1
|
Escobedo-Hinojosa W, Vila MA, Wissner JL, Härterich N, Horz P, Iglesias C, Hauer B. Exploring the substrate scope of glycerol dehydrogenase GldA from E. coli BW25113 towards cis-dihydrocatechol derivatives. J Biotechnol 2023; 366:19-24. [PMID: 36870480 DOI: 10.1016/j.jbiotec.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Glycerol dehydrogenase (GldA) from Escherichia coli BW25113, naturally catalyzes the oxidation of glycerol to dihydroxyacetone. It is known that GldA exhibits promiscuity towards short-chain C2-C4 alcohols. However, there are no reports regarding the substrate scope of GldA towards larger substrates. Herein we demonstrate that GldA can accept bulkier C6-C8 alcohols than previously anticipated. Overexpression of the gldA gene in the knockout background, E. coli BW25113 ΔgldA, was strikingly effective converting 2 mM of the compounds: cis-dihydrocatetechol, cis-(1 S,2 R)- 3-methylcyclohexa-3,5-diene-1,2-diol and cis-(1 S,2 R)- 3-ethylcyclohexa-3,5-diene-1,2-diol, into 2.04 ± 0.21 mM of catechol, 0.62 ± 0.11 mM 3-methylcatechol, and 0.16 ± 0.02 mM 3-ethylcatechol, respectively. In-silico studies on the active site of GldA enlightened the decrease in product formation as the steric substrate demand increased. These results are of high interests for E. coli-based cell factories expressing Rieske non-heme iron dioxygenases, producing cis-dihydrocatechols, since such sough-after valuable products can be immediately degraded by GldA, substantially hampering the expected performance of the recombinant platform.
Collapse
Affiliation(s)
- Wendy Escobedo-Hinojosa
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Puerto de abrigo s/n, 97356 Sisal, Yucatán, Mexico
| | - María Agustina Vila
- Laboratorio de Biocatálisis y Biotransformaciones, Departamento de Química Orgánica y Departamento de Biociencias, Facultad de Química Universidad de la República, Av General Flores 2124, CP 11800 Montevideo, Uruguay
| | - Julian L Wissner
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Puerto de abrigo s/n, 97356 Sisal, Yucatán, Mexico; Institute of Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Natalie Härterich
- Institute of Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Philip Horz
- Institute of Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - César Iglesias
- Laboratorio de Biocatálisis y Biotransformaciones, Departamento de Química Orgánica y Departamento de Biociencias, Facultad de Química Universidad de la República, Av General Flores 2124, CP 11800 Montevideo, Uruguay
| | - Bernhard Hauer
- Institute of Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| |
Collapse
|
2
|
Infant Vitamin D Supplements, Fecal Microbiota and Their Metabolites at 3 Months of Age in the CHILD Study Cohort. Biomolecules 2023; 13:biom13020200. [PMID: 36830570 PMCID: PMC9952978 DOI: 10.3390/biom13020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
Infant vitamin D liquid formulations often contain non-medicinal excipients such as glycerin (ie. glycerol) and 1,2-propanediol (1,2-PD). We examined whether infant vitamin D supplementation is associated with fecal glycerol and 1,2-PD concentrations at 3 months of age and characterized associations between these two molecules, and gut microbiota and their metabolites. Fecal metabolites and microbiota were quantified using Nuclear Magnetic Resonance Spectroscopy and 16S rRNA sequencing, respectively, in 575 infants from the CHILD Study at 3 months of age. Vitamin D supplement use was determined using questionnaires. Vitamin D supplementation was associated with greater odds of high 1,2-PD (adjusted OR 1.65 95% CI: 1.06, 2.53) and with decreased odds of high fecal glycerol (adjusted OR: 0.62 95% CI: 0.42, 0.90) after adjustment for breastfeeding and other covariates. Our findings were confirmed in linear regression models; vitamin D supplementation was positively associated with fecal 1,2-PD and inversely associated with glycerol (aβ: 0.37, 95% CI 0.03, 0.71 & aβ: -0.23 95% CI -0.44, -0.03, respectively). Fecal 1,2-PD and glycerol concentrations were negatively correlated with each other. Positive correlations between fecal 1,2-PD, Bifidobacteriaceae, Lactobacillaceae, Enterobacteriaceae and acetate levels were observed. Our research demonstrates that infant vitamin D supplement administration may differentially and independently influence infant gut microbiota metabolites.
Collapse
|
3
|
Boecker S, Espinel-Ríos S, Bettenbrock K, Klamt S. Enabling anaerobic growth of Escherichia coli on glycerol in defined minimal medium using acetate as redox sink. Metab Eng 2022; 73:50-57. [DOI: 10.1016/j.ymben.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/08/2022] [Accepted: 05/21/2022] [Indexed: 11/29/2022]
|