1
|
Bae J, Park C, Jung H, Jin S, Cho BK. Harnessing acetogenic bacteria for one-carbon valorization toward sustainable chemical production. RSC Chem Biol 2024; 5:812-832. [PMID: 39211478 PMCID: PMC11353040 DOI: 10.1039/d4cb00099d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/06/2024] [Indexed: 09/04/2024] Open
Abstract
The pressing climate change issues have intensified the need for a rapid transition towards a bio-based circular carbon economy. Harnessing acetogenic bacteria as biocatalysts to convert C1 compounds such as CO2, CO, formate, or methanol into value-added multicarbon chemicals is a promising solution for both carbon capture and utilization, enabling sustainable and green chemical production. Recent advances in the metabolic engineering of acetogens have expanded the range of commodity chemicals and biofuels produced from C1 compounds. However, producing energy-demanding high-value chemicals on an industrial scale from C1 substrates remains challenging because of the inherent energetic limitations of acetogenic bacteria. Therefore, overcoming this hurdle is necessary to scale up the acetogenic C1 conversion process and realize a circular carbon economy. This review overviews the acetogenic bacteria and their potential as sustainable and green chemical production platforms. Recent efforts to address these challenges have focused on enhancing the ATP and redox availability of acetogens to improve their energetics and conversion performances. Furthermore, promising technologies that leverage low-cost, sustainable energy sources such as electricity and light are discussed to improve the sustainability of the overall process. Finally, we review emerging technologies that accelerate the development of high-performance acetogenic bacteria suitable for industrial-scale production and address the economic sustainability of acetogenic C1 conversion. Overall, harnessing acetogenic bacteria for C1 valorization offers a promising route toward sustainable and green chemical production, aligning with the circular economy concept.
Collapse
Affiliation(s)
- Jiyun Bae
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| | - Chanho Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| | - Hyunwoo Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| | - Sangrak Jin
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
- Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| |
Collapse
|
2
|
Mol M, Ardila MS, Mol BA, Aliyu H, Neumann A, de Maayer P. The effects of synthesis gas feedstocks and oxygen perturbation on hydrogen production by Parageobacillus thermoglucosidasius. Microb Cell Fact 2024; 23:125. [PMID: 38698392 PMCID: PMC11064277 DOI: 10.1186/s12934-024-02391-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/12/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND The facultatively anaerobic thermophile Parageobacillus thermoglucosidasius is able to produce hydrogen gas (H2) through the water-gas shift (WGS) reaction. To date this process has been evaluated under controlled conditions, with gas feedstocks comprising carbon monoxide and variable proportions of air, nitrogen and hydrogen. Ultimately, an economically viable hydrogenogenic system would make use of industrial waste/synthesis gases that contain high levels of carbon monoxide, but which may also contain contaminants such as H2, oxygen (O2) and other impurities, which may be toxic to P. thermoglucosidasius. RESULTS We evaluated the effects of synthesis gas (syngas) mimetic feedstocks on WGS reaction-driven H2 gas production by P. thermoglucosidasius DSM 6285 in small-scale fermentations. Improved H2 gas production yields and faster onset towards hydrogen production were observed when anaerobic synthetic syngas feedstocks were used, at the expense of biomass accumulation. Furthermore, as the WGS reaction is an anoxygenic process, we evaluated the influence of O2 perturbation on P. thermoglucosidasius hydrogenogenesis. O2 supplementation improved biomass accumulation, but reduced hydrogen yields in accordance with the level of oxygen supplied. However, H2 gas production was observed at low O2 levels. Supplementation also induced rapid acetate consumption, likely to sustain growth. CONCLUSION The utilisation of anaerobic syngas mimetic gas feedstocks to produce H2 and the relative flexibility of the P. thermoglucosidasius WGS reaction system following O2 perturbation further supports its applicability towards more robust and continuous hydrogenogenic operation.
Collapse
Affiliation(s)
- Michael Mol
- School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg, 2000, South Africa
| | - Magda Stephania Ardila
- Section II: Electrobiotechnology, Institute of Process Engineering in Life Science, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Bronwyn Ashleigh Mol
- School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg, 2000, South Africa
| | - Habibu Aliyu
- Section II: Electrobiotechnology, Institute of Process Engineering in Life Science, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Anke Neumann
- Section II: Electrobiotechnology, Institute of Process Engineering in Life Science, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany.
| | - Pieter de Maayer
- School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg, 2000, South Africa.
| |
Collapse
|
3
|
Allaart MT, Korkontzelos C, Sousa DZ, Kleerebezem R. A novel experimental method to determine substrate uptake kinetics of gaseous substrates applied to the carbon monoxide-fermenting Clostridium autoethanogenum. Biotechnol Bioeng 2024; 121:1325-1335. [PMID: 38265153 DOI: 10.1002/bit.28652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/25/2024]
Abstract
Syngas fermentation has gained momentum over the last decades. The cost-efficient design of industrial-scale bioprocesses is highly dependent on quantitative microbial growth data. Kinetic and stoichiometric models for syngas-converting microbes exist, but accurate experimental validation of the derived parameters is lacking. Here, we describe a novel experimental approach for measuring substrate uptake kinetics of gas-fermenting microbes using the model microorganism Clostridium autoethanogenum. One-hour disturbances of a steady-state chemostat bioreactor with increased CO partial pressures (up to 1.2 bar) allowed for measurement of biomass-specific CO uptake- and CO2 production rates (q CO ${q}_{{CO}}$ ,q CO 2 ${q}_{{{CO}}_{2}}$ ) using off-gas analysis. At a pCO of 1.2 bar, aq CO ${q}_{{CO}}$ of -119 ± 1 mmol g-1 X h-1 was measured. This value is 1.8-3.5-fold higher than previously reported experimental and kinetic modeling results for syngas fermenters. Analysis of the catabolic flux distribution reveals a metabolic shift towards ethanol production at the expense of acetate at pCO ≥ $\ge $ 0.6 atm, likely to be mediated by acetate availability and cellular redox state. We characterized this metabolic shift as acetogenic overflow metabolism. These results provide key mechanistic understanding of the factors steering the product spectrum of CO fermentation in C. autoethanogenum and emphasize the importance of dedicated experimental validation of kinetic parameters.
Collapse
Affiliation(s)
| | | | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Robbert Kleerebezem
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
4
|
Du B, Zhan X, Lens PNL, Zhang Y, Wu G. Deciphering anaerobic ethanol metabolic pathways shaped by operational modes. WATER RESEARCH 2024; 249:120896. [PMID: 38006787 DOI: 10.1016/j.watres.2023.120896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/01/2023] [Accepted: 11/17/2023] [Indexed: 11/27/2023]
Abstract
Efficient anaerobic digestion requires the syntrophic cooperation among diverse microorganisms with various metabolic pathways. In this study, two operational modes, i.e., the sequencing batch reactor (SBR) and the continuous-flow reactor (CFR), were adopted in ethanol-fed systems with or without the supplement of powdered activated carbon (PAC) to examine their effects on ethanol metabolic pathways. Notably, the operational mode of SBR and the presence of CO2 facilitated ethanol metabolism towards propionate production. This was further evidenced by the dominance of Desulfobulbus, and the increased relative abundances of enzymes (EC: 1.2.7.1 and 1.2.7.11) involved in CO2 metabolism in SBRs. Moreover, SBRs exhibited superior biomass-based rates of ethanol degradation and methanogenesis, surpassing those in CFRs by 53.1% and 22.3%, respectively. Remarkably, CFRs with the extended solids retention time enriched high relative abundances of Geobacter of 71.7% and 70.4% under conditions with and without the addition of PAC, respectively. Although both long-term and short-term PAC additions led to the increased sludge conductivity and a reduced methanogenic lag phase, only the long-term PAC addition resulted in enhanced rates of ethanol degradation and propionate production/degradation. The strategies by adjusting operational mode and PAC addition could be adopted for modulating the anaerobic ethanol metabolic pathway and enriching Geobacter.
Collapse
Affiliation(s)
- Bang Du
- Civil Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland
| | - Xinmin Zhan
- Civil Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland
| | - Piet N L Lens
- Microbiology, School of Biological and Chemical Sciences, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland
| | - Yifeng Zhang
- Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark
| | - Guangxue Wu
- Civil Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland.
| |
Collapse
|
5
|
Diender M, Dykstra JC, Parera Olm I, Kengen SWM, Stams AJM, Sousa DZ. The role of ethanol oxidation during carboxydotrophic growth of Clostridium autoethanogenum. Microb Biotechnol 2023; 16:2082-2093. [PMID: 37814497 PMCID: PMC10616641 DOI: 10.1111/1751-7915.14338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/05/2023] [Indexed: 10/11/2023] Open
Abstract
The Wood-Ljungdahl pathway is an ancient metabolic route used by acetogenic carboxydotrophs to convert CO into acetate, and some cases ethanol. When produced, ethanol is generally seen as an end product of acetogenic metabolism, but here we show that it acts as an important intermediate and co-substrate during carboxydotrophic growth of Clostridium autoethanogenum. Depending on CO availability, C. autoethanogenum is able to rapidly switch between ethanol production and utilization, hereby optimizing its carboxydotrophic growth. The importance of the aldehyde ferredoxin:oxidoreductase (AOR) route for ethanol production in carboxydotrophic acetogens is known; however, the role of the bifunctional alcohol dehydrogenase AdhE (Ald-Adh) route in ethanol metabolism remains largely unclear. We show that the mutant strain C. autoethanogenum ∆adhE1a, lacking the Ald subunit of the main bifunctional aldehyde/alcohol dehydrogenase (AdhE, CAETHG_3747), has poor ethanol oxidation capabilities, with a negative impact on biomass yield. This indicates that the Adh-Ald route plays a major role in ethanol oxidation during carboxydotrophic growth, enabling subsequent energy conservation via substrate-level phosphorylation using acetate kinase. Subsequent chemostat experiments with C. autoethanogenum show that the wild type, in contrast to ∆adhE1a, is more resilient to sudden changes in CO supply and utilizes ethanol as a temporary storage for reduction equivalents and energy during CO-abundant conditions, reserving these 'stored assets' for more CO-limited conditions. This shows that the direction of the ethanol metabolism is very dynamic during carboxydotrophic acetogenesis and opens new insights in the central metabolism of C. autoethanogenum and similar acetogens.
Collapse
Affiliation(s)
- Martijn Diender
- Laboratory of MicrobiologyWageningen University & ResearchWageningenThe Netherlands
- Centre for Living TechnologiesEindhoven‐Wageningen‐Utrecht AllianceUtrechtThe Netherlands
| | - James C. Dykstra
- Laboratory of MicrobiologyWageningen University & ResearchWageningenThe Netherlands
| | - Ivette Parera Olm
- Laboratory of MicrobiologyWageningen University & ResearchWageningenThe Netherlands
- Centre for Living TechnologiesEindhoven‐Wageningen‐Utrecht AllianceUtrechtThe Netherlands
| | - Servé W. M. Kengen
- Laboratory of MicrobiologyWageningen University & ResearchWageningenThe Netherlands
| | - Alfons J. M. Stams
- Laboratory of MicrobiologyWageningen University & ResearchWageningenThe Netherlands
- Centre of Biological EngineeringUniversity of MinhoBragaPortugal
| | - Diana Z. Sousa
- Laboratory of MicrobiologyWageningen University & ResearchWageningenThe Netherlands
- Centre for Living TechnologiesEindhoven‐Wageningen‐Utrecht AllianceUtrechtThe Netherlands
| |
Collapse
|
6
|
Elisiário MP, Van Hecke W, De Wever H, Noorman H, Straathof AJJ. Acetic acid, growth rate, and mass transfer govern shifts in CO metabolism of Clostridium autoethanogenum. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12670-6. [PMID: 37410136 PMCID: PMC10390632 DOI: 10.1007/s00253-023-12670-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
Syngas fermentation is a leading microbial process for the conversion of carbon monoxide, carbon dioxide, and hydrogen to valuable biochemicals. Clostridium autoethanogenum stands as a model organism for this process, showcasing its ability to convert syngas into ethanol industrially with simultaneous fixation of carbon and reduction of greenhouse gas emissions. A deep understanding on the metabolism of this microorganism and the influence of operational conditions on fermentation performance is key to advance the technology and enhancement of production yields. In this work, we studied the individual impact of acetic acid concentration, growth rate, and mass transfer rate on metabolic shifts, product titres, and rates in CO fermentation by C. autoethanogenum. Through continuous fermentations performed at a low mass transfer rate, we measured the production of formate in addition to acetate and ethanol. We hypothesise that low mass transfer results in low CO concentrations, leading to reduced activity of the Wood-Ljungdahl pathway and a bottleneck in formate conversion, thereby resulting in the accumulation of formate. The supplementation of the medium with exogenous acetate revealed that undissociated acetic acid concentration increases and governs ethanol yield and production rates, assumedly to counteract the inhibition by undissociated acetic acid. Since acetic acid concentration is determined by growth rate (via dilution rate), mass transfer rate, and working pH, these variables jointly determine ethanol production rates. These findings have significant implications for process optimisation as targeting an optimal undissociated acetic acid concentration can shift metabolism towards ethanol production. KEY POINTS: • Very low CO mass transfer rate leads to leaking of intermediate metabolite formate. • Undissociated acetic acid concentration governs ethanol yield on CO and productivity. • Impact of growth rate, mass transfer rate, and pH were considered jointly.
Collapse
Affiliation(s)
- Marina P Elisiário
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, 2629HZ, Delft, The Netherlands
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Wouter Van Hecke
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Heleen De Wever
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Henk Noorman
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, 2629HZ, Delft, The Netherlands
- Royal DSM, Alexander Fleminglaan 1, 2613 AX, Delft, The Netherlands
| | - Adrie J J Straathof
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, 2629HZ, Delft, The Netherlands.
| |
Collapse
|