1
|
Hernández-Sancho JM, Boudigou A, Alván-Vargas MVG, Freund D, Arnling Bååth J, Westh P, Jensen K, Noda-García L, Volke DC, Nikel PI. A versatile microbial platform as a tunable whole-cell chemical sensor. Nat Commun 2024; 15:8316. [PMID: 39333077 PMCID: PMC11436707 DOI: 10.1038/s41467-024-52755-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
Biosensors are used to detect and quantify chemicals produced in industrial microbiology with high specificity, sensitivity, and portability. Most biosensors, however, are limited by the need for transcription factors engineered to recognize specific molecules. In this study, we overcome the limitations typically associated with traditional biosensors by engineering Pseudomonas putida for whole-cell sensing of a variety of chemicals. Our approach integrates fluorescent reporters with synthetic auxotrophies within central metabolism that can be complemented by target analytes in growth-coupled setups. This platform enables the detection of a wide array of structurally diverse chemicals under various conditions, including co-cultures of producer cell factories and sensor strains. We also demonstrate the applicability of this versatile biosensor platform for monitoring complex biochemical processes, including plastic degradation by either purified hydrolytic enzymes or engineered bacteria. This microbial system provides a rapid, sensitive, and readily adaptable tool for monitoring cell factory performance and for environmental analyzes.
Collapse
Affiliation(s)
- Javier M Hernández-Sancho
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Arnaud Boudigou
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Maria V G Alván-Vargas
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Dekel Freund
- Institute of Environmental Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Jenny Arnling Bååth
- Department of Biotechnology and Biomedicine Interfacial Enzymology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Peter Westh
- Department of Biotechnology and Biomedicine Interfacial Enzymology, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Lianet Noda-García
- Institute of Environmental Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
2
|
Huang Z, Gustave W, Bai S, Li Y, Li B, Elçin E, Jiang B, Jia Z, Zhang X, Shaheen SM, He F. Challenges and opportunities in commercializing whole-cell bioreporters in environmental application. ENVIRONMENTAL RESEARCH 2024; 262:119801. [PMID: 39147190 DOI: 10.1016/j.envres.2024.119801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
Since the initial introduction of whole-cell bioreporters (WCBs) nearly 30 years ago, their high sensitivity, selectivity, and suitability for on-site detection have rendered them highly promising for environmental monitoring, medical diagnosis, food safety, biomanufacturing, and other fields. Especially in the environmental field, the technology provides a fast and efficient way to assess the bioavailability of pollutants in the environment. Despite these advantages, the technology has not been commercialized. This lack of commercialization is confusing, given the broad application prospects of WCBs. Over the years, numerous research papers have focused primarily on enhancing the sensitivity and selectivity of WCBs, with little attention paid to their wider commercial applications. So far, there is no a critical review has been published yet on this topic. Therefore, in this article we critically reviewed the research progress of WCBs over the past three decades, assessing the performance and limitations of current systems to understand the barriers to commercial deployment. By identifying these obstacles, this article provided researchers and industry stakeholders with deeper insights into the challenges hindering market entry and inspire further research toward overcoming these barriers, thereby facilitating the commercialization of WCBs as a promising technology for environmental monitoring.
Collapse
Affiliation(s)
- Zefeng Huang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Williamson Gustave
- School of Chemistry, Environmental & Life Sciences, University of the Bahamas, Nassau, 4912, Bahamas
| | - Shanshan Bai
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Yongshuo Li
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Boling Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215123, China; Meadows Center for Water and the Environment, Texas State University, San Marcos, TX, 78666, USA
| | - Evrim Elçin
- Department of Agricultural Biotechnology, Division of Enzyme and Microbial Biotechnology, Faculty of Agriculture, Aydın Adnan Menderes University, Aydın, 09970, Turkey
| | - Bo Jiang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhemin Jia
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Environmental Sciences, Department of Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516, Kafr El-Sheikh, Egypt
| | - Feng He
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
3
|
Joshi SHN, Jenkins C, Ulaeto D, Gorochowski TE. Accelerating Genetic Sensor Development, Scale-up, and Deployment Using Synthetic Biology. BIODESIGN RESEARCH 2024; 6:0037. [PMID: 38919711 PMCID: PMC11197468 DOI: 10.34133/bdr.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/23/2024] [Indexed: 06/27/2024] Open
Abstract
Living cells are exquisitely tuned to sense and respond to changes in their environment. Repurposing these systems to create engineered biosensors has seen growing interest in the field of synthetic biology and provides a foundation for many innovative applications spanning environmental monitoring to improved biobased production. In this review, we present a detailed overview of currently available biosensors and the methods that have supported their development, scale-up, and deployment. We focus on genetic sensors in living cells whose outputs affect gene expression. We find that emerging high-throughput experimental assays and evolutionary approaches combined with advanced bioinformatics and machine learning are establishing pipelines to produce genetic sensors for virtually any small molecule, protein, or nucleic acid. However, more complex sensing tasks based on classifying compositions of many stimuli and the reliable deployment of these systems into real-world settings remain challenges. We suggest that recent advances in our ability to precisely modify nonmodel organisms and the integration of proven control engineering principles (e.g., feedback) into the broader design of genetic sensing systems will be necessary to overcome these hurdles and realize the immense potential of the field.
Collapse
Affiliation(s)
| | - Christopher Jenkins
- CBR Division, Defence Science and Technology Laboratory, Porton Down, Wiltshire SP4 0JQ, UK
| | - David Ulaeto
- CBR Division, Defence Science and Technology Laboratory, Porton Down, Wiltshire SP4 0JQ, UK
| | - Thomas E. Gorochowski
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
- BrisEngBio,
School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| |
Collapse
|
4
|
De Marchi D, Shaposhnikov R, Gobaa S, Pastorelli D, Batt G, Magni P, Pasotti L. Design and Model-Driven Analysis of Synthetic Circuits with the Staphylococcus aureus Dead-Cas9 (sadCas9) as a Programmable Transcriptional Regulator in Bacteria. ACS Synth Biol 2024; 13:763-780. [PMID: 38374729 DOI: 10.1021/acssynbio.3c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Synthetic circuit design is crucial for engineering microbes that process environmental cues and provide biologically relevant outputs. To reliably scale-up circuit complexity, the availability of parts toolkits is central. Streptococcus pyogenes (sp)-derived CRISPR interference/dead-Cas9 (CRISPRi/spdCas9) is widely adopted for implementing programmable regulations in synthetic circuits, and alternative CRISPRi systems will further expand our toolkits of orthogonal components. Here, we showcase the potential of CRISPRi using the engineered dCas9 from Staphylococcus aureus (sadCas9), not previously used in bacterial circuits, that is attractive for its low size and high specificity. We designed a collection of ∼20 increasingly complex circuits and variants in Escherichia coli, including circuits with static function like one-/two-input logic gates (NOT, NAND), circuits with dynamic behavior like incoherent feedforward loops (iFFLs), and applied sadCas9 to fix a T7 polymerase-based cascade. Data demonstrated specific and efficient target repression (100-fold) and qualitatively successful functioning for all circuits. Other advantageous features included low sadCas9-borne cell load and orthogonality with spdCas9. However, different circuit variants showed quantitatively unexpected and previously unreported steady-state responses: the dynamic range, switch point, and slope of NOT/NAND gates changed for different output promoters, and a multiphasic behavior was observed in iFFLs, differing from the expected bell-shaped or sigmoidal curves. Model analysis explained the observed curves by complex interplays among components, due to reporter gene-borne cell load and regulator competition. Overall, CRISPRi/sadCas9 successfully expanded the available toolkit for bacterial engineering. Analysis of our circuit collection depicted the impact of generally neglected effects modulating the shape of component dose-response curves, to avoid drawing wrong conclusions on circuit functioning.
Collapse
Affiliation(s)
- Davide De Marchi
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
- Centre for Health Technologies, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
| | - Roman Shaposhnikov
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
- Centre for Health Technologies, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
| | - Samy Gobaa
- Institut Pasteur, Université Paris Cité, Biomaterials and Microfluidics Core Facility, 28 Rue du Docteur Roux, 75015 Paris, France
| | - Daniele Pastorelli
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
- Centre for Health Technologies, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
| | - Gregory Batt
- Institut Pasteur, Inria, Université Paris Cité, 28 rue du Docteur Roux, 75015 Paris, France
| | - Paolo Magni
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
- Centre for Health Technologies, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
| | - Lorenzo Pasotti
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
- Centre for Health Technologies, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
- Institut Pasteur, Inria, Université Paris Cité, 28 rue du Docteur Roux, 75015 Paris, France
| |
Collapse
|
5
|
Xi C, Diao J, Moon TS. Advances in ligand-specific biosensing for structurally similar molecules. Cell Syst 2023; 14:1024-1043. [PMID: 38128482 PMCID: PMC10751988 DOI: 10.1016/j.cels.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/23/2023] [Accepted: 10/19/2023] [Indexed: 12/23/2023]
Abstract
The specificity of biological systems makes it possible to develop biosensors targeting specific metabolites, toxins, and pollutants in complex medical or environmental samples without interference from structurally similar compounds. For the last two decades, great efforts have been devoted to creating proteins or nucleic acids with novel properties through synthetic biology strategies. Beyond augmenting biocatalytic activity, expanding target substrate scopes, and enhancing enzymes' enantioselectivity and stability, an increasing research area is the enhancement of molecular specificity for genetically encoded biosensors. Here, we summarize recent advances in the development of highly specific biosensor systems and their essential applications. First, we describe the rational design principles required to create libraries containing potential mutants with less promiscuity or better specificity. Next, we review the emerging high-throughput screening techniques to engineer biosensing specificity for the desired target. Finally, we examine the computer-aided evaluation and prediction methods to facilitate the construction of ligand-specific biosensors.
Collapse
Affiliation(s)
- Chenggang Xi
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jinjin Diao
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA; Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
6
|
Niman CM, Sukenik N, Dang T, Nwachukwu J, Thirumurthy MA, Jones AK, Naaman R, Santra K, Das TK, Paltiel Y, Baczewski LT, El-Naggar MY. Bacterial extracellular electron transfer components are spin selective. J Chem Phys 2023; 159:145101. [PMID: 37811828 DOI: 10.1063/5.0154211] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/01/2023] [Indexed: 10/10/2023] Open
Abstract
Metal-reducing bacteria have adapted the ability to respire extracellular solid surfaces instead of soluble oxidants. This process requires an electron transport pathway that spans from the inner membrane, across the periplasm, through the outer membrane, and to an external surface. Multiheme cytochromes are the primary machinery for moving electrons through this pathway. Recent studies show that the chiral-induced spin selectivity (CISS) effect is observable in some of these proteins extracted from the model metal-reducing bacteria, Shewanella oneidensis MR-1. It was hypothesized that the CISS effect facilitates efficient electron transport in these proteins by coupling electron velocity to spin, thus reducing the probability of backscattering. However, these studies focused exclusively on the cell surface electron conduits, and thus, CISS has not been investigated in upstream electron transfer components such as the membrane-associated MtrA, or periplasmic proteins such as small tetraheme cytochrome (STC). By using conductive probe atomic force microscopy measurements of protein monolayers adsorbed onto ferromagnetic substrates, we show that electron transport is spin selective in both MtrA and STC. Moreover, we have determined the spin polarization of MtrA to be ∼77% and STC to be ∼35%. This disparity in spin polarizations could indicate that spin selectivity is length dependent in heme proteins, given that MtrA is approximately two times longer than STC. Most significantly, our study indicates that spin-dependent interactions affect the entire extracellular electron transport pathway.
Collapse
Affiliation(s)
- Christina M Niman
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
| | - Nir Sukenik
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
| | - Tram Dang
- Department of Biological Sciences, University of Southern California, Los Angeles, California 91030, USA
| | - Justus Nwachukwu
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Miyuki A Thirumurthy
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Anne K Jones
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Ron Naaman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Kakali Santra
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tapan K Das
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yossi Paltiel
- Institute of Applied Physics, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | | | - Mohamed Y El-Naggar
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, California 91030, USA
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
7
|
Atkinson JT, Chavez MS, Niman CM, El-Naggar MY. Living electronics: A catalogue of engineered living electronic components. Microb Biotechnol 2023; 16:507-533. [PMID: 36519191 PMCID: PMC9948233 DOI: 10.1111/1751-7915.14171] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/26/2022] [Accepted: 11/01/2022] [Indexed: 12/23/2022] Open
Abstract
Biology leverages a range of electrical phenomena to extract and store energy, control molecular reactions and enable multicellular communication. Microbes, in particular, have evolved genetically encoded machinery enabling them to utilize the abundant redox-active molecules and minerals available on Earth, which in turn drive global-scale biogeochemical cycles. Recently, the microbial machinery enabling these redox reactions have been leveraged for interfacing cells and biomolecules with electrical circuits for biotechnological applications. Synthetic biology is allowing for the use of these machinery as components of engineered living materials with tuneable electrical properties. Herein, we review the state of such living electronic components including wires, capacitors, transistors, diodes, optoelectronic components, spin filters, sensors, logic processors, bioactuators, information storage media and methods for assembling these components into living electronic circuits.
Collapse
Affiliation(s)
- Joshua T Atkinson
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA
| | - Marko S Chavez
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA
| | - Christina M Niman
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA
| | - Mohamed Y El-Naggar
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA.,Department of Biological Sciences, University of Southern California, Los Angeles, California, USA.,Department of Chemistry, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
8
|
Sailor MJ. The Future of Engineered Living Sensors ─ I Hope It Is Not the Thing with Feathers. ACS Sens 2022; 7:2795-2796. [DOI: 10.1021/acssensors.2c02178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Duodu NY, Patel W. Advanced EHR system in homes-in-schools’ automation using internet of things and machine learning. JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES 2022. [DOI: 10.1080/02522667.2022.2094079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Nana Yaw Duodu
- Department of Computer Science and Engineering, Parul Institute of Engineering and Technology, Parul University, Gujarat 391760, India
| | - Warish Patel
- Department of Computer Science and Engineering, Parul Institute of Engineering and Technology, Parul University, Gujarat 391760, India
| |
Collapse
|
10
|
Engineering Toehold-Mediated Switches for Native RNA Detection and Regulation in Bacteria. J Mol Biol 2022; 434:167689. [PMID: 35717997 DOI: 10.1016/j.jmb.2022.167689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/19/2022] [Accepted: 06/09/2022] [Indexed: 01/24/2023]
Abstract
RNA switches are versatile tools in synthetic biology for sensing and regulation applications. The discoveries of RNA-mediated translational and transcriptional control have facilitated the development of complexde novodesigns of RNA switches. Specifically, RNA toehold-mediated switches, in which binding to the toehold sensing domain controls the transition between switch states via strand displacement, have been extensively adapted for coupling systems responses to specifictrans-RNA inputs. This review highlights some of the challenges associated with applying these switches for native RNA detectionin vivo, including transferability between organisms. The applicability and design considerations of toehold-mediated switches are discussed by highlighting twelve recently developed switch designs. This review finishes with future perspectives to address current gaps in the field, particularly regarding the power of structural prediction algorithms for improved in vivo functionality of RNA switches.
Collapse
|
11
|
Miller CA, Ho JML, Bennett MR. Strategies for Improving Small-Molecule Biosensors in Bacteria. BIOSENSORS 2022; 12:bios12020064. [PMID: 35200325 PMCID: PMC8869690 DOI: 10.3390/bios12020064] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 05/03/2023]
Abstract
In recent years, small-molecule biosensors have become increasingly important in synthetic biology and biochemistry, with numerous new applications continuing to be developed throughout the field. For many biosensors, however, their utility is hindered by poor functionality. Here, we review the known types of mechanisms of biosensors within bacterial cells, and the types of approaches for optimizing different biosensor functional parameters. Discussed approaches for improving biosensor functionality include methods of directly engineering biosensor genes, considerations for choosing genetic reporters, approaches for tuning gene expression, and strategies for incorporating additional genetic modules.
Collapse
Affiliation(s)
- Corwin A. Miller
- Department of Biosciences, Rice University MS-140, 6100 Main St., Houston, TX 77005, USA; (C.A.M.); (J.M.L.H.)
| | - Joanne M. L. Ho
- Department of Biosciences, Rice University MS-140, 6100 Main St., Houston, TX 77005, USA; (C.A.M.); (J.M.L.H.)
| | - Matthew R. Bennett
- Department of Biosciences, Rice University MS-140, 6100 Main St., Houston, TX 77005, USA; (C.A.M.); (J.M.L.H.)
- Department of Bioengineering, Rice University MS-140, 6100 Main St., Houston, TX 77005, USA
- Correspondence:
| |
Collapse
|
12
|
|