1
|
Kerkhof I, Puiman L, Straathof AJJ. Understanding microbial syngas fermentation rates. Appl Microbiol Biotechnol 2024; 108:540. [PMID: 39704780 DOI: 10.1007/s00253-024-13364-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024]
Abstract
Syngas fermentation to ethanol has reached industrial production. Further improvement of this process would be aided by quantitative understanding of the influence of imposed reaction conditions on the fermentation performance. That requires a reliable model of the microbial kinetics. Data were collected from 37 steady states in chemostats and from many batch experiments that use Clostridium authoethanogenum. Biomass-specific rates from CO conversion experiments were related to each other according to simple reaction stoichiometries and the Pirt equation, with only the ratio of ethanol to acetate production remaining as degree of freedom. No clear dependency of this ratio on dissolved concentrations, such as CO or acetic acid concentration, was found. This is largely caused by the lack of knowledge about the dependency of the CO uptake rate (and hence all other rates) on the CO concentration. This knowledge gap is caused by a lack of dissolved CO measurements. For dissolved H2, a similar gap applies. Modelling H2 consumption adds more degrees of freedom to the system, so that more structured experiments with H2 is needed. The inhibition of gas consumption by acetate and ethanol is partly known but needs further study. KEY POINTS: • Set of Clostridium autoethanogenum syngas fermentation data from chemostats. • Unstructured kinetic models can relate most biomass-specific rates to dilution rates. • Lack of dissolved gas measurements limits deeper understanding.
Collapse
Affiliation(s)
- Iris Kerkhof
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Lars Puiman
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Adrie J J Straathof
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| |
Collapse
|
2
|
Antonicelli G, Vasile N, Piro E, Fraterrigo Garofalo S, Menin B, Verga F, Pirri F, Agostino V. Harnessing an adapted strain of Clostridium carboxidivorans to unlock hexanol production from carbon dioxide and hydrogen in elevated-pressure stirred tank reactors. BIORESOURCE TECHNOLOGY 2024; 418:131966. [PMID: 39662847 DOI: 10.1016/j.biortech.2024.131966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/26/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
To successfully scale-up the production of bio-based building blocks through CO2 and H2-based gas fermentation, it is crucial to deeply understand and control the microbial catalyst response to the bioreactor environment. This study investigates the effects of key process parameters, such as CO2 and H2 partial pressures, gas feeding strategies, and mixture composition, on the production pathways of an evolved Clostridium carboxidivorans strain. The ultimate goal is to optimize 1-hexanol production in elevated-pressure stirred-tank reactors. Continuous gas feeding enhanced acetogenic and solventogenic metabolisms, while gas-limited conditions promoted chain elongation to caproic acid. An optimized process, combining an initial gas-limited step followed by a continuous gas phase, increased 1-hexanol production, achieving a maximum biomass-specific productivity of 0.9 g gCDW-1 day-1. In-situ product extraction improved 1-hexanol carbon selectivity to an unprecedented 60 %. These findings demonstrate the potential of CO2 and H2-fed fermentation to produce high-value chemicals other than ethanol and acetate.
Collapse
Affiliation(s)
- G Antonicelli
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Via Livorno 60, Turin 10144, Italy; Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin 10129, Italy.
| | - N Vasile
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Via Livorno 60, Turin 10144, Italy; Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin 10129, Italy.
| | - E Piro
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Via Livorno 60, Turin 10144, Italy; Department of Life Sciences and Systems Biology, University of Turin, Via Verdi 8, Turin 10124, Italy.
| | - S Fraterrigo Garofalo
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin 10129, Italy.
| | - B Menin
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Via Livorno 60, Turin 10144, Italy; Institute of Agricultural Biology and Biotechnology, National Research Council, CNR-IBBA, Via Alfonso Corti 12, Milano 20133, Italy.
| | - F Verga
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin 10129, Italy.
| | - F Pirri
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Via Livorno 60, Turin 10144, Italy; Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin 10129, Italy.
| | - V Agostino
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Via Livorno 60, Turin 10144, Italy.
| |
Collapse
|
3
|
Hill JD, Papoutsakis ET. Species-specific ribosomal RNA-FISH identifies interspecies cellular-material exchange, active-cell population dynamics and cellular localization of translation machinery in clostridial cultures and co-cultures. mSystems 2024; 9:e0057224. [PMID: 39254339 PMCID: PMC11495018 DOI: 10.1128/msystems.00572-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
The development of synthetic microbial consortia in recent years has revealed that complex interspecies interactions, notably the exchange of cytoplasmic material, exist even among organisms that originate from different ecological niches. Although morphogenetic characteristics, viable RNA and protein dyes, and fluorescent reporter proteins have played an essential role in exploring such interactions, we hypothesized that ribosomal RNA-fluorescence in situ hybridization (rRNA-FISH) could be adapted and applied to further investigate interactions in synthetic or semisynthetic consortia. Despite its maturity, several challenges exist in using rRNA-FISH as a tool to quantify individual species population dynamics and interspecies interactions using high-throughput instrumentation such as flow cytometry. In this work, we resolve such challenges and apply rRNA-FISH to double and triple co-cultures of Clostridium acetobutylicum, Clostridium ljungdahlii, and Clostridium kluyveri. In pursuing our goal to capture each organism's population dynamics, we demonstrate dynamic rRNA, and thus ribosome, exchange between the three species leading to the formation of hybrid cells. We also characterize the localization patterns of the translation machinery in the three species, identifying distinct, dynamic localization patterns among them. Our data also support the use of rRNA-FISH to assess the culture's health and expansion potential, and, here again, our data find surprising differences among the three species examined. Taken together, our study argues for rRNA-FISH as a valuable and accessible tool for quantitative exploration of interspecies interactions, especially in organisms which cannot be genetically engineered or in consortia where selective pressures to maintain recombinant species cannot be used. IMPORTANCE Though dyes and fluorescent reporter proteins have played an essential role in identifying microbial species in co-cultures, we hypothesized that ribosomal RNA-fluorescence in situ hybridization (rRNA-FISH) could be adapted and applied to quantitatively probe complex interactions between organisms in synthetic consortia. Despite its maturity, several challenges existed before rRNA-FISH could be used to study Clostridium co-cultures of interest. First, species-specific probes for Clostridium acetobutylicum and Clostridium ljungdahlii had not been developed. Second, "state-of-the-art" labeling protocols were tedious and often resulted in sample loss. Third, it was unclear if FISH was compatible with existing fluorescent reporter proteins. We resolved these key challenges and applied the technique to co-cultures of C. acetobutylicum, C. ljungdahlii, and Clostridium kluyveri. We demonstrate that rRNA-FISH is capable of identifying rRNA/ribosome exchange between the three organisms and characterized rRNA localization patterns in each. In combination with flow cytometry, rRNA-FISH can capture sub-population dynamics in co-cultures.
Collapse
Affiliation(s)
- John D. Hill
- Department of Chemical and Biomolecular Engineering, The Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Eleftherios T. Papoutsakis
- Department of Chemical and Biomolecular Engineering, The Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
4
|
Ponsetto P, Sasal EM, Mazzoli R, Valetti F, Gilardi G. The potential of native and engineered Clostridia for biomass biorefining. Front Bioeng Biotechnol 2024; 12:1423935. [PMID: 39219620 PMCID: PMC11365079 DOI: 10.3389/fbioe.2024.1423935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Since their first industrial application in the acetone-butanol-ethanol (ABE) fermentation in the early 1900s, Clostridia have found large application in biomass biorefining. Overall, their fermentation products include organic acids (e.g., acetate, butyrate, lactate), short chain alcohols (e.g., ethanol, n-butanol, isobutanol), diols (e.g., 1,2-propanediol, 1,3-propanediol) and H2 which have several applications such as fuels, building block chemicals, solvents, food and cosmetic additives. Advantageously, several clostridial strains are able to use cheap feedstocks such as lignocellulosic biomass, food waste, glycerol or C1-gases (CO2, CO) which confer them additional potential as key players for the development of processes less dependent from fossil fuels and with reduced greenhouse gas emissions. The present review aims to provide a survey of research progress aimed at developing Clostridium-mediated biomass fermentation processes, especially as regards strain improvement by metabolic engineering.
Collapse
Affiliation(s)
| | | | - Roberto Mazzoli
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | | | | |
Collapse
|
5
|
Liang J, Xiao K, Wang X, Hou T, Zeng C, Gao X, Wang B, Zhong C. Revisiting Solar Energy Flow in Nanomaterial-Microorganism Hybrid Systems. Chem Rev 2024; 124:9081-9112. [PMID: 38900019 DOI: 10.1021/acs.chemrev.3c00831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Nanomaterial-microorganism hybrid systems (NMHSs), integrating semiconductor nanomaterials with microorganisms, present a promising platform for broadband solar energy harvesting, high-efficiency carbon reduction, and sustainable chemical production. While studies underscore its potential in diverse solar-to-chemical energy conversions, prevailing NMHSs grapple with suboptimal energy conversion efficiency. Such limitations stem predominantly from an insufficient systematic exploration of the mechanisms dictating solar energy flow. This review provides a systematic overview of the notable advancements in this nascent field, with a particular focus on the discussion of three pivotal steps of energy flow: solar energy capture, cross-membrane energy transport, and energy conversion into chemicals. While key challenges faced in each stage are independently identified and discussed, viable solutions are correspondingly postulated. In view of the interplay of the three steps in affecting the overall efficiency of solar-to-chemical energy conversion, subsequent discussions thus take an integrative and systematic viewpoint to comprehend, analyze and improve the solar energy flow in the current NMHSs of different configurations, and highlighting the contemporary techniques that can be employed to investigate various aspects of energy flow within NMHSs. Finally, a concluding section summarizes opportunities for future research, providing a roadmap for the continued development and optimization of NMHSs.
Collapse
Affiliation(s)
- Jun Liang
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kemeng Xiao
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xinyu Wang
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tianfeng Hou
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Cuiping Zeng
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiang Gao
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Bo Wang
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chao Zhong
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
6
|
Mehdizadeh Gohari I, Edwards AN, McBride SM, McClane BA. The impact of orphan histidine kinases and phosphotransfer proteins on the regulation of clostridial sporulation initiation. mBio 2024; 15:e0224823. [PMID: 38477571 PMCID: PMC11210211 DOI: 10.1128/mbio.02248-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
Sporulation is an important feature of the clostridial life cycle, facilitating survival of these bacteria in harsh environments, contributing to disease transmission for pathogenic species, and sharing common early steps that are also involved in regulating industrially important solvent production by some non-pathogenic species. Initial genomics studies suggested that Clostridia lack the classical phosphorelay that phosphorylates Spo0A and initiates sporulation in Bacillus, leading to the hypothesis that sporulation in Clostridia universally begins when Spo0A is phosphorylated by orphan histidine kinases (OHKs). However, components of the classical Bacillus phosphorelay were recently identified in some Clostridia. Similar Bacillus phosphorelay components have not yet been found in the pathogenic Clostridia or the solventogenic Clostridia of industrial importance. For some of those Clostridia lacking a classical phosphorelay, the involvement of OHKs in sporulation initiation has received support from genetic studies demonstrating the involvement of several apparent OHKs in their sporulation. In addition, several clostridial OHKs directly phosphorylate Spo0A in vitro. Interestingly, there is considerable protein domain diversity among the sporulation-associated OHKs in Clostridia. Further adding to the emergent complexity of sporulation initiation in Clostridia, several candidate OHK phosphotransfer proteins that were OHK candidates were shown to function as phosphatases that reduce sporulation in some Clostridia. The mounting evidence indicates that no single pathway explains sporulation initiation in all Clostridia and supports the need for further study to fully understand the unexpected and biologically fascinating mechanistic diversity of this important process among these medically and industrially important bacteria.
Collapse
Affiliation(s)
- Iman Mehdizadeh Gohari
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Adrianne N. Edwards
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Shonna M. McBride
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Bruce A. McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Robles-Iglesias R, Fernández-Blanco C, Nicaud JM, Veiga MC, Kennes C. Unlocking the potential of one-carbon gases (CO 2, CO) for concomitant bioproduction of β-carotene and lipids. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115950. [PMID: 38211510 DOI: 10.1016/j.ecoenv.2024.115950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
This study investigates the use of a Yarrowia lipolytica strain for the bioconversion of syngas-derived acetic acid into β-carotene and lipids. A two-stage process was employed, starting with the acetogenic fermentation of syngas by Clostridium aceticum, metabolising CO, CO2, H2, to produce acetic acid, which is then utilized by Y. lipolytica for simultaneous lipid and β-carotene synthesis. The research demonstrates that acetic acid concentration plays a pivotal role in modulating lipid profiles and enhancing β-carotene production, with increased acetic acid consumption leading to higher yields of these compounds. This approach showcases the potential of using one-carbon gases as substrates in bioprocesses for generating valuable bioproducts, providing a sustainable and cost-effective alternative to more conventional feedstocks and substrates, such as sugars.
Collapse
Affiliation(s)
- Raúl Robles-Iglesias
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN group, University of La Coruña, Rúa da Fraga 10, La Coruña 15008, Spain
| | - Carla Fernández-Blanco
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN group, University of La Coruña, Rúa da Fraga 10, La Coruña 15008, Spain
| | - Jean-Marc Nicaud
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - María C Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN group, University of La Coruña, Rúa da Fraga 10, La Coruña 15008, Spain
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN group, University of La Coruña, Rúa da Fraga 10, La Coruña 15008, Spain.
| |
Collapse
|
8
|
Perret L, Boukis N, Sauer J. Synthesis gas fermentation at high cell density: How pH and hydrogen partial pressure affect productivity and product ratio in continuous fermentation. BIORESOURCE TECHNOLOGY 2024; 391:129894. [PMID: 37866768 DOI: 10.1016/j.biortech.2023.129894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
For the first time, syngas fermentation was operated continuously with total cell retention and process pressures up to 4barg in long-term runs of up to 3000 hours. Throughout this time, the process was stable. The measured data have shown that hydrogen uptake and ethanol space-time yield are highest at a slightly reduced pH of 5.7 compared to pH5.9. Even lower pH values lead to higher acetic acid to ethanol product ratios, while C2space-time yields remain constant. Increasing the hydrogen partial pressure to 1.52bar resulted in a significant increase in hydrogen uptake rate and ethanol formation. An ethanol space-time yield of 10mmolL-1h-1 was short-term achieved, being the highest space-time yield measured to date for the wild type of C. ljungdahlii. Hydrogen uptake above a theoretical equilibrium concentration of [Formula: see text] is significantly reduced, indicating an inhibition of an enzymatic reaction.
Collapse
Affiliation(s)
- Lukas Perret
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Baden-Wurttemberg, Germany.
| | - Nikolaos Boukis
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Baden-Wurttemberg, Germany
| | - Jörg Sauer
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Baden-Wurttemberg, Germany
| |
Collapse
|