1
|
Xia Y, Luo W, Yuan S, Zheng Y, Zeng X. Microsatellite development from genome skimming and transcriptome sequencing: comparison of strategies and lessons from frog species. BMC Genomics 2018; 19:886. [PMID: 30526480 PMCID: PMC6286531 DOI: 10.1186/s12864-018-5329-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 11/28/2018] [Indexed: 11/14/2022] Open
Abstract
Background Even though microsatellite loci frequently have been isolated using recently developed next-generation sequencing (NGS) techniques, this task is still difficult because of the subsequent polymorphism screening requires a substantial amount of time. Selecting appropriate polymorphic microsatellites is a critical issue for ecological and evolutionary studies. However, the extent to which assembly strategy, read length, sequencing depth, and library layout produce a measurable effect on microsatellite marker development remains unclear. Here, we use six frog species for genome skimming and two frog species for transcriptome sequencing to develop microsatellite markers, and investigate the effect of different isolation strategies on the yield of microsatellites. Results The results revealed that the number of isolated microsatellites increases with increased data quantity and read length. Assembly strategy could influence the yield and the polymorphism of microsatellite development. Larger k-mer sizes produced fewer total number of microsatellite loci, but these loci had a longer repeat length, suggesting greater polymorphism. However, the proportion of each type of nucleotide repeats was not affected; dinucleotide repeats were always the dominant type. Finally, the transcriptomic microsatellites displayed lower levels of polymorphisms and were less abundant than genomic microsatellites, but more likely to be functionally linked loci. Conclusions These observations provide deep insight into the evolution and distribution of microsatellites and how different isolation strategies affect microsatellite development using NGS. Electronic supplementary material The online version of this article (10.1186/s12864-018-5329-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yun Xia
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Wei Luo
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siqi Yuan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.,College of Bioengineering, Sichuan University of Science & Engineering, Zigong, 643000, China
| | - Yuchi Zheng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xiaomao Zeng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
2
|
Hodel RGJ, Segovia-Salcedo MC, Landis JB, Crowl AA, Sun M, Liu X, Gitzendanner MA, Douglas NA, Germain-Aubrey CC, Chen S, Soltis DE, Soltis PS. The report of my death was an exaggeration: A review for researchers using microsatellites in the 21st century. APPLICATIONS IN PLANT SCIENCES 2016; 4:apps1600025. [PMID: 27347456 PMCID: PMC4915923 DOI: 10.3732/apps.1600025] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/25/2016] [Indexed: 05/19/2023]
Abstract
Microsatellites, or simple sequence repeats (SSRs), have long played a major role in genetic studies due to their typically high polymorphism. They have diverse applications, including genome mapping, forensics, ascertaining parentage, population and conservation genetics, identification of the parentage of polyploids, and phylogeography. We compare SSRs and newer methods, such as genotyping by sequencing (GBS) and restriction site associated DNA sequencing (RAD-Seq), and offer recommendations for researchers considering which genetic markers to use. We also review the variety of techniques currently used for identifying microsatellite loci and developing primers, with a particular focus on those that make use of next-generation sequencing (NGS). Additionally, we review software for microsatellite development and report on an experiment to assess the utility of currently available software for SSR development. Finally, we discuss the future of microsatellites and make recommendations for researchers preparing to use microsatellites. We argue that microsatellites still have an important place in the genomic age as they remain effective and cost-efficient markers.
Collapse
Affiliation(s)
- Richard G. J. Hodel
- Department of Biology, University of Florida, Gainesville, Florida 32611 USA
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611 USA
- Author for correspondence:
| | | | - Jacob B. Landis
- Department of Biology, University of Florida, Gainesville, Florida 32611 USA
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611 USA
| | - Andrew A. Crowl
- Department of Biology, University of Florida, Gainesville, Florida 32611 USA
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611 USA
| | - Miao Sun
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611 USA
| | - Xiaoxian Liu
- Department of Biology, University of Florida, Gainesville, Florida 32611 USA
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611 USA
| | | | - Norman A. Douglas
- Department of Biology, University of Florida, Gainesville, Florida 32611 USA
| | | | - Shichao Chen
- College of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Douglas E. Soltis
- Department of Biology, University of Florida, Gainesville, Florida 32611 USA
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611 USA
- The Genetics Institute, University of Florida, Gainesville, Florida 32611 USA
| | - Pamela S. Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611 USA
- The Genetics Institute, University of Florida, Gainesville, Florida 32611 USA
| |
Collapse
|
3
|
Microsatellite markers for the Ussuri white-toothed shrew (Soricidae: Crocidura lasiura) developed by Ion Torrent sequencing and their application to the shrew populations in disturbed forests. Genes Genomics 2016. [DOI: 10.1007/s13258-015-0375-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Durrant HMS, Burridge CP, Gardner MG. Isolation via next-generation sequencing of microsatellites from the Tasmanian macroalgae Lessonia corrugata (Lessoniaceae). APPLICATIONS IN PLANT SCIENCES 2015; 3:apps1500042. [PMID: 26191468 PMCID: PMC4504728 DOI: 10.3732/apps.1500042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/19/2015] [Indexed: 06/04/2023]
Abstract
PREMISE OF THE STUDY Microsatellite markers for the macroalgae Lessonia corrugata (Lessoniaceae) were developed, for the first time, to enable population genetic assessment of this important foundation species. METHODS AND RESULTS Ion Torrent sequencing identified 16,622 loci, 29 of which were trialed in L. corrugata. Seven loci were found to be polymorphic and screened for variation in 76 individuals from two populations in Tasmania, Australia. Observed heterozygosity ranged from 0.086 to 0.686 (mean 0.386) and the number of alleles per locus ranged from two to five (mean 2.57). Heterozygosity was not significantly different from expected values. CONCLUSIONS These loci can be used to study the population genetics of L. corrugata, a key habitat-forming species in the Tasmanian marine ecosystem, and will help to assess gene flow among spatially discrete populations such as those in marine protected areas.
Collapse
Affiliation(s)
- Halley M. S. Durrant
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | - Christopher P. Burridge
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | - Michael G. Gardner
- School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide 5001, South Australia, Australia
- Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide 5000, South Australia, Australia
| |
Collapse
|
5
|
Fordyce SL, Mogensen HS, Børsting C, Lagacé RE, Chang CW, Rajagopalan N, Morling N. Second-generation sequencing of forensic STRs using the Ion Torrent™ HID STR 10-plex and the Ion PGM™. Forensic Sci Int Genet 2015; 14:132-40. [DOI: 10.1016/j.fsigen.2014.09.020] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/20/2014] [Accepted: 09/23/2014] [Indexed: 01/07/2023]
|
6
|
Williams AV, Nevill PG, Krauss SL. Next generation restoration genetics: applications and opportunities. TRENDS IN PLANT SCIENCE 2014; 19:529-537. [PMID: 24767982 DOI: 10.1016/j.tplants.2014.03.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 03/18/2014] [Accepted: 03/26/2014] [Indexed: 06/03/2023]
Abstract
Restoration ecology is a young scientific discipline underpinning improvements in the rapid global expansion of ecological restoration. The application of molecular tools over the past 20 years has made an important contribution to understanding genetic factors influencing ecological restoration success. Here we illustrate how recent advances in next generation sequencing (NGS) methods are revolutionising the practical contribution of genetics to restoration. Novel applications include a dramatically enhanced capacity to measure adaptive variation for optimal seed sourcing, high-throughput assessment and monitoring of natural and restored biological communities aboveground and belowground, and gene expression analysis as a measure of genetic resilience of restored populations. Challenges remain in data generation, handling and analysis, and how best to apply NGS for practical outcomes in restoration.
Collapse
Affiliation(s)
- Anna V Williams
- School of Plant Biology, The University of Western Australia, Crawley, WA 6009, Australia; Kings Park and Botanic Garden, Botanic Gardens and Parks Authority, West Perth, WA 6005, Australia
| | - Paul G Nevill
- School of Plant Biology, The University of Western Australia, Crawley, WA 6009, Australia; Kings Park and Botanic Garden, Botanic Gardens and Parks Authority, West Perth, WA 6005, Australia
| | - Siegfried L Krauss
- School of Plant Biology, The University of Western Australia, Crawley, WA 6009, Australia; Kings Park and Botanic Garden, Botanic Gardens and Parks Authority, West Perth, WA 6005, Australia.
| |
Collapse
|
7
|
Meglécz E, Pech N, Gilles A, Dubut V, Hingamp P, Trilles A, Grenier R, Martin JF. QDD version 3.1: a user-friendly computer program for microsatellite selection and primer design revisited: experimental validation of variables determining genotyping success rate. Mol Ecol Resour 2014; 14:1302-13. [PMID: 24785154 DOI: 10.1111/1755-0998.12271] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/21/2014] [Accepted: 04/25/2014] [Indexed: 11/30/2022]
Abstract
Microsatellite marker development has been greatly simplified by the use of high-throughput sequencing followed by in silico microsatellite detection and primer design. However, the selection of markers designed by the existing pipelines depends either on arbitrary criteria, or older studies on PCR success. Based on wet laboratory experiments, we have identified the following factors that are most likely to influence genotyping success rate: alignment score between the primers and the amplicon; the distance between primers and microsatellites; the length of the PCR product; target region complexity and the number of reads underlying the sequence. The QDD pipeline has been modified to include these most pertinent factors in the output to help the selection of markers. Furthermore, new features are also included in the present version: (i) not only raw sequencing reads are accepted as input, but also contigs, allowing the analysis of assembled high-coverage data; (ii) input data can be both in fasta and fastq format to facilitate the use of Illumina and IonTorrent reads; (iii) A comparison to known transposable elements allows their detection; (iv) A contamination check can be carried out by BLASTing potential markers against the nucleotide (nt) database of NCBI; (v) QDD3 is now also available imbedded into a virtual machine making installation easier and operating system independent. It can be used both on command-line version as well as integrated into a Galaxy server, providing a user-friendly interface, as well as the possibility to utilize a large variety of NGS tools.
Collapse
Affiliation(s)
- Emese Meglécz
- Aix-Marseille Université, CNRS, IRD, Univ. Avignon, UMR 7263 - IMBE, Equipe EGE, Centre Saint-Charles, Case 36, 3 Place Victor Hugo, 13331, Marseille Cedex 3, France
| | | | | | | | | | | | | | | |
Collapse
|