are significantly affected by the spectra composition with various wavelengths. The development of light harvesting pigments can be controlled with specific wavelength of filtered light received by microalgae. Coverage of open raceway pond using transparent colored polyvinyl chloride sheets (PVCS) to filter light spectra, was assessed for the capacity to enhance biomass growth rate. Results showed that orange PVCS filtered light spectra at wavelengths from 480 to 665 nm, increased biomass dry weight (3.3 g/L) by 61% compared with control condition (white PVCS = 350-750 nm). Light spectra filtered through orange PVCS were more easily absorbed by the light harvesting pigment protein complex (phycobilisome) of Arthrospira platensis cells and subsequently transferred to intracellular photosynthesis reaction centers. Therefore, A. platensis cells cultivated with light spectra filtered through orange PVCS contained 62.7 mg/L chlorophyll-a and 23.5 mg/L carotenoid, which were 40% and 29% higher than control condition (with white PVCS).
Collapse
Affiliation(s)
- Santosh Kumar
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| | - Ameer Ali Kubar
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Wangbiao Guo
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Yanmei Song
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Shuzheng Liu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Shutong Chen
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Jianglei Tian
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
5
|
Guo W, Cheng J, Ali KA, Kumar S, Guo C. Conversion of NaHCO 3 to Na 2 CO 3 with a growth of Arthrospira platensis cells in 660 m 2 raceway ponds with a CO 2 bicarbonation absorber. Microb Biotechnol 2020; 13:470-478. [PMID: 31646765 PMCID: PMC7017820 DOI: 10.1111/1751-7915.13497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/06/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 02/07/2023] Open
Abstract
The weight ratio of Na2 CO3 /NaHCO3 was investigated in order to improve microalgal productivity in large-scale industrial operations by converting NaHCO3 to Na2 CO3 with a growth of Arthrospira platensis cells in 660 m2 raceway ponds. Two microalgal cultivation systems with a NaHCO3 by-product (SPBP) and a CO2 bicarbonation absorber (CBAP) were firstly thoroughly introduced. There was a 13.3% decrease in the initial weight ratio of Na2 CO3 /NaHCO3 resulting in a 25.3% increase in the biomass growth rate with CBAP, compared to that of SPBP. Increased sunlight intensity, solution temperature and pH all resulted in both a higher HCO 3 - absorbance and CO 3 2 - release, thereby increasing the weight ratio of Na2 CO3 /NaHCO3 during the growth of A. platensis. The biomass growth rate was peaked at 39.9 g m-2 day-1 when the weight ratio of Na2 CO3 /NaHCO3 was 3.7. Correspondingly, the cell pigments (chlorophyll a and carotenoid) and trichome size (helix pitch and trichome length) reached to a maximum state of 8.47 mg l-1 , 762 μg l-1 , 57 and 613 μm under the CBAP system.
Collapse
Affiliation(s)
- Wangbiao Guo
- State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhou310027China
| | - Jun Cheng
- State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhou310027China
| | - Kubar Ameer Ali
- State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhou310027China
| | - Santosh Kumar
- State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhou310027China
| | - Caifeng Guo
- Ordos Jiali Spirulina Co., LtdOrdos016199China
| |
Collapse
|