1
|
Khan MS, Guan DL, Ma LB, Xie JY, Xu SQ. Analysis of synonymous codon usage pattern of genes in unique non-blood-sucking leech Whitmania pigra. J Cell Biochem 2019; 120:9850-9858. [PMID: 30681200 DOI: 10.1002/jcb.28267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/19/2018] [Indexed: 12/17/2022]
Abstract
Whitmania pigra is a unique, fluid-sucking ectoparasite and an anticoagulant medical leech. The codon usage bias (CUB) is the nonuniform usage of synonymous codons in which some codons are more preferred than others. Here, we performed a comprehensive analysis of CUB of genes in W. pigra, analyzing 140 780 transcripts, 59 553 unigenes, and 20 304 qualified coding sequences (CDSs) from the transcriptomic data of W. pigra. The effective number of codons values suggested that the CUB was low in these genes. We recognized profoundly favored codons in W. pigra that have a G/C-ending. Parity rule two-bias plots suggested that both mutation pressure and natural selection might have influenced the CUB. However, neutrality plots revealed that natural selection might have played a major role while mutation pressure might have played a minor role in shaping the CUB. We applied principal component analysis to relative synonymous codon usage values for divided CDSs based on GC content and codon-ending bases. Codon usage in W. pigra had a general inclination toward C-ending codons and natural selection rather than mutation pressure is the dominant force in the genetic evolution of W. pigra. To our knowledge, this is the first study to describe a complete codon usage analysis of W. pigra; this will increase the understanding of CUB and evolution in W. pigra. The analysis of codon usage patterns in W. pigra aids in understanding its evolution and genetic architecture.
Collapse
Affiliation(s)
- Muhammad Salabat Khan
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, People's Republic of China
| | - De-Long Guan
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, People's Republic of China
| | - Li-Bin Ma
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, People's Republic of China
| | - Juan-Ying Xie
- School of Computer Science, Shaanxi Normal University, Xi'an, Shaanxi, People's Republic of China
| | - Sheng-Quan Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
2
|
Zeng D, Chen X, Peng J, Yang C, Peng M, Zhu W, Xie D, He P, Wei P, Lin Y, Zhao Y, Chen X. Single-molecule long-read sequencing facilitates shrimp transcriptome research. Sci Rep 2018; 8:16920. [PMID: 30446694 PMCID: PMC6240054 DOI: 10.1038/s41598-018-35066-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 10/31/2018] [Indexed: 12/26/2022] Open
Abstract
Although shrimp are of great economic importance, few full-length shrimp transcriptomes are available. Here, we used Pacific Biosciences single-molecule real-time (SMRT) long-read sequencing technology to generate transcripts from the Pacific white shrimp (Litopenaeus vannamei). We obtained 322,600 full-length non-chimeric reads, from which we generated 51,367 high-quality unique full-length transcripts. We corrected errors in the SMRT sequences by comparison with Illumina-produced short reads. We successfully annotated 81.72% of all unique SMRT transcripts against the NCBI non-redundant database, 58.63% against Swiss-Prot, 45.38% against Gene Ontology, 32.57% against Clusters of Orthologous Groups of proteins (COG), and 47.83% against Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Across all transcripts, we identified 3,958 long non-coding RNAs (lncRNAs) and 80,650 simple sequence repeats (SSRs). Our study provides a rich set of full-length cDNA sequences for L. vannamei, which will greatly facilitate shrimp transcriptome research.
Collapse
Affiliation(s)
- Digang Zeng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, Guangxi, P.R. China
| | - Xiuli Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, Guangxi, P.R. China
| | - Jinxia Peng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, Guangxi, P.R. China
| | - Chunling Yang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, Guangxi, P.R. China
| | - Min Peng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, Guangxi, P.R. China
| | - Weilin Zhu
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, Guangxi, P.R. China
| | - Daxiang Xie
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, Guangxi, P.R. China
| | - Pingping He
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, Guangxi, P.R. China
| | - Pinyuan Wei
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, Guangxi, P.R. China
| | - Yong Lin
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, Guangxi, P.R. China
| | - Yongzhen Zhao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, Guangxi, P.R. China.
| | - Xiaohan Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, Guangxi, P.R. China.
| |
Collapse
|
3
|
Zhang X, Zhang Y, Wang YH, Shen SK. Transcriptome Analysis of Cinnamomum chago: A Revelation of Candidate Genes for Abiotic Stress Response and Terpenoid and Fatty Acid Biosyntheses. Front Genet 2018; 9:505. [PMID: 30455715 PMCID: PMC6231050 DOI: 10.3389/fgene.2018.00505] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 10/08/2018] [Indexed: 12/26/2022] Open
Abstract
Cinnamomum chago, an endangered species endemic to Yunnan province, possesses large economic and phylogenetic values in Lauraceae. However, the genomic information of this species remains relatively unexplored. In this study, we used RNAseq technology to characterize and annotate the C. chago transcriptome and identify candidate genes involved in special metabolic pathways and gene-associated simple sequence repeats (SSRs) and single-nucleotide polymorphism (SNP). A total of 129,097 unigenes, with a mean length of 667 bp and an N50 length of 1,062 bp, were assembled. Among these genes, 56,887 (44.07%) unigenes were successfully annotated using at least one database. Furthermore, 47 and 46 candidate genes were identified in terpenoid biosynthesis and fatty acid biosynthesis, respectively. A total of 22 candidate genes participated in at least one abiotic stress response of C. chago. Additionally, a total of 25,654 SSRs and 640 SNPs were also identified. Based on these potential loci, 55 novel expressed sequence tag (EST)-SSR primers were successfully developed. This work provides comprehensive transcriptomic data that can be used to establish a valuable information platform for gene prediction, signaling pathway investigation, and molecular marker development for C. chago and other related species. Such a platform can facilitate further studies on germplasm conservation and utilization of Lauraceae species.
Collapse
Affiliation(s)
| | | | | | - Shi-Kang Shen
- School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
4
|
Guan DL, Ma LB, Khan MS, Zhang XX, Xu SQ, Xie JY. Analysis of codon usage patterns in Hirudinaria manillensis reveals a preference for GC-ending codons caused by dominant selection constraints. BMC Genomics 2018; 19:542. [PMID: 30016953 PMCID: PMC6050667 DOI: 10.1186/s12864-018-4937-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 07/10/2018] [Indexed: 02/07/2023] Open
Abstract
Background Hirudinaria manillensis is an ephemeral, blood-sucking ectoparasite, possessing anticoagulant capacities with potential medical applications. Analysis of codon usage patterns would contribute to our understanding of the evolutionary mechanisms and genetic architecture of H. manillensis, which in turn would provide insight into the characteristics of other leeches. We analysed codon usage and related indices using 18,000 coding sequences (CDSs) retrieved from H. manillensis RNA-Seq data. Results We identified four highly preferred codons in H. manillensis that have G/C-endings. Points generated in an effective number of codons (ENC) plot distributed below the standard curve and the slope of a neutrality plot was less than 1. Highly expressed CDSs had lower ENC content and higher GC content than weakly expressed CDSs. Principal component analysis conducted on relative synonymous codon usage (RSCU) values divided CDSs according to GC content and divided codons according to ending bases. Moreover, by determining codon usage, we found that the majority of blood-diet related genes have undergone less adaptive evolution in H. manillensis, except for those with homologous sequences in the host species. Conclusions Codon usage in H. manillensis had an overall preference toward C-endings and indicated that codon usage patterns are mediated by differential expression, GC content, and biological function. Although mutation pressure effects were also notable, the majority of genetic evolution in H. manillensis was driven by natural selection. Electronic supplementary material The online version of this article (10.1186/s12864-018-4937-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- De-Long Guan
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, People's Republic of China
| | - Li-Bin Ma
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, People's Republic of China
| | - Muhammad Salabat Khan
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, People's Republic of China
| | - Xiu-Xiu Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, People's Republic of China
| | - Sheng-Quan Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, People's Republic of China.
| | - Juan-Ying Xie
- School of Computer Science, Shaanxi Normal University, Xi'an, 710119, Shaanxi, People's Republic of China.
| |
Collapse
|
5
|
Christie AE, Pascual MG, Yu A. Peptidergic signaling in the tadpole shrimp Triops newberryi: A potential model for investigating the roles played by peptide paracrines/hormones in adaptation to environmental change. Mar Genomics 2018. [DOI: 10.1016/j.margen.2018.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Transcriptome Analysis of the Tadpole Shrimp (Triops longicaudatus) by Illumina Paired-End Sequencing: Assembly, Annotation, and Marker Discovery. Genes (Basel) 2016; 7:genes7120114. [PMID: 27918468 PMCID: PMC5192490 DOI: 10.3390/genes7120114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/19/2016] [Accepted: 11/24/2016] [Indexed: 11/17/2022] Open
Abstract
The tadpole shrimp (Triops longicaudatus) is an aquatic crustacean that helps control pest populations. It inhabits freshwater ponds and pools and has been described as a living fossil. T. longicaudatus was officially declared an endangered species South Korea in 2005; however, through subsequent protection and conservation management, it was removed from the endangered species list in 2012. The limited number of available genetic resources on T. longicaudatus makes it difficult to obtain valuable genetic information for marker-aided selection programs. In this study, whole-transcriptome sequencing of T. longicaudatus generated 39.74 GB of clean data and a total of 269,822 contigs using the Illumina HiSeq 2500 platform. After clustering, a total of 208,813 unigenes with an N50 length of 1089 bp were generated. A total of 95,105 unigenes were successfully annotated against Protostome (PANM), Unigene, Eukaryotic Orthologous Groups (KOG), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases using BLASTX with a cut-off of 1E−5. A total of 57,731 unigenes were assigned to GO terms, and 7247 unigenes were mapped to 129 KEGG pathways. Furthermore, 1595 simple sequence repeats (SSRs) were detected from the unigenes with 1387 potential SSR markers. This is the first report of high-throughput transcriptome analysis of T. longicaudatus, and it provides valuable insights for genetic research and molecular-assisted breeding of this important species.
Collapse
|