1
|
Mazzeo MF, Sorrentino A, Morandi S, Abouloifa H, Asehraou A, Brasca M, Siciliano RA. Catalogue of surface proteins of Lactiplantibacillus plantarum strains of dairy and vegetable niches. Int J Food Microbiol 2025; 426:110922. [PMID: 39342700 DOI: 10.1016/j.ijfoodmicro.2024.110922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/05/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
Lactiplantibacillus plantarum (formerly Lactobacillus plantarum) exhibits relevant probiotic and technological features and is widely used in food industries, improving flavour, texture and organoleptic properties of fermented products. Cell-surface proteins have a key role in the molecular mechanisms responsible for healthy effects, being the first actors in the bacteria - host interactions. Proteins present on the surface of four L. plantarum strains (two isolated from vegetable matrices and two from dairy products) were identified by proteomics with the aim to gain a comprehensive picture of differences in protein profiles potentially related to the habitat of origin and specific properties of the analyzed strains. Results highlighted a more diversified pattern of surface proteins in strains from vegetable matrices compared to those from dairy matrices (>500 proteins vs about 200 proteins, respectively). The four strains shared a core of 143 proteins, while 445 were specifically present in strains from vegetable matrices and 26 were peculiar of strains from dairy origin. Sortase A, involved in adhesion, and choloylglycine hydrolase (bile salt hydrolase) were detected only in strains from vegetable matrices. The peculiar molecular functions of identified proteins suggested that these strains, and in particular L. plantarum S61, could have a significant probiotic and biotechnological potential.
Collapse
Affiliation(s)
| | - Alida Sorrentino
- Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, Italy
| | - Stefano Morandi
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Milan, Italy
| | - Houssam Abouloifa
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, Oujda, Morocco
| | - Abdeslam Asehraou
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, Oujda, Morocco
| | - Milena Brasca
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Milan, Italy
| | - Rosa Anna Siciliano
- Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, Italy
| |
Collapse
|
2
|
Aihetanmu S, Liang Z, Zhang X, Luo B, Zhang H, Huang J, Tian F, Sun H, Ni Y. Genetic specialization of key bifidobacterial phylotypes in multiple mother-infant dyad cohorts from geographically isolated populations. Front Microbiol 2024; 15:1399743. [PMID: 39021621 PMCID: PMC11251887 DOI: 10.3389/fmicb.2024.1399743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/10/2024] [Indexed: 07/20/2024] Open
Abstract
Little has been known about symbiotic relationships and host specificity for symbionts in the human gut microbiome so far. Bifidobacteria are a paragon of the symbiotic bacteria biota in the human gut. In this study, we characterized the population genetic structure of three bifidobacteria species from 58 healthy mother-infant pairs of three ethnic groups in China, geographically isolated, by Rep-PCR, multi-locus sequence analysis (MLSA), and in vitro carbohydrate utilization. One hundred strains tested were incorporated into 50 sequence types (STs), of which 29 STs, 17 STs, and 4 STs belong to B. longum subsp. longum, B. breve, and B. animalis subsp. lactis, respectively. The conspecific strains from the same mother-child pair were genetically very similar, supporting the vertical transmission of Bifidobacterium phylotypes from mother to offspring. In particular, results based on allele profiles and phylogeny showed that B. longum subsp. longum and B. breve exhibited considerable intraspecies genetic heterogeneity across three ethnic groups, and strains were clustered into ethnicity-specific lineages. Yet almost all strains of B. animalis subsp. lactis were incorporated into the same phylogenetic clade, regardless of ethnic origin. Our findings support the hypothesis of co-evolution between human gut symbionts and their respective populations, which is closely linked to the lifestyle of specific bacterial lineages. Hence, the natural and evolutionary history of Bifidobacterium species would be an additional consideration when selecting bifidobacterial strains for industrial and therapeutic applications.
Collapse
Affiliation(s)
| | - Zhixuan Liang
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Xueling Zhang
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Baolong Luo
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Huimin Zhang
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Jian Huang
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Fengwei Tian
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hailong Sun
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Yongqing Ni
- School of Food Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
3
|
Santoso I, Fadhilah QG, Maryanto AE, Dwiranti A, Wang P, Al-Rais MF, Sigar IM. Characteristics of isolated lactic acid bacilli bacteria from black glutinous rice (Oryza sativa L.) tapai and its antimicrobial activity in mung bean (Vigna radiata L.) milk. KUWAIT JOURNAL OF SCIENCE 2024; 51:100161. [DOI: 10.1016/j.kjs.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Rajput A, Chauhan SM, Mohite OS, Hyun JC, Ardalani O, Jahn LJ, Sommer MO, Palsson BO. Pangenome analysis reveals the genetic basis for taxonomic classification of the Lactobacillaceae family. Food Microbiol 2023; 115:104334. [PMID: 37567624 DOI: 10.1016/j.fm.2023.104334] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 08/13/2023]
Abstract
Lactobacillaceae represent a large family of important microbes that are foundational to the food industry. Many genome sequences of Lactobacillaceae strains are now available, enabling us to conduct a comprehensive pangenome analysis of this family. We collected 3591 high-quality genomes from public sources and found that: 1) they contained enough genomes for 26 species to perform a pangenomic analysis, 2) the normalized Heap's coefficient λ (a measure of pangenome openness) was found to have an average value of 0.27 (ranging from 0.07 to 0.37), 3) the pangenome openness was correlated with the abundance and genomic location of transposons and mobilomes, 4) the pangenome for each species was divided into core, accessory, and rare genomes, that highlight the species-specific properties (such as motility and restriction-modification systems), 5) the pangenome of Lactiplantibacillus plantarum (which contained the highest number of genomes found amongst the 26 species studied) contained nine distinct phylogroups, and 6) genome mining revealed a richness of detected biosynthetic gene clusters, with functions ranging from antimicrobial and probiotic to food preservation, but ∼93% were of unknown function. This study provides the first in-depth comparative pangenomics analysis of the Lactobacillaceae family.
Collapse
Affiliation(s)
- Akanksha Rajput
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Siddharth M Chauhan
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Omkar S Mohite
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens, Lyngby, Denmark
| | - Jason C Hyun
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, USA
| | - Omid Ardalani
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens, Lyngby, Denmark
| | - Leonie J Jahn
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens, Lyngby, Denmark
| | - Morten Oa Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens, Lyngby, Denmark
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, USA; Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens, Lyngby, Denmark.
| |
Collapse
|
5
|
Yu Q, Qian J, Guo Y, Qian H, Yao W, Cheng Y. Applicable Strains, Processing Techniques and Health Benefits of Fermented Oat Beverages: A Review. Foods 2023; 12:1708. [PMID: 37107502 PMCID: PMC10137769 DOI: 10.3390/foods12081708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/01/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Based on the high nutrients of oat and the demand of health-conscious consumers for value-added and functional foods, fermented oat beverages have great market prospects. This review summarizes the applicable strains, processing techniques and health benefits of fermented oat beverages. Firstly, the fermentation characteristics and conditions of the applicable strains are systematically described. Secondly, the advantages of pre-treatment processes such as enzymatic hydrolysis, germination, milling and drying are summarized. Furthermore, fermented oat beverages can increase the nutrient content and reduce the content of anti-nutritional factors, thereby reducing some risk factors related to many diseases such as diabetes, high cholesterol and high blood pressure. This paper discusses the current research status of fermented oat beverages, which has academic significance for researchers interested in the application potential of oat. Future studies on fermenting oat beverages can focus on the development of special compound fermentation agents and the richness of their taste.
Collapse
Affiliation(s)
- Qian Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Jiaqin Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yahui Guo
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - He Qian
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Weirong Yao
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| |
Collapse
|
6
|
Molecular Detection and Identification of Plant-Associated Lactiplantibacillus plantarum. Int J Mol Sci 2023; 24:ijms24054853. [PMID: 36902287 PMCID: PMC10003612 DOI: 10.3390/ijms24054853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Lactiplantibacillus plantarum is a lactic acid bacterium often isolated from a wide variety of niches. Its ubiquity can be explained by a large, flexible genome that helps it adapt to different habitats. The consequence of this is great strain diversity, which may make their identification difficult. Accordingly, this review provides an overview of molecular techniques, both culture-dependent, and culture-independent, currently used to detect and identify L. plantarum. Some of the techniques described can also be applied to the analysis of other lactic acid bacteria.
Collapse
|
7
|
Davray D, Bawane H, Kulkarni R. Non-redundant nature of Lactiplantibacillus plantarum plasmidome revealed by comparative genomic analysis of 105 strains. Food Microbiol 2023; 109:104153. [DOI: 10.1016/j.fm.2022.104153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/09/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022]
|
8
|
Deidda F, Cordovana M, Bozzi Cionci N, Graziano T, Di Gioia D, Pane M. In-process real-time probiotic phenotypic strain identity tracking: The use of Fourier transform infrared spectroscopy. Front Microbiol 2022; 13:1052420. [PMID: 36569057 PMCID: PMC9772554 DOI: 10.3389/fmicb.2022.1052420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022] Open
Abstract
Probiotic bacteria, capable of conferring benefits to the host, can present challenges in design, development, scale-up, manufacturing, commercialization, and life cycle management. Strain identification is one of the main quality parameters; nevertheless, this task can be challenging since established methodologies can lack resolution at the strain level for some microorganisms and\or are labor-intensive and time-consuming. Fourier transform infrared spectroscopy (FTIRS) has been largely used for the investigation of pathogenic species in the clinical field, whereas only recently has been proposed for the identification of probiotic strains. Within the probiotic industrial production, bacterial strains can be subjected to stressful conditions that may affect genomic and phenotypic characteristics; therefore, real-time monitoring of all the sequential growth steps is requested. Considering the fast, low-cost, and high-throughput features, FTIRS is an innovative and functional technology for typing probiotic strains from bench-top experiments to large-scale industrial production, allowing the monitoring of stability and identity of probiotic strains. In this study, the discriminatory power of FTIRS was assessed for four Lactiplantibacillus plantarum probiotic strains grown under different conditions, including temperatures (30 and 37°C) and medium (broth and agar), after consecutive sub-culturing steps. A comparison between the generated spectra with pulsed-field gel electrophoresis (PFGE) profiles was also performed. FTIRS was not only able to distinguish the strains of L. plantarum under different growth conditions but also to prove the phenotypic stability of L. plantarum type strain LP-CT after six growing steps. Regardless of the growth conditions, FTIRS spectra related to LP-CT constituted a unique hierarchical cluster, separated from the other L. plantarum strains. These results were confirmed by a PFGE analysis. In addition, based on FTIRS data, broth cultures demonstrated a higher reproducibility and discriminatory power with respect to agar ones. These results support the introduction of FTIRS in the probiotic industry, allowing for the step-by-step monitoring of massive microbial production while also guaranteeing the stability and purity of the probiotic strain. The proposed novel approach can constitute an impressive improvement in the probiotic manufacturing process.
Collapse
Affiliation(s)
| | | | - Nicole Bozzi Cionci
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | | | - Diana Di Gioia
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Marco Pane
- Probiotical Research S.r.L, Novara, Italy,*Correspondence: Marco Pane,
| |
Collapse
|
9
|
López-Salas D, Oney-Montalvo JE, Ramírez-Rivera E, Ramírez-Sucre MO, Rodríguez-Buenfil IM. Evaluation of the Volatile Composition and Sensory Behavior of Habanero Pepper during Lactic Acid Fermentation by L. plantarum. Foods 2022; 11:foods11223618. [PMID: 36429209 PMCID: PMC9689949 DOI: 10.3390/foods11223618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Habanero pepper is recognized for its appealing aroma and flavor. Lactic acid fermentation can improve these sensory properties, especially aroma, by the synthesis of volatile compounds, which might also increase the consumer preference. Thus, the aim of this research was to compare the volatile composition as well as different sensory parameters such as preference and emotions related to the lactic acid fermentation of Habanero pepper by two strains (wild and commercial) of Lactiplantibacillus plantarum. A multiple factor ANOVA was used to compare the volatile composition with different fermentation times and strains. The results demonstrated that the interaction between the strain and fermentation time had significant effects on the volatile compound production that includes 1-hexanol, cis-3-hexenyl hexanoate, linalool, and 3,3 dimethyl-1-hexanol while only time influenced the production of trans-2-hexen-1-al. The wild strain (WIL) at 48 h of fermentation produced the highest concentration of 3,3 dimethyl-1-hexanol and trans-2-hexen-1-al. On the other hand, the commercial strain (COM) presented the highest concentration of 1-hexanol and cis-3-hexenyl hexanoate with a 72 h fermentation. The most preferred sample was that fermented by WIL for 48 h for the attribute of odor, while for taste, the most preferred sample was that fermented for 72 h with COM.
Collapse
Affiliation(s)
- Diego López-Salas
- Sede Sureste CIATEJ, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Tablaje Catastral 31264, Carretera Sierra Papacal-Chuburna Puerto km. 5.5, Parque Científico Tecnológico de Yucatán, Mérida 97302, Mexico
| | - Julio Enrique Oney-Montalvo
- Sede Sureste CIATEJ, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Tablaje Catastral 31264, Carretera Sierra Papacal-Chuburna Puerto km. 5.5, Parque Científico Tecnológico de Yucatán, Mérida 97302, Mexico
| | - Emmanuel Ramírez-Rivera
- Departamento de Innovación Agrícola Sustentable, Tecnológico Nacional de México/Tecnológico Superior de Zongolica, Carretera S/N km. 4, Tepetlitlanapa, Zongolica 95005, Mexico
| | - Manuel Octavio Ramírez-Sucre
- Sede Sureste CIATEJ, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Tablaje Catastral 31264, Carretera Sierra Papacal-Chuburna Puerto km. 5.5, Parque Científico Tecnológico de Yucatán, Mérida 97302, Mexico
| | - Ingrid Mayanin Rodríguez-Buenfil
- Sede Sureste CIATEJ, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Tablaje Catastral 31264, Carretera Sierra Papacal-Chuburna Puerto km. 5.5, Parque Científico Tecnológico de Yucatán, Mérida 97302, Mexico
- Correspondence:
| |
Collapse
|
10
|
Petkova M, Gotcheva V, Dimova M, Bartkiene E, Rocha JM, Angelov A. Screening of Lactiplantibacillus plantarum Strains from Sourdoughs for Biosuppression of Pseudomonas syringae pv. syringae and Botrytis cinerea in Table Grapes. Microorganisms 2022; 10:2094. [PMID: 36363685 PMCID: PMC9696664 DOI: 10.3390/microorganisms10112094] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 09/06/2023] Open
Abstract
Grapes (Vitis vinifera L.) are an essential crop for fresh consumption and wine production. Vineyards are attacked by several economically important bacterial and fungal diseases that require regular pesticide treatment. Among them, Pseudomonas syringae pv. syringae (Ps. syringae) and Botrytis cinerea (B. cinerea) infections cause huge economic losses. The fresh fruit market has shifted to functional natural foodstuffs with clear health benefits and a reduced use of chemicals along the production chain. Lactic acid bacteria (LAB) have a biopreservative effect and are applied to ensure food safety in response to consumers' demands. In the present study, the possibilities of using microorganisms with a potential antimicrobial effect against Ps. syringae and B. cinerea in the production of table grapes were investigated. LAB of the genus Lactiplantibacillus can be a natural antagonist of pathogenic bacteria and fungi by releasing lactic acid, acetic acid, ethanol, carbon dioxide and bacteriocins in the medium. The present study focuses on the characterization of nine Lactiplantibacillus plantarum (Lp. plantarum) strains isolated from spontaneously fermented sourdoughs. Species-specific PCR identified the isolated LAB for partial recA gene amplification with an amplicon size of 318 bp. RAPD-PCR analysis showed the intraspecific diversity of the individual strains. Thirteen plantaricin-like peptides (PlnA, PlnB, PlnC, PlnD, PlnEF, PlnG, PlnI, PlnJ, PlnK, PlnN, PlnNC8, PlnS, and PlnW) produced by isolated Lp. plantarum strains were detected by PCR with gene-specific primers. The key features for future industrial applications were their antimicrobial properties. The culture medium and cell-free supernatant (CFS) were used to establish in vitro antimicrobial activities of Lp. plantarum strains against Ps. syringae and B. cinerea, and inhibition of phytopathogen development was observed. The inhibitory effect of the CFS (cell-free supernatant) of all strains was assessed by infecting table grapes with these pathogens in in vivo experiments. Lp. plantarum Q4 showed the most effective suppression of the pathogens both in vitro and in vivo, which indicates its potential use as a biocontrol agent against berry rot and grey rot on grapes, caused by Ps. syringae and B. cinerea.
Collapse
Affiliation(s)
- Mariana Petkova
- Department of Microbiology and Environmental Biotechnology, Agricultural University, 12 Mendeleev Blvd., 4000 Plovdiv, Bulgaria
| | - Velitchka Gotcheva
- Department of Biotechnology, University of Food Technology, 26 Maritza Blvd., 4002 Plovdiv, Bulgaria
| | - Milena Dimova
- Department of Phytopathology, Agricultural University, 12 Mendeleev Blvd., 4000 Plovdiv, Bulgaria
| | - Elena Bartkiene
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-44307 Kaunas, Lithuania
| | - João Miguel Rocha
- Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4050-345 Porto, Portugal
- Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4050-345 Porto, Portugal
| | - Angel Angelov
- Department of Biotechnology, University of Food Technology, 26 Maritza Blvd., 4002 Plovdiv, Bulgaria
| |
Collapse
|
11
|
Lactiplantibacillus plantarum LOC1 Isolated from Fresh Tea Leaves Modulates Macrophage Response to TLR4 Activation. Foods 2022. [DOI: 10.3390/foods11203257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Previously, we demonstrated that Lactiplantibacillus plantarum LOC1, originally isolated from fresh tea leaves, was able to improve epithelial barrier integrity in in vitro models, suggesting that this strain is an interesting probiotic candidate. In this work, we aimed to continue characterizing the potential probiotic properties of the LOC1 strain, focusing on its immunomodulatory properties in the context of innate immunity triggered by Toll-like receptor 4 (TLR4) activation. These studies were complemented by comparative and functional genomics analysis to characterize the bacterial genes involved in the immunomodulatory capacity. We carried out a transcriptomic study to evaluate the effect of L. plantarum LOC1 on the response of murine macrophages (RAW264.7 cells) to the activation of TLR4. We demonstrated that L. plantarum LOC1 exerts a modulatory effect on lipopolysaccharide (LPS)-induced inflammation, resulting in a differential regulation of immune factor expression in macrophages. The LOC1 strain markedly reduced the LPS-induced expression of some inflammatory cytokines (IL-1β, IL-12, and CSF2) and chemokines (CCL17, CCL28, CXCL3, CXCL13, CXCL1, and CX3CL1), while it significantly increased the expression of other cytokines (TNF-α, IL-6, IL-18, IFN-β, IFN-γ, and CSF3), chemokines (IL-15 and CXCL9), and activation markers (H2-k1, H2-M3, CD80, and CD86) in RAW macrophages. Our results show that L. plantarum LOC1 would enhance the intrinsic functions of macrophages, promoting their protective effects mediated by the stimulation of the Th1 response without affecting the regulatory mechanisms that help control inflammation. In addition, we sequenced the LOC1 genome and performed a genomic characterization. Genomic comparative analysis with the well-known immunomodulatory strains WCSF1 and CRL1506 demonstrated that L. plantarum LOC1 possess a set of adhesion factors and genes involved in the biosynthesis of teichoic acids and lipoproteins that could be involved in its immunomodulatory capacity. The results of this work can contribute to the development of immune-related functional foods containing L. plantarum LOC1.
Collapse
|
12
|
Calcium Determines
Lactiplantibacillus plantarum
Intraspecies Competitive Fitness. Appl Environ Microbiol 2022; 88:e0066622. [PMID: 35852360 PMCID: PMC9361822 DOI: 10.1128/aem.00666-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The importance of individual nutrients for microbial strain robustness and coexistence in habitats containing different members of the same species is not well understood. To address this for Lactiplantibacillus plantarum in food fermentations, we performed comparative genomics and examined the nutritive requirements and competitive fitness for L. plantarum strains B1.1 and B1.3 isolated from a single sample of teff injera fermentation batter. Compared to B1.1 and other L. plantarum strains, B1.3 has a smaller genome, limited biosynthetic capacities, and large mobilome. Despite these differences, B1.3 was equally competitive with B1.1 in a suspension of teff flour. In commercially sourced, nutrient-replete MRS (cMRS) medium, strain B1.3 reached 3-fold-higher numbers than B1.1 within 2 days of passage. Because B1.3 growth and competitive fitness were poor in mMRS medium (here called mMRS), a modified MRS medium lacking beef extract, we used mMRS to identify nutrients needed for robust B1.3 growth. No improvement was observed when mMRS was supplemented with nucleotides, amino acids, vitamins, or monovalent metals. Remarkably, the addition of divalent metal salts increased the growth rate and cell yields of B1.3 in mMRS. Metal requirements were confirmed by inductively coupled plasma mass spectrometry, showing that total B1.3 intracellular metal concentrations were significantly (up to 2.7-fold) reduced compared to B1.1. Supplemental CaCl2 conferred the greatest effect, resulting in equal growth between B1.1 and B1.3 over five successive passages in mMRS. Moreover, calcium supplementation reversed a B1.3 strain-specific, stationary-phase, flocculation phenotype. These findings show how L. plantarum calcium requirements affect competitive fitness at the strain level. IMPORTANCE Ecological theory states that the struggle for existence is stronger between closely related species. Contrary to this assertion, fermented foods frequently sustain conspecific individuals, in spite of their high levels of phylogenetic relatedness. Therefore, we investigated two isolates of Lactiplantibacillus plantarum, B1.1 and B1.3, randomly selected from a single batch of teff injera batter. These strains spanned the known genomic and phenotypic range of the L. plantarum species, and in laboratory culture medium used for strain screening, B1.3 exhibited poor growth and was outcompeted by the more robust strain B1.1. Nonetheless, B1.1 and B1.3 were equally competitive in teff flour. This result shows how L. plantarum has adapted for coexistence in that environment. The capacity for the single macronutrient calcium to restore B1.3 competitive fitness in laboratory culture medium suggests that L. plantarum intraspecies diversity found in food systems is fine-tuned to nutrient requirements at the strain level.
Collapse
|
13
|
Cavalieri D, Valentini B, Stefanini I. Going wild: ecology and genomics are crucial to understand yeast evolution. Curr Opin Genet Dev 2022; 75:101922. [PMID: 35691146 DOI: 10.1016/j.gde.2022.101922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 11/03/2022]
Abstract
Improved and more accessible genome-sequencing approaches have allowed the analysis of large sets of natural yeast isolates. As a consequence, this unprecedented level of description of yeast-genome characteristics and variations in natural environments has provided crucial insights on yeast ecology and evolution. Here, we review some of the most relevant and intriguing aspects of yeast evolution pointed out, thanks to the combination of yeast ecology and genomics, and critically examine the resulting improvement of our knowledge on this field. Only integrated approaches, taking into consideration not only the characteristics of the microbe but also those of the hosting environment, will significantly move forward the exploration of yeast diversity, ecology, and evolution.
Collapse
Affiliation(s)
| | - Beatrice Valentini
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Irene Stefanini
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy.
| |
Collapse
|
14
|
Li X, Zhu L, Wang X, Li J, Tang B. Evaluation of IR Biotyper for Lactiplantibacillus plantarum Typing and Its Application Potential in Probiotic Preliminary Screening. Front Microbiol 2022; 13:823120. [PMID: 35401469 PMCID: PMC8988154 DOI: 10.3389/fmicb.2022.823120] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/24/2022] [Indexed: 12/25/2022] Open
Abstract
IR Biotyper (IRBT), which is a spectroscopic system for microorganism typing based on Fourier transform infrared (FTIR) technology, has been used to detect the spread of clones in clinical microbiology laboratories. However, the use of IRBT to detect probiotics has rarely been reported. Herein, we evaluated the discriminatory power of IRBT to type Lactiplantibacillus plantarum isolates at the strain level and explored its application potential in probiotic preliminary selection. Twenty Lactiplantibacillus isolates collected from pickled radishes during successive fermentation were used to test the robustness of IRBT at the strain level. IRBT was then compared with genotyping methods such as whole-genome sequencing (WGS), pulsed-field gel electrophoresis (PFGE), and multilocus sequence typing (MLST) to evaluate its discrimination power. IRBT distributed the 20 isolates into five clusters, with L. argentoratensis isolate C7-83 being the most distant from the other isolates, which belonged to L. plantarum. IRBT showed good reproducibility, although deviation in the discriminative power of IRBT was found at the strain level across laboratories, probably due to technical variance. All examined methods allowed bacterial identification at the strain level, but IRBT had higher discriminatory power than MLST and was comparable to the WGS and PFGE. In the phenotypic comparison study, we observed that the clustering results of probiotic physiological attributes (e.g., sensitivity to acid and bile salts, hydrophobicity of the cell surface, and resistance to antibiotics) were consistent with the typing results of IRBT. Our results indicated that IRBT is a robust tool for L. plantarum strain typing that could improve the efficiency of probiotic identification and preliminary screening, and can potentially be applied in probiotic traceability and quality control.
Collapse
Affiliation(s)
- Xiaoqiong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Liying Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jinjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Jinjun Li,
| | - Biao Tang
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Biao Tang,
| |
Collapse
|
15
|
Tejedor-Sanz S, Stevens ET, Li S, Finnegan P, Nelson J, Knoesen A, Light SH, Ajo-Franklin CM, Marco ML. Extracellular electron transfer increases fermentation in lactic acid bacteria via a hybrid metabolism. eLife 2022; 11:e70684. [PMID: 35147079 PMCID: PMC8837199 DOI: 10.7554/elife.70684] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 12/24/2021] [Indexed: 12/11/2022] Open
Abstract
Energy conservation in microorganisms is classically categorized into respiration and fermentation; however, recent work shows some species can use mixed or alternative bioenergetic strategies. We explored the use of extracellular electron transfer for energy conservation in diverse lactic acid bacteria (LAB), microorganisms that mainly rely on fermentative metabolism and are important in food fermentations. The LAB Lactiplantibacillus plantarum uses extracellular electron transfer to increase its NAD+/NADH ratio, generate more ATP through substrate-level phosphorylation, and accumulate biomass more rapidly. This novel, hybrid metabolism is dependent on a type-II NADH dehydrogenase (Ndh2) and conditionally requires a flavin-binding extracellular lipoprotein (PplA) under laboratory conditions. It confers increased fermentation product yield, metabolic flux, and environmental acidification in laboratory media and during kale juice fermentation. The discovery of a single pathway that simultaneously blends features of fermentation and respiration in a primarily fermentative microorganism expands our knowledge of energy conservation and provides immediate biotechnology applications.
Collapse
Affiliation(s)
- Sara Tejedor-Sanz
- Department of BioSciences, Rice UniversityHoustonUnited States
- Biological Nanostructures Facility, The Molecular Foundry, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| | - Eric T Stevens
- Department of Food Science & Technology, University of California‐DavisDavisUnited States
| | - Siliang Li
- Department of BioSciences, Rice UniversityHoustonUnited States
| | - Peter Finnegan
- Department of Food Science & Technology, University of California‐DavisDavisUnited States
| | - James Nelson
- Department of Electrical and Computer Engineering, University of California‐DavisDavisUnited States
| | - Andre Knoesen
- Department of Electrical and Computer Engineering, University of California‐DavisDavisUnited States
| | - Samuel H Light
- Department of Microbiology, University of ChicagoChicagoUnited States
| | - Caroline M Ajo-Franklin
- Department of BioSciences, Rice UniversityHoustonUnited States
- Biological Nanostructures Facility, The Molecular Foundry, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| | - Maria L Marco
- Department of Food Science & Technology, University of California‐DavisDavisUnited States
| |
Collapse
|
16
|
The Interactions among Isolates of Lactiplantibacillus plantarum and Dairy Yeast Contaminants: Towards Biocontrol Applications. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation8010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Yeast diversity in the cheese manufacturing process and in the cheeses themselves includes indispensable species for the production of specific cheeses and undesired species that cause cheese defects and spoilage. The control of yeast contaminants is problematic due to limitations in sanitation methods and chemicals used in the food industry. The utilisation of lactic acid bacteria and their antifungal products is intensively studied. Lactiplantibacillus plantarum is one of the most frequently studied species producing a wide spectrum of bioactive by-products. In the present study, twenty strains of L. plantarum from four sources were tested against 25 species of yeast isolated from cheeses, brines, and dairy environments. The functional traits of L. plantarum strains, such as the presence of class 2a bacteriocin and chitinase genes and in vitro production of organic acids, were evaluated. The extracellular production of bioactive peptides and proteins was tested using proteomic methods. Antifungal activity against yeast was screened using in vitro tests. Testing of antifungal activity on artificial media and reconstituted milk showed significant variability within the strains of L. plantarum and its group of origin. Strains from sourdoughs (CCDM 3018, K19-3) and raw cheese (L12, L24, L32) strongly inhibited the highest number of yeast strains on medium with reconstituted milk. These strains showed a consistent spectrum of genes belonging to class 2a bacteriocins, the gene of chitinase and its extracellular product 9 LACO Chitin-binding protein. Strain CCDM 3018 with the spectrum of class 2a bacteriocin gene, chitinase and significant production of lactic acid in all media performed significant antifungal effects in artificial and reconstituted milk-based media.
Collapse
|