1
|
Andratschke N, Willmann J, Appelt AL, Day M, Kronborg C, Massaccesi M, Ozsahin M, Pasquier D, Petric P, Riesterer O, De Ruysscher D, M Van der Velden J, Guckenberger M. Reirradiation - still navigating uncharted waters? Clin Transl Radiat Oncol 2024; 49:100871. [PMID: 39444538 PMCID: PMC11497423 DOI: 10.1016/j.ctro.2024.100871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
With the emergence of high-precision radiotherapy technologies such as stereotactic ablative radiotherapy (SABR), MR guided brachytherapy, image guided intensity modulated photon and proton radiotherapy and most recently daily adaptive radiotherapy, reirradiation is increasingly recognized as a viable treatment option for many patients. This includes those with recurrent, metastatic or new malignancies post initial radiotherapy. The primary challenge in reirradiation lies in balancing tumor control against the risk of severe toxicity from cumulative radiation doses to previously irradiated normal tissue. Although technology for precise delivery has advanced at a fast pace, clinical practice of reirradiation still mostly relies on individual expertise, as prospective evidence is scarce, the level of reporting in clinical studies is not standardized and of low quality - especially with respect to cumulative doses received by organs at risk. A recent ESTRO/EORTC initiative proposed a standardized definition of reirradiation and formulated general requirements for minimal reporting in clinical studies [1]. As a consequence we found it timely to convene for an international and interdisciplinary meeting with experts in the field to summarize the current evidence, identify knowledge gaps and explore which best practices can be derived for safe reirradiation. The meeting was held on 15.06.2023 in Zurich and was endorsed by the scientific societies SASRO, DEGRO and ESTRO. Here, we report on available evidence and research priorities in the field of reirradiation, as discussed during the meeting.
Collapse
Affiliation(s)
- Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, Switzerland
| | - Jonas Willmann
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, Switzerland
| | - Ane L Appelt
- Leeds Institute of Medical Research at St James’s, University of Leeds, UK
- Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, UK
| | - Madalyne Day
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, Switzerland
| | - Camilla Kronborg
- Danish Centre for Particle Therapy, Aarhus University Hospital, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mariangela Massaccesi
- Department of Radiology, Radiation Oncology and Hematology, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | | | - David Pasquier
- Academic Department of Radiation Oncology, Centre O Lambret, Lille, France
- University of Lille, Centrale Lille, CNRS, CRIStAL UMR 9189, Lille, France
| | - Primoz Petric
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, Switzerland
| | | | - Dirk De Ruysscher
- Maastricht University Medical Center+, Department of Radiation Oncology (Maastro), GROW School and Erasmus MC Cancer Institute, University Medical Center Rotterdam, the Netherlands
| | - Joanne M Van der Velden
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, Switzerland
| |
Collapse
|
2
|
Yun JE, Kim S, Park KY, Lee W. Effectiveness and Safety of Carbon Ion Radiotherapy in Solid Tumors: A Systematic Review and Meta-Analysis. Yonsei Med J 2024; 65:332-340. [PMID: 38804027 PMCID: PMC11130593 DOI: 10.3349/ymj.2023.0439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 05/29/2024] Open
Abstract
PURPOSE This systematic review and meta-analysis aimed to investigate the effectiveness of carbon ion radiotherapy (CIRT) compared to that of conventional radiotherapy in patients with various types of solid tumors. MATERIALS AND METHODS We systematically searched eight electronic databases from inception until August 2022 in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines. The comparative effectiveness of the different treatment options was assessed by a random-effects meta-analysis. RESULTS This review included 34 comparative studies and three treatment groups. Overall, the meta-analysis indicated comparable local control rates between the CIRT and control groups [pooled risk ratio (RR)=1.02, 95% confidence interval (CI) 0.90-1.15]. The local control rate in the CIRT group was higher than that in the photon therapy group, but slightly lower than that in the proton radiation therpy (PRT) group. Additionally, the CIRT group had significantly higher overall survival (OS) (RR=1.19, 95% CI=1.01-1.42) and progression-free survival (PFS) (RR=1.50, 95% CI=1.01-2.21) rates compared to the control group. In the subgroup analysis, survival rates were similar between the CIRT and PRT groups. CONCLUSION CIRT was associated with improved toxicity, local tumor control, OS, and PFS compared to conventional treatments. Therefore, CIRT was found to be a safe and effective option for achieving local control in patients with solid tumors.
Collapse
Affiliation(s)
- Ji Eun Yun
- Division of Healthcare Research, National Evidence-Based Healthcare Collaborating Agency, Seoul, Korea
| | - Sujin Kim
- Division of New Health Technology Assessment, National Evidence-Based Healthcare Collaborating Agency, Seoul, Korea
- College of Nursing, Korea University, Seoul, Korea
| | - Keun Young Park
- Division of New Health Technology Assessment, National Evidence-Based Healthcare Collaborating Agency, Seoul, Korea
| | - Worlsook Lee
- Division of New Health Technology Assessment, National Evidence-Based Healthcare Collaborating Agency, Seoul, Korea.
| |
Collapse
|
3
|
Thwaites DI, Prokopovich DA, Garrett RF, Haworth A, Rosenfeld A, Ahern V. The rationale for a carbon ion radiation therapy facility in Australia. J Med Radiat Sci 2024; 71 Suppl 2:59-76. [PMID: 38061984 PMCID: PMC11011608 DOI: 10.1002/jmrs.744] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/17/2023] [Indexed: 04/13/2024] Open
Abstract
Australia has taken a collaborative nationally networked approach to achieve particle therapy capability. This supports the under-construction proton therapy facility in Adelaide, other potential proton centres and an under-evaluation proposal for a hybrid carbon ion and proton centre in western Sydney. A wide-ranging overview is presented of the rationale for carbon ion radiation therapy, applying observations to the case for an Australian facility and to the clinical and research potential from such a national centre.
Collapse
Affiliation(s)
- David I. Thwaites
- Institute of Medical Physics, School of PhysicsUniversity of SydneySydneyNew South WalesAustralia
- Department of Radiation OncologySydney West Radiation Oncology NetworkWestmeadNew South WalesAustralia
- Radiotherapy Research Group, Institute of Medical ResearchSt James's Hospital and University of LeedsLeedsUK
| | | | - Richard F. Garrett
- Australian Nuclear Science and Technology OrganisationLucas HeightsNew South WalesAustralia
| | - Annette Haworth
- Institute of Medical Physics, School of PhysicsUniversity of SydneySydneyNew South WalesAustralia
- Department of Radiation OncologySydney West Radiation Oncology NetworkWestmeadNew South WalesAustralia
| | - Anatoly Rosenfeld
- Centre for Medical Radiation Physics, School of PhysicsUniversity of WollongongSydneyNew South WalesAustralia
| | - Verity Ahern
- Department of Radiation OncologySydney West Radiation Oncology NetworkWestmeadNew South WalesAustralia
- Westmead Clinical School, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| |
Collapse
|
4
|
Khong J, Tee H, Gorayski P, Le H, Penniment M, Jessop S, Hansford J, Penfold M, Green J, Skelton K, Saran F. Proton beam therapy in paediatric cancer: Anticipating the opening of the Australian Bragg Centre for Proton Therapy and Research. J Med Imaging Radiat Oncol 2023. [PMID: 38146017 DOI: 10.1111/1754-9485.13614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/09/2023] [Indexed: 12/27/2023]
Abstract
Proton Beam Therapy (PBT) has the potential to improve paediatric cancer care by reducing radiation exposure and thus long-term toxicities. Ethical concerns and debates surrounding the treatment, such as eligibility and accessibility, are ongoing in Australia. The Australian Bragg Centre for Proton Therapy and Research (ABCPTR) (named after Sir William Henry Bragg who described the Bragg peak in his laboratory at the University of Adelaide in 1903) aims to increase access to PBT in Australasia and offer a patient-centred care approach. Research is underway to assess PBT's safety and cost-effectiveness, using tools including Normal Tissue Complication Probability (NTCP) models. Collaborative efforts are focused on developing tailored survivorship clinics to enhance patient follow-up and quality of life. With the anticipated opening of the ABCPTR, Australia is preparing to take a significant step in radiation oncology, offering new research opportunities and creating a publicly funded treatment centre. The initiative aims to balance treatment efficacy with patient care, setting the stage for a future in which radiation therapy will reduce long-term side effects compared to the current standard of care. The implementation of PBT in Australia represents a complex and promising approach to paediatric oncology. This article provides an overview of the current landscape, highlighting the potential benefits and challenges of a treatment that could redefine the quality of survivorship and contribute to global research and best clinical practice.
Collapse
Affiliation(s)
- Jeremy Khong
- Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Hui Tee
- Royal Adelaide Hospital, Adelaide, South Australia, Australia
- South Australia Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Peter Gorayski
- Royal Adelaide Hospital, Adelaide, South Australia, Australia
- South Australia Health and Medical Research Institute, Adelaide, South Australia, Australia
- Australian Bragg Centre for Proton Therapy and Research, Adelaide, South Australia, Australia
- Allied Health and Human Performance Academic Unit, University of South Australia, Adelaide, South Australia, Australia
| | - Hien Le
- Royal Adelaide Hospital, Adelaide, South Australia, Australia
- South Australia Health and Medical Research Institute, Adelaide, South Australia, Australia
- Australian Bragg Centre for Proton Therapy and Research, Adelaide, South Australia, Australia
- Allied Health and Human Performance Academic Unit, University of South Australia, Adelaide, South Australia, Australia
| | - Michael Penniment
- Royal Adelaide Hospital, Adelaide, South Australia, Australia
- South Australia Health and Medical Research Institute, Adelaide, South Australia, Australia
- Australian Bragg Centre for Proton Therapy and Research, Adelaide, South Australia, Australia
| | - Sophie Jessop
- Michael Rice Centre for Haematology and Oncology, Women's and Children's Hospital, Adelaide, South Australia, Australia
| | - Jordan Hansford
- South Australia Health and Medical Research Institute, Adelaide, South Australia, Australia
- Michael Rice Centre for Haematology and Oncology, Women's and Children's Hospital, Adelaide, South Australia, Australia
- South Australia ImmunoGenomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Melanie Penfold
- South Australia Health and Medical Research Institute, Adelaide, South Australia, Australia
- Australian Bragg Centre for Proton Therapy and Research, Adelaide, South Australia, Australia
| | - Julia Green
- South Australia Health and Medical Research Institute, Adelaide, South Australia, Australia
- Australian Bragg Centre for Proton Therapy and Research, Adelaide, South Australia, Australia
| | - Kelly Skelton
- Royal Adelaide Hospital, Adelaide, South Australia, Australia
- South Australia Health and Medical Research Institute, Adelaide, South Australia, Australia
- Australian Bragg Centre for Proton Therapy and Research, Adelaide, South Australia, Australia
- Allied Health and Human Performance Academic Unit, University of South Australia, Adelaide, South Australia, Australia
| | - Frank Saran
- Royal Adelaide Hospital, Adelaide, South Australia, Australia
- South Australia Health and Medical Research Institute, Adelaide, South Australia, Australia
- Australian Bragg Centre for Proton Therapy and Research, Adelaide, South Australia, Australia
- Allied Health and Human Performance Academic Unit, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
5
|
Hwang E, Gorayski P, Thwaites D, Le H, Skelton K, Loong JTK, Langendijk H, Smith E, Yock TI, Ahern V. Minimum data elements for the Australian Particle Therapy Clinical Quality Registry. J Med Imaging Radiat Oncol 2023; 67:668-675. [PMID: 37417796 DOI: 10.1111/1754-9485.13557] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023]
Abstract
INTRODUCTION Construction of the first Australian particle therapy (PT) centre is underway. Establishment of a national registry, to be known as the Australian Particle Therapy Clinical Quality Registry (ASPIRE), has been identified as a mandatory requirement for PT treatment to be reimbursed by the Australian Medicare Benefits Schedule. This study aimed to determine a consensus set of Minimum Data Elements (MDEs) for ASPIRE. METHODS A modified Delphi and expert consensus process was completed. Stage 1 compiled currently operational English-language international PT registries. Stage 2 listed the MDEs included in each of these four registries. Those included in three or four registries were automatically included as a potential MDE for ASPIRE. Stage 3 interrogated the remaining data items, and involved three rounds - an online survey to a panel of experts, followed by a live poll session of PT-interested participants, and finally a virtual discussion forum of the original expert panel. RESULTS One hundred and twenty-three different MDEs were identified across the four international registries. The multi-staged Delphi and expert consensus process resulted in a total of 27 essential MDEs for ASPIRE; 14 patient factors, four tumour factors and nine treatment factors. CONCLUSIONS The MDEs provide the core mandatory data items for the national PT registry. Registry data collection for PT is paramount in the ongoing global effort to accumulate more robust clinical evidence regarding PT patient and tumour outcomes, quantifying the magnitude of clinical benefit and justifying the relatively higher costs of PT investment.
Collapse
Affiliation(s)
- Eunji Hwang
- Department of Radiation Oncology, Sydney West Radiation Oncology Network, Sydney, New South Wales, Australia
- Institute of Medical Physics, University of Sydney, Sydney, New South Wales, Australia
| | - Peter Gorayski
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Australian Bragg Centre for Proton Therapy and Research, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - David Thwaites
- Institute of Medical Physics, University of Sydney, Sydney, New South Wales, Australia
| | - Hien Le
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Australian Bragg Centre for Proton Therapy and Research, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Kelly Skelton
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Australian Bragg Centre for Proton Therapy and Research, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Jeffrey Tuan Kit Loong
- Department of Radiation Oncology, National Cancer Centre Singapore, Singapore City, Singapore
- Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore City, Singapore
| | - Hans Langendijk
- Department of Radiation Oncology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Ed Smith
- The Christie Proton Beam Therapy Centre, The Christie NHS Foundation Trust, Manchester, UK
- Manchester Cancer Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Torunn I Yock
- Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Verity Ahern
- Department of Radiation Oncology, Sydney West Radiation Oncology Network, Sydney, New South Wales, Australia
- Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Hwang E, Gaito S, France A, Crellin AM, Thwaites DI, Ahern V, Indelicato D, Timmermann B, Smith E. Outcomes of Patients Treated in the UK Proton Overseas Programme: Non-central Nervous System Group. Clin Oncol (R Coll Radiol) 2023; 35:292-300. [PMID: 36813694 DOI: 10.1016/j.clon.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/06/2022] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
AIMS The UK Proton Overseas Programme (POP) was launched in 2008. The Proton Clinical Outcomes Unit (PCOU) warehouses a centralised registry for collection, curation and analysis of all outcomes data for all National Health Service-funded UK patients referred and treated abroad with proton beam therapy (PBT) via the POP. Outcomes are reported and analysed here for patients diagnosed with non-central nervous system tumours treated from 2008 to September 2020 via the POP. MATERIALS AND METHODS All non-central nervous system tumour files for treatments as of 30 September 2020 were interrogated for follow-up information, and type (following CTCAE v4) and time of onset of any late (>90 days post-PBT completion) grade 3-5 toxicities. RESULTS Four hundred and ninety-five patients were analysed. The median follow-up was 2.1 years (0-9.3 years). The median age was 11 years (0-69 years). 70.3% of patients were paediatric (<16 years). Rhabdomyosarcoma (RMS) and Ewing sarcoma were the most common diagnoses (42.6% and 34.1%). 51.3% of treated patients were for head and neck (H&N) tumours. At last known follow-up, 86.1% of all patients were alive, with a 2-year survival rate of 88.3% and 2-year local control of 90.3%. Mortality and local control were worse for adults (≥25 years) than for the younger groups. The grade 3 toxicity rate was 12.6%, with a median onset of 2.3 years. Most were in the H&N region in paediatric patients with RMS. Cataracts (30.5%) were the most common, then musculoskeletal deformity (10.1%) and premature menopause (10.1%). Three paediatric patients (1-3 years at treatment) experienced secondary malignancy. Seven grade 4 toxicities occurred (1.6%), all in the H&N region and most in paediatric patients with RMS. Six related to eyes (cataracts, retinopathy, scleral disorder) or ears (hearing impairment). CONCLUSIONS This study is the largest to date for RMS and Ewing sarcoma, undergoing multimodality therapy including PBT. It demonstrates good local control, survival and acceptable toxicity rates.
Collapse
Affiliation(s)
- E Hwang
- The Christie Proton Beam Therapy Centre, The Christie NHS Foundation Trust, Manchester, UK; Department of Radiation Oncology, Sydney West Radiation Oncology Network, Crown Princess Mary Cancer Centre, Sydney, NSW, Australia; Institute of Medical Physics, School of Physics, University of Sydney, NSW, Australia.
| | - S Gaito
- Proton Clinical Outcomes Unit, The Christie NHS Foundation Trust, Manchester, UK; University of Manchester, Manchester Cancer Research Centre, Manchester Academic Health Science Centre, Manchester, UK
| | - A France
- Proton Clinical Outcomes Unit, The Christie NHS Foundation Trust, Manchester, UK
| | - A M Crellin
- NHS England National Clinical Lead Proton Beam Therapy, UK
| | - D I Thwaites
- Institute of Medical Physics, School of Physics, University of Sydney, NSW, Australia; Radiotherapy Research Group, Leeds Institute of Medical Research, St James's Hospital and School of Medicine, Leeds University, Leeds, UK
| | - V Ahern
- Department of Radiation Oncology, Sydney West Radiation Oncology Network, Crown Princess Mary Cancer Centre, Sydney, NSW, Australia; Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - D Indelicato
- University of Florida Department of Radiation Oncology, Jacksonville, FL, USA
| | - B Timmermann
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen, West German Cancer Centre, German Cancer Consortium, Essen, Germany
| | - E Smith
- The Christie Proton Beam Therapy Centre, The Christie NHS Foundation Trust, Manchester, UK; Proton Clinical Outcomes Unit, The Christie NHS Foundation Trust, Manchester, UK; University of Manchester, Manchester Cancer Research Centre, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
7
|
Barcellini A, Dusi V, Mirandola A, Ronchi S, Riva G, Dal Mas F, Massaro M, Vitolo V, Ciocca M, Rordorf R, Orlandi E. The impact of particle radiotherapy on the functioning of cardiac implantable electronic devices: a systematic review of in vitro and in vivo studies according to PICO criteria. LA RADIOLOGIA MEDICA 2022; 127:1046-1058. [PMID: 35871428 PMCID: PMC9508006 DOI: 10.1007/s11547-022-01520-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022]
Abstract
The number of oncological patients who may benefit from proton beam radiotherapy (PBT) or carbon ion radiotherapy (CIRT), overall referred to as particle radiotherapy (RT), is expected to strongly increase in the next future, as well as the number of cardiological patients requiring cardiac implantable electronic devices (CIEDs). The management of patients with a CIED requiring particle RT deserves peculiar attention compared to those undergoing conventional photon beam RT, mostly due to the potential generation of secondary neutrons by particle beams interactions. Current consensus documents recommend managing these patients as being at intermediate/high risk of RT-induced device malfunctioning regardless of the dose on the CIED and the beam delivery method used, despite the last one significantly affects secondary neutrons generation (very limited neutrons production with active scanning as opposed to the passive scattering technique). The key issues for the current review were expressed in four questions according to the Population, Intervention, Control, Outcome criteria. Three in vitro and five in vivo studies were included. Based on the available data, PBT and CIRT with active scanning have a limited potential to interfere with CIED that has only emerged from in vitro study so far, while a significant potential for neutron-related, not severe, CIED malfunctions (resets) was consistently reported in both clinical and in vitro studies with passive scattering.
Collapse
Affiliation(s)
- Amelia Barcellini
- Radiation Oncology, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Veronica Dusi
- Division of Cardiology, Department of Medical Sciences, AOU Città Della Salute e Della Scienza, University of Turin, Turin, Italy.
| | - Alfredo Mirandola
- Radiation Oncology, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Sara Ronchi
- Radiation Oncology, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Giulia Riva
- Radiation Oncology, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Francesca Dal Mas
- Department of Management, Ca' Foscari University of Venice, Venice, Italy
| | - Maurizio Massaro
- Department of Management, Ca' Foscari University of Venice, Venice, Italy
| | - Viviana Vitolo
- Radiation Oncology, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Mario Ciocca
- Radiation Oncology, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Roberto Rordorf
- Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ester Orlandi
- Radiation Oncology, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| |
Collapse
|
8
|
Bucknell NW, Belderbos J, Palma DA, Iyengar P, Samson P, Chua K, Gomez D, McDonald F, Louie AV, Faivre-Finn C, Hanna GG, Siva S. Avoiding toxicity with lung radiation therapy: An IASLC perspective. J Thorac Oncol 2022; 17:961-973. [DOI: 10.1016/j.jtho.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022]
|
9
|
Burnet NG, Mee T, Gaito S, Kirkby NF, Aitkenhead AH, Anandadas CN, Aznar MC, Barraclough LH, Borst G, Charlwood FC, Clarke M, Colaco RJ, Crellin AM, Defourney NN, Hague CJ, Harris M, Henthorn NT, Hopkins KI, Hwang E, Ingram SP, Kirkby KJ, Lee LW, Lines D, Lingard Z, Lowe M, Mackay RI, McBain CA, Merchant MJ, Noble DJ, Pan S, Price JM, Radhakrishna G, Reboredo-Gil D, Salem A, Sashidharan S, Sitch P, Smith E, Smith EAK, Taylor MJ, Thomson DJ, Thorp NJ, Underwood TSA, Warmenhoven JW, Wylie JP, Whitfield G. Estimating the percentage of patients who might benefit from proton beam therapy instead of X-ray radiotherapy. Br J Radiol 2022; 95:20211175. [PMID: 35220723 PMCID: PMC10993980 DOI: 10.1259/bjr.20211175] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES High-energy Proton Beam Therapy (PBT) commenced in England in 2018 and NHS England commissions PBT for 1.5% of patients receiving radical radiotherapy. We sought expert opinion on the level of provision. METHODS Invitations were sent to 41 colleagues working in PBT, most at one UK centre, to contribute by completing a spreadsheet. 39 responded: 23 (59%) completed the spreadsheet; 16 (41%) declined, arguing that clinical outcome data are lacking, but joined six additional site-specialist oncologists for two consensus meetings. The spreadsheet was pre-populated with incidence data from Cancer Research UK and radiotherapy use data from the National Cancer Registration and Analysis Service. 'Mechanisms of Benefit' of reduced growth impairment, reduced toxicity, dose escalation and reduced second cancer risk were examined. RESULTS The most reliable figure for percentage of radical radiotherapy patients likely to benefit from PBT was that agreed by 95% of the 23 respondents at 4.3%, slightly larger than current provision. The median was 15% (range 4-92%) and consensus median 13%. The biggest estimated potential benefit was from reducing toxicity, median benefit to 15% (range 4-92%), followed by dose escalation median 3% (range 0 to 47%); consensus values were 12 and 3%. Reduced growth impairment and reduced second cancer risk were calculated to benefit 0.5% and 0.1%. CONCLUSIONS The most secure estimate of percentage benefit was 4.3% but insufficient clinical outcome data exist for confident estimates. The study supports the NHS approach of using the evidence base and developing it through randomised trials, non-randomised studies and outcomes tracking. ADVANCES IN KNOWLEDGE Less is known about the percentage of patients who may benefit from PBT than is generally acknowledged. Expert opinion varies widely. Insufficient clinical outcome data exist to provide robust estimates. Considerable further work is needed to address this, including international collaboration; much is already underway but will take time to provide mature data.
Collapse
Affiliation(s)
- Neil G Burnet
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
| | - Thomas Mee
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - Simona Gaito
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - Norman F Kirkby
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - Adam H Aitkenhead
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
- Christie Medical Physics and Engineering, The Christie NHS
Foundation Trust, Wilmslow Road,
Manchester, United Kingdom
| | - Carmel N Anandadas
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
| | - Marianne C Aznar
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - Lisa H Barraclough
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
| | - Gerben Borst
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - Frances C Charlwood
- Christie Medical Physics and Engineering, The Christie NHS
Foundation Trust, Wilmslow Road,
Manchester, United Kingdom
| | - Matthew Clarke
- Christie Medical Physics and Engineering, The Christie NHS
Foundation Trust, Wilmslow Road,
Manchester, United Kingdom
| | - Rovel J Colaco
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - Adrian M Crellin
- NHS England National Clinical Lead Proton Beam Therapy, Leeds
Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds and St James's
Institute of Oncology, Leeds Teaching Hospitals NHS Trust, Beckett
Street, Leeds, LS9 7TF, UK, Leeds,
United Kingdom
| | - Noemie N Defourney
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - Christina J Hague
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
| | - Margaret Harris
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
| | - Nicholas T Henthorn
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - Kirsten I Hopkins
- International Atomic Energy Agency, Vienna International
Centre, Vienna,
Austria
| | - E Hwang
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
- Department of Radiation Oncology, Sydney West Radiation
Oncology Network, Crown Princess Mary Cancer Centre,
Sydney, New South Wales, Australia and
Institute of Medical Physics, School of Physics, University of Sydney,
Sydney, New South Wales, Australia
| | - Sam P Ingram
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
- Christie Medical Physics and Engineering, The Christie NHS
Foundation Trust, Wilmslow Road,
Manchester, United Kingdom
| | - Karen J Kirkby
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - Lip W Lee
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
| | - David Lines
- Christie Medical Physics and Engineering, The Christie NHS
Foundation Trust, Wilmslow Road,
Manchester, United Kingdom
| | - Zoe Lingard
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - Matthew Lowe
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
- Christie Medical Physics and Engineering, The Christie NHS
Foundation Trust, Wilmslow Road,
Manchester, United Kingdom
| | - Ranald I Mackay
- Christie Medical Physics and Engineering, The Christie NHS
Foundation Trust, Wilmslow Road,
Manchester, United Kingdom
| | - Catherine A McBain
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
| | - Michael J Merchant
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - David J Noble
- Department of Clinical Oncology, Edinburgh Cancer Centre,
Western General Hospital,
Edinburgh, United Kingdom
| | - Shermaine Pan
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - James M Price
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | | | - David Reboredo-Gil
- Christie Medical Physics and Engineering, The Christie NHS
Foundation Trust, Wilmslow Road,
Manchester, United Kingdom
| | - Ahmed Salem
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | | | - Peter Sitch
- Christie Medical Physics and Engineering, The Christie NHS
Foundation Trust, Wilmslow Road,
Manchester, United Kingdom
| | - Ed Smith
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
- Proton Clinical Outcomes Unit, The Christie NHS Foundation
Trust, Manchester, United
Kingdom
| | - Edward AK Smith
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
- Christie Medical Physics and Engineering, The Christie NHS
Foundation Trust, Wilmslow Road,
Manchester, United Kingdom
| | - Michael J Taylor
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - David J Thomson
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - Nicola J Thorp
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
| | - Tracy SA Underwood
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - John W Warmenhoven
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| | - James P Wylie
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
| | - Gillian Whitfield
- The Christie NHS Foundation Trust, Wilmslow Rd,
Manchester, United Kingdom
- Division of Cancer Sciences, University of Manchester,
Manchester Cancer Research Centre, Manchester Academic Health Science
Centre, Manchester, United
Kingdom
| |
Collapse
|
10
|
Pham TT, Whelan B, Oborn BM, Delaney GP, Vinod S, Brighi C, Barton M, Keall P. Magnetic resonance imaging (MRI) guided proton therapy: A review of the clinical challenges, potential benefits and pathway to implementation. Radiother Oncol 2022; 170:37-47. [DOI: 10.1016/j.radonc.2022.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/09/2022] [Accepted: 02/25/2022] [Indexed: 10/18/2022]
|
11
|
Zientara N, Giles E, Le H, Short M. A scoping review of patient selection methods for proton therapy. J Med Radiat Sci 2022; 69:108-121. [PMID: 34476905 PMCID: PMC8892419 DOI: 10.1002/jmrs.540] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/08/2021] [Accepted: 08/07/2021] [Indexed: 01/14/2023] Open
Abstract
The aim was to explore various national and international clinical decision-making tools and dose comparison methods used for selecting cancer patients for proton versus X-ray radiation therapy. To address this aim, a literature search using defined scoping review methods was performed in Medline and Embase databases as well as grey literature. Articles published between 1 January 2015 and 4 August 2020 and those that clearly stated methods of proton versus X-ray therapy patient selection and those published in English were eligible for inclusion. In total, 321 studies were identified of which 49 articles met the study's inclusion criteria representing 13 countries. Six different clinical decision-making tools and 14 dose comparison methods were identified, demonstrating variability within countries and internationally. Proton therapy was indicated for all paediatric patients except those with lymphoma and re-irradiation where individualised model-based selection was required. The most commonly reported patient selection tools included the Normal Tissue Complication Probability model, followed by cost-effectiveness modelling and dosimetry comparison. Model-based selection methods were most commonly applied for head and neck clinical indications in adult cohorts (48% of studies). While no 'Gold Standard' currently exists for proton therapy patient selection with variations evidenced globally, some of the patient selection methods identified in this review can be used to inform future practice in Australia. As literature was not identified from all countries where proton therapy centres are available, further research is needed to evaluate patient selection methods in these jurisdictions for a comprehensive overview.
Collapse
Affiliation(s)
- Nicole Zientara
- UniSA Cancer Research InstituteUniSA Allied Health and Human PerformanceUniversity of South AustraliaAdelaideSouth AustraliaAustralia
- Liverpool Cancer Therapy CentreLiverpool HospitalSydneyNew South WalesAustralia
| | - Eileen Giles
- UniSA Cancer Research InstituteUniSA Allied Health and Human PerformanceUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Hien Le
- UniSA Cancer Research InstituteUniSA Allied Health and Human PerformanceUniversity of South AustraliaAdelaideSouth AustraliaAustralia
- Department of Radiation OncologyRoyal Adelaide HospitalAdelaideSouth AustraliaAustralia
| | - Michala Short
- UniSA Cancer Research InstituteUniSA Allied Health and Human PerformanceUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| |
Collapse
|
12
|
Hwang E, Burnet NG, Crellin AM, Ahern V, Thwaites DI, Gaito S, Chang YC, Smith E. A Novel Model and Infrastructure for Clinical Outcomes Data Collection and Their Systematic Evaluation for UK Patients Receiving Proton Beam Therapy. Clin Oncol (R Coll Radiol) 2021; 34:11-18. [PMID: 34602320 DOI: 10.1016/j.clon.2021.09.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 07/23/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022]
Abstract
AIMS To establish an infrastructure for sustainable, comprehensive data collection and systematic outcomes evaluation for UK patients receiving proton beam therapy (PBT). MATERIALS AND METHODS A Proton Outcomes Working Group was formed in 2014 to develop a national minimum dataset for PBT patients and to define a clinically integrated informatics solution for data collection. The Christie Proton Beam Therapy Centre formed its Proton Clinical Outcomes Unit in 2018 to collect, curate and analyse outcomes data prospectively for UK-treated patients and retrospectively for UK patients referred abroad for PBT since 2008 via the Proton Overseas Programme (POP). RESULTS A single electronic form (eForm) was developed to capture the agreed data, using a data tree approach including conditional logic: data items are requested once, further questions depend on previous answers and are sensitive to tumour site and patient pathway time point. Relevant data automatically populate other forms, saving time, prompting completeness of clinical assessments and ensuring data consistency. Completed eForm data populate the electronic patient record and generate individualised outputs, including consultation letters, treatment summary and surveillance plans, based on organs at risk irradiated, age and sex. All data regarding POP-treated patients are verified and migrated into the system, ensuring that patient data, whether overseas or UK treated, are consistently recorded. The eForm utilises a 'user friendly' web portal interface, the Clinical Web Portal, including clickable tables and infographics. Data items are coded to a universally recognised standard comparable with other data systems. Patient-reported outcomes are also integrated, highlighting significant toxicities and prompting a response. Outcomes data can be correlated with dosimetric DICOM data to support radiation dose modelling. CONCLUSION Outcomes data from both POP-treated and The Christie-treated patients support long-term care, allow evaluation of PBT efficacy and safety, assist future selection of PBT patients and support hypothesis generation for future clinical trials.
Collapse
Affiliation(s)
- E Hwang
- The Christie Proton Beam Therapy Centre, The Christie NHS Foundation Trust, Manchester, UK; Institute of Medical Physics, School of Physics, University of Sydney, New South Wales, Australia.
| | - N G Burnet
- The Christie Proton Beam Therapy Centre, The Christie NHS Foundation Trust, Manchester, UK
| | - A M Crellin
- NHS England National Clinical Lead Proton Beam Therapy, UK
| | - V Ahern
- Department of Radiation Oncology, Sydney West Radiation Oncology Network, Crown Princess Mary Cancer Centre, Sydney, New South Wales, Australia; Medical Physics, Leeds Institute of Cancer and Pathology, School of Medicine, Leeds University, Leeds, UK
| | - D I Thwaites
- Institute of Medical Physics, School of Physics, University of Sydney, New South Wales, Australia; Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia
| | - S Gaito
- Proton Clinical Outcomes Unit, The Christie NHS Foundation Trust, Manchester, UK
| | - Y-C Chang
- University College London Hospital NHS Foundation Trust (UCLH), London, UK
| | - E Smith
- The Christie Proton Beam Therapy Centre, The Christie NHS Foundation Trust, Manchester, UK; Proton Clinical Outcomes Unit, The Christie NHS Foundation Trust, Manchester, UK; University of Manchester, Manchester Cancer Research Centre, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
13
|
McNeil N, Gorayski P, Le H, Penniment M, Hanna GG, Thwaites D, Roos D, Kenny LM, Ahern V. Survey of clinician opinions on the role of proton beam therapy in Australia and New Zealand. J Med Imaging Radiat Oncol 2020; 64:689-696. [PMID: 32924305 DOI: 10.1111/1754-9485.13089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 11/30/2022]
Abstract
INTRODUCTION We surveyed the Australian and New Zealand (ANZ) radiation oncology community to assess their perceptions, understanding and experience of the current role of proton beam therapy (PBT) and the existing referral process to access PBT overseas, ahead of the development of the first PBT centre in Australia. METHODS The survey was conducted between September and October 2019 using a 17-question instrument, which was distributed by email to all 632 radiation oncology fellows and trainees listed in the Royal Australian and New Zealand College of Radiologists database. RESULTS One hundred and one respondents completed the survey, with an overall response rate of 16%. Most respondents were based in Australia (93%), with the majority working in public centres only (59%); 51% were > 10 years post fellowship and 17% were trainees. Most respondents (76%) reported moderate or high levels of confidence in the role of PBT. Only 28% had previously referred a patient for PBT overseas, with the most common referral indication being chordoma. Of those who had not previously referred a patient, 48% were not convinced about the rationale of PBT over current therapies available locally, 33% were not aware of the referral process, and 24% had concerns about the timeliness of a decision for government-funded PBT abroad. CONCLUSION This survey has demonstrated that, although there is reasonable confidence in the role of PBT among ANZ radiation oncologists, there are a number of important aspects of PBT awareness, education and access that need to be developed prior to commencement of PBT in Australia.
Collapse
Affiliation(s)
- Nicholas McNeil
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Peter Gorayski
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,University of South Australia, Adelaide, South Australia, Australia
| | - Hien Le
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,University of South Australia, Adelaide, South Australia, Australia
| | - Michael Penniment
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Gerard G Hanna
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - David Thwaites
- Crown Princess Mary Cancer Centre in Westmead, Westmead Hospital, Westmead, New South Wales, Australia.,School of Physics, University of Sydney, Sydney, New South Wales, Australia
| | - Daniel Roos
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Lizbeth M Kenny
- Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.,School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Verity Ahern
- Crown Princess Mary Cancer Centre in Westmead, Westmead Hospital, Westmead, New South Wales, Australia.,University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
14
|
Hwang EJ, Gorayski P, Le H, Hanna GG, Kenny L, Penniment M, Buck J, Thwaites D, Ahern V. Particle therapy toxicity outcomes: A systematic review. J Med Imaging Radiat Oncol 2020; 64:725-737. [PMID: 32421259 DOI: 10.1111/1754-9485.13036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023]
Abstract
Owing to its physical properties, particle therapy (PT), including proton beam therapy (PBT) and carbon ion therapy (CIT), can enhance the therapeutic ratio in radiation therapy. The major factor driving PT implementation is the reduction in exit and integral dose compared to photon plans, which is expected to translate to reduced toxicity and improved quality of life. This study extends the findings from a recent systematic review by the current authors which concentrated on tumour outcomes for PT, to now examine toxicity as a separate focus. Together, these reviews provide a comprehensive collation of the evidence relating to PT outcomes in clinical practice. Three major databases were searched by two independent researchers, and evidence quality was classified according to the National Health and Medical Research Council evidence hierarchy. One hundred and seventy-nine studies were included. Most demonstrated acceptable and favourable toxicity results. Comparative evidence reported reduced morbidities and improvement in quality of life in head and neck, paediatrics, sarcomas, adult central nervous system, gastrointestinal, ocular and prostate cancers compared to photon radiotherapy. This suggestion for reduced morbidity must be counterbalanced by the overall low quality of evidence. A concerted effort in the design of appropriate comparative clinical trials is needed which takes into account integration of PT's pace of technological advancements, including evolving delivery techniques, image guidance availability and sophistication of planning algorithms.
Collapse
Affiliation(s)
- Eun Ji Hwang
- Department of Radiation Oncology, Sydney West Radiation Oncology Network, Crown Princess Mary Cancer Centre, Sydney, New South Wales, Australia.,Medicine, Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia.,Institute of Medical Physics, School of Physics, University of Sydney, Sydney, New South Wales, Australia
| | - Peter Gorayski
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Hien Le
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Gerard G Hanna
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum, Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Liz Kenny
- Department of Radiation Oncology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.,School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Michael Penniment
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Jacqueline Buck
- Department of Radiation Oncology, Sydney West Radiation Oncology Network, Crown Princess Mary Cancer Centre, Sydney, New South Wales, Australia
| | - David Thwaites
- Department of Radiation Oncology, Sydney West Radiation Oncology Network, Crown Princess Mary Cancer Centre, Sydney, New South Wales, Australia.,Institute of Medical Physics, School of Physics, University of Sydney, Sydney, New South Wales, Australia
| | - Verity Ahern
- Department of Radiation Oncology, Sydney West Radiation Oncology Network, Crown Princess Mary Cancer Centre, Sydney, New South Wales, Australia
| |
Collapse
|