1
|
Thobor BM, Tilstra A, Mueller B, Haas A, Hehemann JH, Wild C. Mucus carbohydrate composition correlates with scleractinian coral phylogeny. Sci Rep 2024; 14:14019. [PMID: 38890484 PMCID: PMC11189453 DOI: 10.1038/s41598-024-64828-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
The mucus surface layer serves vital functions for scleractinian corals and consists mainly of carbohydrates. Its carbohydrate composition has been suggested to be influenced by environmental conditions (e.g., temperature, nutrients) and microbial pressures (e.g., microbial degradation, microbial coral symbionts), yet to what extend the coral mucus composition is determined by phylogeny remains to be tested. To investigate the variation of mucus carbohydrate compositions among coral species, we analyzed the composition of mucosal carbohydrate building blocks (i.e., monosaccharides) for five species of scleractinian corals, supplemented with previously reported data, to discern overall patterns using cluster analysis. Monosaccharide composition from a total of 23 species (belonging to 14 genera and 11 families) revealed significant differences between two phylogenetic clades that diverged early in the evolutionary history of scleractinian corals (i.e., complex and robust; p = 0.001, R2 = 0.20), mainly driven by the absence of arabinose in the robust clade. Despite considerable differences in environmental conditions and sample analysis protocols applied, coral phylogeny significantly correlated with monosaccharide composition (Mantel test: p < 0.001, R2 = 0.70). These results suggest that coral mucus carbohydrates display phylogenetic dependence and support their essential role in the functioning of corals.
Collapse
Affiliation(s)
- Bianca M Thobor
- Department of Marine Ecology, University of Bremen, Bremen, Germany.
| | - Arjen Tilstra
- Department of Marine Ecology, University of Bremen, Bremen, Germany
| | - Benjamin Mueller
- Department of Marine Ecology, University of Bremen, Bremen, Germany
- Department of Freshwater and Marine Ecology, University of Amsterdam, Amsterdam, The Netherlands
- CARMABI Foundation, Willemstad, Curaçao
| | - Andreas Haas
- Department of Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, The Netherlands
| | - Jan-Hendrik Hehemann
- Department of Marine Glycobiology, Max Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM Centre for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Christian Wild
- Department of Marine Ecology, University of Bremen, Bremen, Germany
| |
Collapse
|
2
|
Grupstra CGB, Gómez-Corrales M, Fifer JE, Aichelman HE, Meyer-Kaiser KS, Prada C, Davies SW. Integrating cryptic diversity into coral evolution, symbiosis and conservation. Nat Ecol Evol 2024; 8:622-636. [PMID: 38351091 DOI: 10.1038/s41559-023-02319-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/12/2023] [Indexed: 04/13/2024]
Abstract
Understanding how diversity evolves and is maintained is critical to predicting the future trajectories of ecosystems under climate change; however, our understanding of these processes is limited in marine systems. Corals, which engineer reef ecosystems, are critically threatened by climate change, and global efforts are underway to conserve and restore populations as attempts to mitigate ocean warming continue. Recently, sequencing efforts have uncovered widespread undescribed coral diversity, including 'cryptic lineages'-genetically distinct but morphologically similar coral taxa. Such cryptic lineages have been identified in at least 24 coral genera spanning the anthozoan phylogeny and across ocean basins. These cryptic lineages co-occur in many reef systems, but their distributions often differ among habitats. Research suggests that cryptic lineages are ecologically specialized and several examples demonstrate differences in thermal tolerance, highlighting the critical implications of this diversity for predicting coral responses to future warming. Here, we draw attention to recent discoveries, discuss how cryptic diversity affects the study of coral adaptation and acclimation to future environments, explore how it shapes symbiotic partnerships, and highlight challenges and opportunities for conservation and restoration efforts.
Collapse
Affiliation(s)
| | | | - James E Fifer
- Department of Biology, Boston University, Boston, MA, USA
| | | | | | - Carlos Prada
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | - Sarah W Davies
- Department of Biology, Boston University, Boston, MA, USA.
| |
Collapse
|
3
|
Randolph Quek ZB, Jain SS, Richards ZT, Arrigoni R, Benzoni F, Hoeksema BW, Carvajal JI, Wilson NG, Baird AH, Kitahara MV, Seiblitz IGL, Vaga CF, Huang D. A hybrid-capture approach to reconstruct the phylogeny of Scleractinia (Cnidaria: Hexacorallia). Mol Phylogenet Evol 2023:107867. [PMID: 37348770 DOI: 10.1016/j.ympev.2023.107867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/28/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
A well-supported evolutionary tree representing most major lineages of scleractinian corals is in sight with the development and application of phylogenomic approaches. Specifically, hybrid-capture techniques are shedding light on the evolution and systematics of corals. Here, we reconstructed a broad phylogeny of Scleractinia to test previous phylogenetic hypotheses inferred from a few molecular markers, in particular, the relationships among major scleractinian families and genera, and to identify clades that require further research. We analysed 449 nuclear loci from 422 corals, comprising 266 species spanning 26 families, combining data across whole genomes, transcriptomes, hybrid capture and low-coverage sequencing to reconstruct the largest phylogenomic tree of scleractinians to date. Due to the large number of loci and data completeness (<38% missing data), node supports were high across shallow and deep nodes with incongruences observed in only a few shallow nodes. The "Robust" and "Complex" clades were recovered unequivocally, and our analyses confirmed that Micrabaciidae Vaughan, 1905 is sister to the "Robust" clade, transforming our understanding of the "Basal" clade. Several families remain polyphyletic in our phylogeny, including Deltocyathiidae Kitahara, Cairns, Stolarski & Miller, 2012, Caryophylliidae Dana, 1846, and Coscinaraeidae Benzoni, Arrigoni, Stefani & Stolarski, 2012, and we hereby formally proposed the family name Pachyseridae Benzoni & Hoeksema to accommodate Pachyseris Milne Edwards & Haime, 1849, which is phylogenetically distinct from Agariciidae Gray, 1847. Results also revealed species misidentifications and inconsistencies within morphologically complex clades, such as Acropora Oken, 1815 and Platygyra Ehrenberg, 1834, underscoring the need for reference skeletal material and topotypes, as well as the importance of detailed taxonomic work. The approach and findings here provide much promise for further stabilising the topology of the scleractinian tree of life and advancing our understanding of coral evolution.
Collapse
Affiliation(s)
- Z B Randolph Quek
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; Yale-NUS College, National University of Singapore, Singapore 138527, Singapore.
| | - Sudhanshi S Jain
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Zoe T Richards
- Coral Conservation and Research Group, Trace and Environmental DNA Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia; Collections and Research, Western Australian Museum, Welshpool, Western Australia 6106, Australia
| | - Roberto Arrigoni
- Department of Biology and Evolution of Marine Organisms, Genoa Marine Centre, Stazione Zoologica Anton Dohrn-National Institute of Marine Biology, Ecology and Biotechnology, 16126 Genoa, Italy
| | - Francesca Benzoni
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Bert W Hoeksema
- Taxonomy, Systematics and Geodiversity Group, Naturalis Biodiversity Center, 2300 RA Leiden, The Netherlands; Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700 CC Groningen, The Netherlands
| | - Jose I Carvajal
- Collections and Research, Western Australian Museum, Welshpool, Western Australia 6106, Australia
| | - Nerida G Wilson
- Collections and Research, Western Australian Museum, Welshpool, Western Australia 6106, Australia; School of Biological Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Andrew H Baird
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - Marcelo V Kitahara
- Centre for Marine Biology, University of São Paulo, 11612-109 São Sebastião, Brazil; Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560, United States of America
| | - Isabela G L Seiblitz
- Centre for Marine Biology, University of São Paulo, 11612-109 São Sebastião, Brazil; Graduate Program in Zoology, Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, Brazil
| | - Claudia F Vaga
- Centre for Marine Biology, University of São Paulo, 11612-109 São Sebastião, Brazil; Graduate Program in Zoology, Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, Brazil
| | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; Lee Kong Chian Natural History Museum, National University of Singapore, Singapore 117377, Singapore; Tropical Marine Science Institute, National University of Singapore, Singapore 119227, Singapore; Centre for Nature-based Climate Solutions, National University of Singapore, Singapore 117558, Singapore.
| |
Collapse
|
4
|
Seiblitz IGL, Vaga CF, Capel KCC, Cairns SD, Stolarski J, Quattrini AM, Kitahara MV. Caryophylliids (Anthozoa, Scleractinia) and mitochondrial gene order: insights from mitochondrial and nuclear phylogenomics. Mol Phylogenet Evol 2022; 175:107565. [PMID: 35787457 DOI: 10.1016/j.ympev.2022.107565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 10/17/2022]
Abstract
Molecularly, the family Caryophylliidae is polyphyletic and different sets of genetic data converge towards a consensus that a taxonomic review of this family is necessary. Overall, the order of genes in the mitochondrial genome (mitogenome) together with DNA sequences have been used to successfully untangle evolutionary relationships in several groups of organisms. Published mitogenomes of two caryophylliid genera (Desmophyllum and Solenosmilia) present a transposition of the gene block containing cob, nad2, and nad6, which is located between nad5 5' exon and trnW, while that of Polycyathus chaishanensis presents the same gene order as the majority of scleractinian corals. In molecular-based evolutionary reconstructions, caryophylliids that have the mitochondrial gene rearrangement were recovered as a monophyletic lineage ("true" caryophylliids), while members of the genus Polycyathus were placed in a different position. In this study, additional mitogenomes of this family were assembled and included in evolutionary reconstructions of Scleractinia in order to improve our understanding on whether the mitogenome gene rearrangement is limited to and, therefore, could be a synapomorphy of the actual members of Caryophylliidae. Specimens of Caryophyllia scobinosa, Premocyathus sp., Heterocyathus sulcatus, and Trochocyathus caryophylloides, as well as Desmophyllum pertusum and Solenosmilia variabilis from the Southwest Atlantic were sequenced using Illumina platforms. Then, mitochondrial genomes were assembled and annotated, and nuclear datasets were recovered in-silico from assembled contigs using a previously published set of baits. Evolutionary reconstructions were performed using mitochondrial and nuclear datasets and based on Maximum Likelihood and Bayesian Inference. Obtained mitogenomes are circular and range between 15,816 and 18,225 bp in size and from 30.76% to 36.63% in GC content. The gene rearrangement is only seen in C. scobinosa, D. pertusum, Premocyathus sp., and S. variabilis, which were recovered as a monophyletic clade in both mitochondrial and nuclear phylogenies. On the other hand, the "caryophylliids" with the canonical mitogenome gene order were not recovered within this clade. Differences in features of the skeleton of "true" caryophylliids in comparison to traditional members of the family were observed and offer further support that the gene rearrangement might be seen as a synapomorphy of family Caryophylliidae.
Collapse
Affiliation(s)
- I G L Seiblitz
- Centre for Marine Biology, University of São Paulo, 11612-109 São Sebastião, Brazil; Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, Brazil.
| | - C F Vaga
- Centre for Marine Biology, University of São Paulo, 11612-109 São Sebastião, Brazil; Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, Brazil
| | - K C C Capel
- Centre for Marine Biology, University of São Paulo, 11612-109 São Sebastião, Brazil; Department of Marine Science, Federal University of São Paulo, 11070-100 Santos, Brazil
| | - S D Cairns
- Department of Invertebrate Zoology, Smithsonian Institution, Washington, DC, 20560-0163 United States of America
| | - J Stolarski
- Institute of Paleobiology, Polish Academy of Sciences, PL-00-818 Warsaw, Poland
| | - A M Quattrini
- Department of Invertebrate Zoology, Smithsonian Institution, Washington, DC, 20560-0163 United States of America
| | - M V Kitahara
- Centre for Marine Biology, University of São Paulo, 11612-109 São Sebastião, Brazil; Department of Marine Science, Federal University of São Paulo, 11070-100 Santos, Brazil.
| |
Collapse
|
5
|
Orr RJS, Di Martino E, Gordon DP, Ramsfjell MH, Mello HL, Smith AM, Liow LH. A broadly resolved molecular phylogeny of New Zealand cheilostome bryozoans as a framework for hypotheses of morphological evolution. Mol Phylogenet Evol 2021; 161:107172. [PMID: 33813020 DOI: 10.1016/j.ympev.2021.107172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/04/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
Larger molecular phylogenies based on ever more genes are becoming commonplace with the advent of cheaper and more streamlined sequencing and bioinformatics pipelines. However, many groups of inconspicuous but no less evolutionarily or ecologically important marine invertebrates are still neglected in the quest for understanding species- and higher-level phylogenetic relationships. Here, we alleviate this issue by presenting the molecular sequences of 165 cheilostome bryozoan species from New Zealand waters. New Zealand is our geographic region of choice as its cheilostome fauna is taxonomically, functionally and ecologically diverse, and better characterized than many other such faunas in the world. Using this most taxonomically broadly-sampled and statistically-supported cheilostome phylogeny comprising 214 species, when including previously published sequences, and 17 genes (2 nuclear and 15 mitochondrial) we tested several existing systematic hypotheses based solely on morphological observations. We find that lower taxonomic level hypotheses (species and genera) are robust while our inferred trees did not reflect current higher-level systematics (family and above), illustrating a general need for the rethinking of current hypotheses. To illustrate the utility of our new phylogeny, we reconstruct the evolutionary history of frontal shields (i.e., a calcified body-wall layer in ascus-bearing cheilostomes) and ask if its presence has any bearing on the diversification rates of cheilostomes.
Collapse
Affiliation(s)
- R J S Orr
- Natural History Museum, University of Oslo, Oslo, Norway.
| | - E Di Martino
- Natural History Museum, University of Oslo, Oslo, Norway
| | - D P Gordon
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| | - M H Ramsfjell
- Natural History Museum, University of Oslo, Oslo, Norway
| | - H L Mello
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| | - A M Smith
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| | - L H Liow
- Natural History Museum, University of Oslo, Oslo, Norway; Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
6
|
A framework for in situ molecular characterization of coral holobionts using nanopore sequencing. Sci Rep 2020; 10:15893. [PMID: 32985530 PMCID: PMC7522235 DOI: 10.1038/s41598-020-72589-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/03/2020] [Indexed: 01/21/2023] Open
Abstract
Molecular characterization of the coral host and the microbial assemblages associated with it (referred to as the coral holobiont) is currently undertaken via marker gene sequencing. This requires bulky instruments and controlled laboratory conditions which are impractical for environmental experiments in remote areas. Recent advances in sequencing technologies now permit rapid sequencing in the field; however, development of specific protocols and pipelines for the effective processing of complex microbial systems are currently lacking. Here, we used a combination of 3 marker genes targeting the coral animal host, its symbiotic alga, and the associated bacterial microbiome to characterize 60 coral colonies collected and processed in situ, during the Tara Pacific expedition. We used Oxford Nanopore Technologies to sequence marker gene amplicons and developed bioinformatics pipelines to analyze nanopore reads on a laptop, obtaining results in less than 24 h. Reef scale network analysis of coral-associated bacteria reveals broadly distributed taxa, as well as host-specific associations. Protocols and tools used in this work may be applicable for rapid coral holobiont surveys, immediate adaptation of sampling strategy in the field, and to make informed and timely decisions in the context of the current challenges affecting coral reefs worldwide.
Collapse
|
7
|
Voronova AN, Chelomina GN. The SSU rRNA secondary structures of the Plagiorchiida species (Digenea), its applications in systematics and evolutionary inferences. INFECTION GENETICS AND EVOLUTION 2019; 78:104042. [PMID: 31770596 DOI: 10.1016/j.meegid.2019.104042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/05/2019] [Accepted: 09/16/2019] [Indexed: 10/25/2022]
Abstract
The small subunit ribosomal RNA (SSU rRNA) is widely used phylogenetic marker in broad groups of organisms and its secondary structure increasingly attracts the attention of researchers as supplementary tool in sequence alignment and advanced phylogenetic studies. Its comparative analysis provides a great contribution to evolutionary biology, allowing find out how the SSU rRNA secondary structure originated, developed and evolved. Herein, we provide the first data on the putative SSU rRNA secondary structures of the Plagiorchiida species. The structures were found to be quite conserved across broad range of species studied, well compatible with those of others eukaryotic SSU rRNA and possessed some peculiarities: cross-shaped structure of the ES6b, additional shortened ES6c2 helix, and elongated ES6a helix and h39 + ES9 region. The secondary structures of variable regions ES3 and ES7 appeared to be tissue-specific while ES6 and ES9 were specific at a family level allowing considering them as promising markers for digenean systematics. Their uniqueness more depends on the length than on the nucleotide diversity of primary sequences which evolutionary rates well differ. The findings have important implications for understanding rRNA evolution, developing molecular taxonomy and systematics of Plagiorchiida as well as for constructing new anthelmintic drugs.
Collapse
Affiliation(s)
- A N Voronova
- Federal Scientific Center of the East Asia Terrestrial Biodiversity FEB RAS, 7 Russia, 100-letiya Street, 159, Vladivostok 690022, Russia
| | - G N Chelomina
- Federal Scientific Center of the East Asia Terrestrial Biodiversity FEB RAS, 7 Russia, 100-letiya Street, 159, Vladivostok 690022, Russia.
| |
Collapse
|
8
|
Terraneo TI, Benzoni F, Baird AH, Arrigoni R, Berumen ML. Morphology and molecules reveal two new species ofPorites(Scleractinia, Poritidae) from the Red Sea and the Gulf of Aden. SYST BIODIVERS 2019. [DOI: 10.1080/14772000.2019.1643806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Tullia I. Terraneo
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955–6900, Saudi Arabia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| | - Francesca Benzoni
- Department of Biotechnologies and Bioscience, University of Milano – Bicocca, Milan, 20126, Italy
| | - Andrew H. Baird
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| | - Roberto Arrigoni
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955–6900, Saudi Arabia
- European Commission, Joint Research Centre, Directorate A – Strategy, Work Programme and Resources, Exploratory Research, Ispra, 21027, Italy
| | - Michael L. Berumen
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955–6900, Saudi Arabia
| |
Collapse
|