1
|
Macarini LC, Guimarães ATB, Szinwelski N. Ecotoxicological effects of a glyphosate-based herbicide on Gryllus (Gryllus) assimilis (Orthoptera: Gryllidae) ontogeny: a study on antioxidant system, oxidative stress and cholinergic system. ECOTOXICOLOGY (LONDON, ENGLAND) 2024:10.1007/s10646-024-02831-2. [PMID: 39546078 DOI: 10.1007/s10646-024-02831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Brazil is an important global agricultural producer and to increase production the country has extensively used glyphosate-based herbicides (GBH), surpassing consumption and sales records. Consequently, concerns have arisen regarding the potential impact of GBH on ecosystems and non-target organisms. Thus, the effects of GBH exposure were evaluated throughout the cricket Gryllus (Gryllus) assimilis ontogeny, with five developmental stages. Each period contained 3 control and 3 treated boxes, with 15 crickets each, resulting in 90 insects at a time. The control groups received water, while the treated ones were continuously exposed to GBH (0.864 mg.GBH.L-1), with the solutions changed every 48 h. After each exposure time the crickets' group were euthanized to assess the activity of antioxidant enzymes (GST, GR, GPx, and CAT), cholinergic enzymes (ChE), and lipid peroxidation (LPO). The results revealed changes in the systems throughout different developmental phases. Specifically, CAT activity exhibited a significant increase during the nymphal phase, associated with the dismutation of hydrogen peroxide. The GBH increased GST, indicating its role in cellular detoxification, particularly during adulthood. In the senescence stage there was a considerable rise in ChE enzymes, suggesting their involvement in both, choline esters breakdown and potential pesticide detoxification. The action of these enzymes to effectively control lipid peroxidation shows the adaptability of this species to environmental contamination. These findings underscore the long-term effects of agrochemical pollution and emphasize the importance of sustainable practices, effective regulations, and alternative weed control methods.
Collapse
Affiliation(s)
- Leanna Camila Macarini
- Universidade Estadual do Oeste do Paraná, (Programa de Pós-Graduação em Conservação e Manejo de Recursos Naturais), Cascavel, Paraná, Brasil.
| | | | - Neucir Szinwelski
- Universidade Estadual do Oeste do Paraná, (Programa de Pós-Graduação em Conservação e Manejo de Recursos Naturais), Cascavel, Paraná, Brasil
| |
Collapse
|
2
|
Gonzalez-Sqalli E, Caron M, Loppin B. The white gene as a transgenesis marker for the cricket Gryllus bimaculatus. G3 (BETHESDA, MD.) 2024; 14:jkae235. [PMID: 39405185 PMCID: PMC11631507 DOI: 10.1093/g3journal/jkae235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/20/2024] [Indexed: 12/12/2024]
Abstract
The cricket Gryllus bimaculatus is an emerging model insect of the order Orthoptera that is used in a wide variety of biological research themes. This hemimetabolous species appears highly complementary to Drosophila and other well-established holometabolous models. To improve transgenesis applications in G. bimaculatus, we have designed a transformation marker gene inspired from the widespread Drosophila mini-white+. Using CRISPR/Cas9, we first generated a loss-of-function mutant allele of the Gb-white gene (Gb-w), which exhibits a white eye coloration at all developmental stages. We then demonstrate that transgenic insertions of a piggyBac vector containing a 3xP3-Gb-w+ cassette rescue eye pigmentation. As an application, we used this vector to generate G. bimaculatus lines expressing a centromeric histone H3 variant (CenH3.1) fused to EGFP and validated EGFP-CenH3.1 detection at cricket centromeres. Finally, we demonstrate that Minos-based germline transformation and site-specific plasmid insertion with the ΦC31 integrase system function in G. bimaculatus.
Collapse
Affiliation(s)
- Emmanuel Gonzalez-Sqalli
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Université Claude Bernard Lyon 1, 9 rue du Vercors, 69007 Lyon, France
| | - Matthieu Caron
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Université Claude Bernard Lyon 1, 9 rue du Vercors, 69007 Lyon, France
| | - Benjamin Loppin
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Université Claude Bernard Lyon 1, 9 rue du Vercors, 69007 Lyon, France
| |
Collapse
|
3
|
Nakamura T, Ylla G, Extavour CG. Genomics and genome editing techniques of crickets, an emerging model insect for biology and food science. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100881. [PMID: 35123119 DOI: 10.1016/j.cois.2022.100881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/06/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Most tools available for manipulating gene function in insects have been developed for holometabolous species. In contrast, functional genetics tools for the Hemimetabola are highly underdeveloped. This is a barrier both to understanding ancestral insect biology, and to optimizing contemporary study and manipulation of particular large hemimetabolous orders of crucial economic and agricultural importance like the Orthoptera. For orthopteran insects, including crickets, the rapid spread of next-generation sequencing technology has made transcriptome data available for a wide variety of species over the past decade. Furthermore, whole genome sequences of orthopteran insects with relatively large genome sizes are now available. With these new genome assemblies and the development of genome editing technologies such as the CRISPR-Cas9 system, it has become possible to create gene knock-out and knock-in strains in orthopteran insects. As a result, orthopteran species should become increasingly feasible for laboratory study not only in research fields that have traditionally used insects, but also in agricultural fields that use them as food and feed. In this review, we summarize these recent advances and their relevance to such applications.
Collapse
Affiliation(s)
- Taro Nakamura
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, Okazaki, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan.
| | - Guillem Ylla
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge MA, USA; Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge MA, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge MA, USA; Howard Hughes Medical Institute, USA
| |
Collapse
|
4
|
Kataoka K, Togawa Y, Sanno R, Asahi T, Yura K. Dissecting cricket genomes for the advancement of entomology and entomophagy. Biophys Rev 2022; 14:75-97. [PMID: 35340598 PMCID: PMC8921346 DOI: 10.1007/s12551-021-00924-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022] Open
Abstract
Significant advances in biophysical methods such as next-generation sequencing technologies have now opened the way to conduct evolutionary and applied research based on the genomic information of greatly diverse insects. Crickets belonging to Orthoptera (Insecta: Polyneoptera), one of the most flourishing groups of insects, have contributed to the development of multiple scientific fields including developmental biology and neuroscience and have been attractive targets in evolutionary ecology for their diverse ecological niches. In addition, crickets have recently gained recognition as food and feed. However, the genomic information underlying their biological basis and application research toward breeding is currently underrepresented. In this review, we summarize the progress of genomics of crickets. First, we outline the phylogenetic position of crickets in insects and then introduce recent studies on cricket genomics and transcriptomics in a variety of fields. Furthermore, we present findings from our analysis of polyneopteran genomes, with a particular focus on their large genome sizes, chromosome number, and repetitive sequences. Finally, how the cricket genome can be beneficial to the food industry is discussed. This review is expected to enhance greater recognition of how important the cricket genomes are to the multiple biological fields and how basic research based on cricket genome information can contribute to tackling global food security.
Collapse
Affiliation(s)
- Kosuke Kataoka
- Comprehensive Research Organization, Waseda University, Tokyo, Japan
| | - Yuki Togawa
- School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Ryuto Sanno
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Toru Asahi
- Comprehensive Research Organization, Waseda University, Tokyo, Japan
- School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo, Japan
| | - Kei Yura
- School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo, Japan
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| |
Collapse
|
5
|
Pechmann M, Kenny NJ, Pott L, Heger P, Chen YT, Buchta T, Özüak O, Lynch J, Roth S. Striking parallels between dorsoventral patterning in Drosophila and Gryllus reveal a complex evolutionary history behind a model gene regulatory network. eLife 2021; 10:e68287. [PMID: 33783353 PMCID: PMC8051952 DOI: 10.7554/elife.68287] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 12/18/2022] Open
Abstract
Dorsoventral pattering relies on Toll and BMP signalling in all insects studied so far, with variations in the relative contributions of both pathways. Drosophila and the beetle Tribolium share extensive dependence on Toll, while representatives of more distantly related lineages like the wasp Nasonia and bug Oncopeltus rely more strongly on BMP signalling. Here, we show that in the cricket Gryllus bimaculatus, an evolutionarily distant outgroup, Toll has, like in Drosophila, a direct patterning role for the ventral half of the embryo. In addition, Toll polarises BMP signalling, although this does not involve the conserved BMP inhibitor Sog/Chordin. Finally, Toll activation relies on ovarian patterning mechanisms with striking similarity to Drosophila. Our data suggest two surprising hypotheses: (1) that Toll's patterning function in Gryllus and Drosophila is the result of convergent evolution or (2) a Drosophila-like system arose early in insect evolution and was extensively altered in multiple independent lineages.
Collapse
Affiliation(s)
- Matthias Pechmann
- Institute for Zoology/Developmental Biology, Biocenter, University of CologneKölnGermany
| | | | - Laura Pott
- Institute for Zoology/Developmental Biology, Biocenter, University of CologneKölnGermany
| | - Peter Heger
- Regional Computing Centre (RRZK), University of CologneKölnGermany
| | - Yen-Ta Chen
- Institute for Zoology/Developmental Biology, Biocenter, University of CologneKölnGermany
| | - Thomas Buchta
- Institute for Zoology/Developmental Biology, Biocenter, University of CologneKölnGermany
| | - Orhan Özüak
- Institute for Zoology/Developmental Biology, Biocenter, University of CologneKölnGermany
| | - Jeremy Lynch
- Institute for Zoology/Developmental Biology, Biocenter, University of CologneKölnGermany
- Department of Biological Sciences, University of Illinois at ChicagoChicagoUnited States
| | - Siegfried Roth
- Institute for Zoology/Developmental Biology, Biocenter, University of CologneKölnGermany
| |
Collapse
|
6
|
Xu M, Shaw KL. Extensive Linkage and Genetic Coupling of Song and Preference Loci Underlying Rapid Speciation in Laupala Crickets. J Hered 2021; 112:204-213. [PMID: 33438016 DOI: 10.1093/jhered/esab001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 01/11/2021] [Indexed: 12/20/2022] Open
Abstract
In nature, closely related species commonly display divergent mating behaviors, suggesting a central role for such traits in the origin of species. Elucidating the genetic basis of divergence in these traits is necessary to understand the evolutionary process leading to reproductive barriers and speciation. The rapidly speciating Hawaiian crickets of the genus Laupala provides an ideal system for dissecting the genetic basis of mating behavior divergence. In Laupala, closely related species differ markedly in male song pulse rate and female preference for pulse rate. These behaviors play an important role in determining mating patterns. Previous studies identified a genetic architecture consisting of numerous small to moderate effect loci causing interspecific differences in pulse rate and preference, including colocalizing pulse rate and preference QTL on linkage group one (LG1). To further interrogate these QTL, we conduct a fine mapping study using high-density SNP linkage maps. With improved statistical power and map resolution, we provide robust evidence for genetic coupling between song and preference, along with two additional pulse rate QTL on LG1, revealing a more resolved picture of the genetic architecture underlying mating behavior divergence. Our sequence-based genetic map, along with dramatically narrowed QTL confidence intervals, allowed us to annotate genes within the QTL regions and identify several exciting candidate genes underlying variation in pulse rate and preference divergence. Such knowledge suggests potential molecular mechanisms underlying the evolution of behavioral barriers.
Collapse
Affiliation(s)
- Mingzi Xu
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY
| | - Kerry L Shaw
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY
| |
Collapse
|
7
|
Oppert B, Perkin LC, Lorenzen M, Dossey AT. Transcriptome analysis of life stages of the house cricket, Acheta domesticus, to improve insect crop production. Sci Rep 2020; 10:3471. [PMID: 32103047 PMCID: PMC7044300 DOI: 10.1038/s41598-020-59087-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/04/2019] [Indexed: 12/20/2022] Open
Abstract
To develop genetic resources for the improvement of insects as food, we sequenced transcripts from embryos, one-day hatchlings, three nymphal stages, and male and female adults of the house cricket, Acheta domesticus. A draft transcriptome was assembled from more than 138 million sequences combined from all life stages and sexes. The draft transcriptome assembly contained 45,866 contigs, and more than half were similar to sequences at NCBI (e value < e−3). The highest sequence identity was found in sequences from the termites Cryptotermes secundus and Zootermopsis nevadensis. Sequences with identity to Gregarina niphandrodes suggest that these crickets carry the parasite. Among all life stages, there were 5,042 genes with differential expression between life stages (significant at p < 0.05). An enrichment analysis of gene ontology terms from each life stage or sex highlighted genes that were important to biological processes in cricket development. We further characterized genes that may be important in future studies of genetically modified crickets for improved food production, including those involved in RNA interference, and those encoding prolixicin and hexamerins. The data represent an important first step in our efforts to provide genetically improved crickets for human consumption and livestock feed.
Collapse
Affiliation(s)
- Brenda Oppert
- USDA ARS Center for Grain and Animal Health Research, 1515 College Ave, Manhattan, KS, 66502, USA.
| | - Lindsey C Perkin
- USDA ARS Center for Grain and Animal Health Research, 1515 College Ave, Manhattan, KS, 66502, USA
| | - Marcé Lorenzen
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Aaron T Dossey
- All Things Bugs LLC, 755 Research Parkway, Suite 465, Oklahoma City, OK, 73104, USA
| |
Collapse
|
8
|
Blankers T, Berdan EL, Hennig RM, Mayer F. Physical linkage and mate preference generate linkage disequilibrium for behavioral isolation in two parapatric crickets. Evolution 2019; 73:777-791. [PMID: 30820950 PMCID: PMC6593781 DOI: 10.1111/evo.13706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/04/2019] [Indexed: 12/23/2022]
Abstract
Behavioral isolation is a potent barrier to gene flow and a source of striking diversity in the animal kingdom. However, it remains unclear if the linkage disequilibrium (LD) between sex‐specific traits required for behavioral isolation results mostly from physical linkage between signal and preference loci or from directional mate preferences. Here, we test this in the field crickets Gryllus rubens and G. texensis. These closely related species diverged with gene flow and have strongly differentiated songs and preference functions for the mate calling song rhythm. We map quantitative trait loci for signal and preference traits (pQTL) as well as for gene expression associated with these traits (eQTL). We find strong, positive genetic covariance between song traits and between song and preference. Our results show that this is in part explained by incomplete physical linkage: although both linked pQTL and eQTL couple male and female traits, major effect loci for different traits were never on the same chromosome. We suggest that the finely tuned, highly divergent preference functions are likely an additional source of LD between male and female traits in this system. Furthermore, pleiotropy of gene expression presents an underappreciated mechanism to link sexually dimorphic phenotypes.
Collapse
Affiliation(s)
- Thomas Blankers
- Department of Behavioral Physiology, Humboldt-Universität zu Berlin, Berlin, Germany.,Leibniz Institute for Evolution and Biodiversity Science, Museum für Naturkunde Berlin, Berlin, Germany.,Current address: Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Emma L Berdan
- Leibniz Institute for Evolution and Biodiversity Science, Museum für Naturkunde Berlin, Berlin, Germany.,Current address: Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - R Matthias Hennig
- Department of Behavioral Physiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Frieder Mayer
- Leibniz Institute for Evolution and Biodiversity Science, Museum für Naturkunde Berlin, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
9
|
The Genetics of Mating Song Evolution Underlying Rapid Speciation: Linking Quantitative Variation to Candidate Genes for Behavioral Isolation. Genetics 2019; 211:1089-1104. [PMID: 30647070 DOI: 10.1534/genetics.118.301706] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/11/2019] [Indexed: 02/07/2023] Open
Abstract
Differences in mating behaviors evolve early during speciation, eventually contributing to reproductive barriers between species. Knowledge of the genetic and genomic basis of these behaviors is therefore integral to a causal understanding of speciation. Acoustic behaviors are often part of the mating ritual in animal species. The temporal rhythms of mating songs are notably species-specific in many vertebrates and arthropods and often underlie assortative mating. Despite discoveries of mutations that disrupt the temporal rhythm of these songs, we know surprisingly little about genes affecting naturally occurring variation in the temporal pattern of singing behavior. In the rapidly speciating Hawaiian cricket genus Laupala, the striking species variation in song rhythms constitutes a behavioral barrier to reproduction between species. Here, we mapped the largest-effect locus underlying interspecific variation in song rhythm between two Laupala species to a narrow genomic region, wherein we find no known candidate genes affecting song temporal rhythm in Drosophila Whole-genome sequencing, gene prediction, and functional annotation of this region reveal an exciting and promising candidate gene, the putative cyclic nucleotide-gated ion channel-like gene, for natural variation in mating behavior. Identification and molecular characterization of the candidate gene reveals a nonsynonymous mutation in a conserved binding domain, suggesting that ion channels are important targets of selection on rhythmic signaling during establishment of behavioral isolation and rapid speciation.
Collapse
|
10
|
Kulkarni A, Extavour CG. The Cricket Gryllus bimaculatus: Techniques for Quantitative and Functional Genetic Analyses of Cricket Biology. Results Probl Cell Differ 2019; 68:183-216. [PMID: 31598857 DOI: 10.1007/978-3-030-23459-1_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
All extant species are an outcome of nature's "experiments" during evolution, and hence multiple species need to be studied and compared to gain a thorough understanding of evolutionary processes. The field of evolutionary developmental biology (evo-devo) aspires to expand the number of species studied, because most functional genetic studies in animals have been limited to a small number of "traditional" model organisms, many of which belong to the same phylum (Chordata). The phylum Arthropoda, and particularly its component class Insecta, possesses many important characteristics that are considered favorable and attractive for evo-devo research, including an astonishing diversity of extant species and a wide disparity in body plans. The development of the most thoroughly investigated insect genetic model system to date, the fruit fly Drosophila melanogaster (a holometabolous insect), appears highly derived with respect to other insects and indeed with respect to most arthropods. In comparison, crickets (a basally branching hemimetabolous insect lineage compared to the Holometabola) are thought to embody many developmental features that make them more representative of insects. Here we focus on crickets as emerging models to study problems in a wide range of biological areas and summarize the currently available molecular, genomic, forward and reverse genetic, imaging and computational tool kit that has been established or adapted for cricket research. With an emphasis on the cricket species Gryllus bimaculatus, we highlight recent efforts made by the scientific community in establishing this species as a laboratory model for cellular biology and developmental genetics. This broad toolkit has the potential to accelerate many traditional areas of cricket research, including studies of adaptation, evolution, neuroethology, physiology, endocrinology, regeneration, and reproductive behavior. It may also help to establish newer areas, for example, the use of crickets as animal infection model systems and human food sources.
Collapse
Affiliation(s)
- Arpita Kulkarni
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
11
|
Zhang X, Zhang Y, Wang YH, Shen SK. Transcriptome Analysis of Cinnamomum chago: A Revelation of Candidate Genes for Abiotic Stress Response and Terpenoid and Fatty Acid Biosyntheses. Front Genet 2018; 9:505. [PMID: 30455715 PMCID: PMC6231050 DOI: 10.3389/fgene.2018.00505] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 10/08/2018] [Indexed: 12/26/2022] Open
Abstract
Cinnamomum chago, an endangered species endemic to Yunnan province, possesses large economic and phylogenetic values in Lauraceae. However, the genomic information of this species remains relatively unexplored. In this study, we used RNAseq technology to characterize and annotate the C. chago transcriptome and identify candidate genes involved in special metabolic pathways and gene-associated simple sequence repeats (SSRs) and single-nucleotide polymorphism (SNP). A total of 129,097 unigenes, with a mean length of 667 bp and an N50 length of 1,062 bp, were assembled. Among these genes, 56,887 (44.07%) unigenes were successfully annotated using at least one database. Furthermore, 47 and 46 candidate genes were identified in terpenoid biosynthesis and fatty acid biosynthesis, respectively. A total of 22 candidate genes participated in at least one abiotic stress response of C. chago. Additionally, a total of 25,654 SSRs and 640 SNPs were also identified. Based on these potential loci, 55 novel expressed sequence tag (EST)-SSR primers were successfully developed. This work provides comprehensive transcriptomic data that can be used to establish a valuable information platform for gene prediction, signaling pathway investigation, and molecular marker development for C. chago and other related species. Such a platform can facilitate further studies on germplasm conservation and utilization of Lauraceae species.
Collapse
Affiliation(s)
| | | | | | - Shi-Kang Shen
- School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
12
|
Won HI, Schulze TT, Clement EJ, Watson GF, Watson SM, Warner RC, Ramler EAM, Witte EJ, Schoenbeck MA, Rauter CM, Davis PH. De novo Assembly of the Burying Beetle Nicrophorus orbicollis (Coleoptera: Silphidae) Transcriptome Across Developmental Stages with Identification of Key Immune Transcripts. J Genomics 2018; 6:41-52. [PMID: 29707046 PMCID: PMC5916875 DOI: 10.7150/jgen.24228] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/17/2018] [Indexed: 11/05/2022] Open
Abstract
Burying beetles (Nicrophorus spp.) are among the relatively few insects that provide parental care while not belonging to the eusocial insects such as ants or bees. This behavior incurs energy costs as evidenced by immune deficits and shorter life-spans in reproducing beetles. In the absence of an assembled transcriptome, relatively little is known concerning the molecular biology of these beetles. This work details the assembly and analysis of the Nicrophorus orbicollis transcriptome at multiple developmental stages. RNA-Seq reads were obtained by next-generation sequencing and the transcriptome was assembled using the Trinity assembler. Validation of the assembly was performed by functional characterization using Gene Ontology (GO), Eukaryotic Orthologous Groups (KOG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Differential expression analysis highlights developmental stage-specific expression patterns, and immunity-related transcripts are discussed. The data presented provides a valuable molecular resource to aid further investigation into immunocompetence throughout this organism's sexual development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Paul H. Davis
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska
| |
Collapse
|
13
|
Blankers T, Vilaça ST, Waurick I, Gray DA, Hennig RM, Mazzoni CJ, Mayer F, Berdan EL. Demography and selection shape transcriptomic divergence in field crickets. Evolution 2018; 72:553-567. [PMID: 29363111 DOI: 10.1111/evo.13435] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 12/18/2017] [Accepted: 01/05/2018] [Indexed: 12/12/2022]
Abstract
Gene flow, demography, and selection can result in similar patterns of genomic variation and disentangling their effects is key to understanding speciation. Here, we assess transcriptomic variation to unravel the evolutionary history of Gryllus rubens and Gryllus texensis, cryptic field cricket species with highly divergent mating behavior. We infer their demographic history and screen their transcriptomes for footprints of selection in the context of the inferred demography. We find strong support for a long history of bidirectional gene flow, which ceased during the late Pleistocene, and a bottleneck in G. rubens consistent with a peripatric origin of this species. Importantly, the demographic history has likely strongly shaped patterns of genetic differentiation (empirical FST distribution). Concordantly, FST -based selection detection uncovers a large number of outliers, likely comprising many false positives, echoing recent theoretical insights. Alternative genetic signatures of positive selection, informed by the demographic history of the sibling species, highlighted a smaller set of loci; many of these are candidates for controlling variation in mating behavior. Our results underscore the importance of demography in shaping overall patterns of genetic divergence and highlight that examining both demography and selection facilitates a more complete understanding of genetic divergence during speciation.
Collapse
Affiliation(s)
- Thomas Blankers
- Behavioural Physiology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany.,Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany.,Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853
| | - Sibelle T Vilaça
- Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Berlin, Germany.,Leibniz-Institut für Zoo- und Wildtierforschung (IZW), Berlin, Germany
| | - Isabelle Waurick
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - David A Gray
- Department of Biology, California State University Northridge, Northridge, California 91330
| | - R Matthias Hennig
- Behavioural Physiology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Camila J Mazzoni
- Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Berlin, Germany.,Leibniz-Institut für Zoo- und Wildtierforschung (IZW), Berlin, Germany
| | - Frieder Mayer
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Emma L Berdan
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany.,Department of Marine Sciences, University of Gothenburg, Gothenburg SE-405 30, Sweden
| |
Collapse
|
14
|
Berdan EL, Finck J, Johnston PR, Waurick I, Mazzoni CJ, Mayer F. Transcriptome profiling of ontogeny in the acridid grasshopper Chorthippus biguttulus. PLoS One 2017; 12:e0177367. [PMID: 28520760 PMCID: PMC5435247 DOI: 10.1371/journal.pone.0177367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 04/19/2017] [Indexed: 12/03/2022] Open
Abstract
Acridid grasshoppers (Orthoptera:Acrididae) are widely used model organisms for developmental, evolutionary, and neurobiological research. Although there has been recent influx of orthopteran transcriptomic resources, many use pooled ontogenetic stages obscuring information about changes in gene expression during development. Here we developed a de novo transcriptome spanning 7 stages in the life cycle of the acridid grasshopper Chorthippus biguttulus. Samples from different stages encompassing embryonic development through adults were used for transcriptomic profiling, revealing patterns of differential gene expression that highlight processes in the different life stages. These patterns were validated with semi-quantitative RT-PCR. Embryonic development showed a strongly differentiated expression pattern compared to all of the other stages and genes upregulated in this stage were involved in signaling, cellular differentiation, and organ development. Our study is one of the first to examine gene expression during post-embryonic development in a hemimetabolous insect and we found that only the fourth and fifth instars had clusters of genes upregulated during these stages. These genes are involved in various processes ranging from synthesis of biogenic amines to chitin binding. These observations indicate that post-embryonic ontogeny is not a continuous process and that some instars are differentiated. Finally, genes upregulated in the imago were generally involved in aging and immunity. Our study highlights the importance of looking at ontogeny as a whole and indicates promising directions for future research in orthopteran development.
Collapse
Affiliation(s)
- Emma L. Berdan
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Jonas Finck
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
- Behavioural Physiology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Isabelle Waurick
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Camila J. Mazzoni
- Berlin Center for Genomics in Biodiversity Research, Berlin, Germany
- Leibniz-Institut für Zoo- und Wildtierforschung (IZW), Berlin, Germany
| | - Frieder Mayer
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|