1
|
Zhang J, Jie Y, Yan L, Wang M, Dong Y, Pang Y, Ren C, Song J, Chen X, Li X, Zhang P, Yang D, Zhang Y, Qi Z, Ru Z. Development and identification of a novel wheat-Thinopyrum ponticum disomic substitution line DS5Ag(5D) with new genes conferring resistance to powdery mildew and leaf rust. BMC PLANT BIOLOGY 2024; 24:718. [PMID: 39069623 DOI: 10.1186/s12870-024-05433-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Powdery mildew (caused by Blumeria graminis f. sp. tritici (Bgt)) and leaf rust (caused by Puccinia triticina (Pt)) are prevalent diseases in wheat (Triticum aestivum L.) production. Thinopyrum ponticum (2n = 10x = 70, EeEeEbEbExExStStStSt) contains genes that confer high levels of resistance to these diseases. RESULTS An elite wheat-Th. ponticum disomic substitution line, DS5Ag(5D), was developed in the Bainong Aikang 58 (AK58) background. The line was assessed using genomic in situ hybridization (GISH), oligo-nucleotide probe multiplex (ONPM) fluorescence in situ hybridization (FISH), and molecular markers. Twenty eight chromosome-specific molecular markers were identified for the alien chromosome, and 22 of them were co-dominant. Additionally, SNP markers from the wheat 660 K SNP chip were utilized to confirm chromosome identification and they provide molecular tools for tagging the chromosome in concern. The substitution line demonstrated high levels of resistance to powdery mildew throughout its growth period and to leaf rust at the adult stage. Based on the resistance evaluation of five F5 populations between the substitution lines and wheat genotypes with different levels of sensitivity to the two diseases. Results showed that the resistance genes located on 5Ag confered stable resistance against both diseases across different backgrounds. Resistance spectrum analysis combined with diagnostic marker detection of known resistance genes of Th. ponticum revealed that 5Ag contained two novel genes, Pm5Ag and Lr5Ag, which conferred resistance to powdery mildew and leaf rust, respectively. CONCLUSIONS In this study, a novel wheat-Th. ponticum disomic substitution line DS5Ag(5D) was successfully developed. The Th. ponticum chromosome 5Ag contain new resistance genes for powdery mildew and leaf rust. Chromosomic-specific molecular markers were generated and they can be used to track the 5Ag chromosome fragments. Consequently, this study provides new elite germplasm resources and molecular markers to facilitate the breeding of wheat varieties that is resistant to powdery mildew and leaf rust.
Collapse
Affiliation(s)
- Jinlong Zhang
- School of Agriculture, Center of Wheat Research, Henan Key Laboratory of Hybrid Wheat, Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yize Jie
- School of Agriculture, Center of Wheat Research, Henan Key Laboratory of Hybrid Wheat, Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Linjie Yan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Mengmeng Wang
- School of Agriculture, Center of Wheat Research, Henan Key Laboratory of Hybrid Wheat, Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Yilong Dong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yunfei Pang
- School of Agriculture, Center of Wheat Research, Henan Key Laboratory of Hybrid Wheat, Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Cuicui Ren
- School of Agriculture, Center of Wheat Research, Henan Key Laboratory of Hybrid Wheat, Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Jie Song
- School of Agriculture, Center of Wheat Research, Henan Key Laboratory of Hybrid Wheat, Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Xiangdong Chen
- School of Agriculture, Center of Wheat Research, Henan Key Laboratory of Hybrid Wheat, Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Xiaojun Li
- School of Agriculture, Center of Wheat Research, Henan Key Laboratory of Hybrid Wheat, Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Peipei Zhang
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071000, Hebei, China
| | - Dongyan Yang
- School of Agriculture, Center of Wheat Research, Henan Key Laboratory of Hybrid Wheat, Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Yang Zhang
- School of Agriculture, Center of Wheat Research, Henan Key Laboratory of Hybrid Wheat, Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Zengjun Qi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Zhengang Ru
- School of Agriculture, Center of Wheat Research, Henan Key Laboratory of Hybrid Wheat, Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China.
| |
Collapse
|
2
|
Wu D, Zhao X, Xie Y, Li L, Li Y, Zhu W, Xu L, Wang Y, Zeng J, Cheng Y, Sha L, Fan X, Zhang H, Zhou Y, Kang H. Cytogenetic and Genomic Characterization of a Novel Wheat-Tetraploid Thinopyrum elongatum 1BS⋅1EL Translocation Line with Stripe Rust Resistance. PLANT DISEASE 2024; 108:2065-2072. [PMID: 38381966 DOI: 10.1094/pdis-12-23-2799-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is a destructive wheat disease pathogen. Thinopyrum elongatum is a valuable germplasm including diploid, tetraploid, and decaploid with plenty of biotic and abiotic resistance. In a previous study, we generated a stripe rust-resistant wheat-tetraploid Th. elongatum 1E/1D substitution line, K17-841-1. To further apply the wild germplasm for wheat breeding, we selected and obtained a new homozygous wheat-tetraploid Th. elongatum translocation line, T1BS⋅1EL, using genomic in situ hybridization, fluorescence in situ hybridization (FISH), oligo-FISH painting, and the wheat 55K single nucleotide polymorphism genotyping array. The T1BS⋅1EL is highly resistant to stripe rust at the seedling and adult stages. Pedigree and molecular marker analyses revealed that the resistance gene was located on the chromosome arm 1EL of tetraploid Th. elongatum, tentatively named Yr1EL. In addition, we developed and validated 32 simple sequence repeat markers and two kompetitive allele-specific PCR assays that were specific to the tetraploid Th. elongatum chromosome arm 1EL to facilitate marker-assisted selection for alien 1EL stripe rust resistance breeding. This will help us explore and locate the stripe rust resistance gene mapping on the 1E chromosome and deploy it in the wheat breeding program.
Collapse
Affiliation(s)
- Dandan Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xin Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yangqiu Xie
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Lingyu Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yinghui Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Wei Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Lili Xu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yiran Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Lina Sha
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Haigin Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yonghong Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Huoyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| |
Collapse
|
3
|
Gong B, Chen L, Zhang H, Zhu W, Xu L, Cheng Y, Wang Y, Zeng J, Fan X, Sha L, Zhang H, Chen G, Zhou Y, Kang H, Wu D. Development, identification, and utilization of wheat-tetraploid Thinopyrum elongatum 4EL translocation lines resistant to stripe rust. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:17. [PMID: 38198011 DOI: 10.1007/s00122-023-04525-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024]
Abstract
KEY MESSAGE The new stripe rust resistance gene Yr4EL in tetraploid Th. elongatum was identified and transferred into common wheat via 4EL translocation lines. Tetraploid Thinopyrum elongatum is a valuable genetic resource for improving the resistance of wheat to diseases such as stripe rust, powdery mildew, and Fusarium head blight. We previously reported that chromosome 4E of the 4E (4D) substitution line carries all-stage stripe rust resistance genes. To optimize the utility of these genes in wheat breeding programs, we developed translocation lines by inducing chromosomal structural changes through 60Co-γ irradiation and developing monosomic substitution lines. In total, 53 plants with different 4E chromosomal structural changes were identified. Three homozygous translocation lines (T4DS·4EL, T5AL·4EL, and T3BL·4EL) and an addition translocation line (T5DS·4EL) were confirmed by the genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), FISH-painting, and wheat 55 K SNP array analyses. These four translocation lines, which contained chromosome arm 4EL, exhibited high stripe rust resistance. Thus, a resistance gene (tentatively named Yr4EL) was localized to the chromosome arm 4EL of tetraploid Th. elongatum. For the application of marker-assisted selection (MAS), 32 simple sequence repeat (SSR) markers were developed, showing specific amplification on the chromosome arm 4EL and co-segregation with Yr4EL. Furthermore, the 4DS·4EL line could be selected as a good pre-breeding line that better agronomic traits than other translocation lines. We transferred Yr4EL into three wheat cultivars SM482, CM42, and SM51, and their progenies were all resistant to stripe rust, which can be used in future wheat resistance breeding programs.
Collapse
Affiliation(s)
- Biran Gong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Linfeng Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hao Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Wei Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lili Xu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yiran Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lina Sha
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Haiqin Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yonghong Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Dandan Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
4
|
Gong B, Zhao L, Zeng C, Zhu W, Xu L, Wu D, Cheng Y, Wang Y, Zeng J, Fan X, Sha L, Zhang H, Chen G, Zhou Y, Kang H. Development and Characterization of a Novel Wheat-Tetraploid Thinopyrum elongatum 6E (6D) Disomic Substitution Line with Stripe Rust Resistance at the Adult Stage. PLANTS (BASEL, SWITZERLAND) 2023; 12:2311. [PMID: 37375936 DOI: 10.3390/plants12122311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
Stripe rust, which is caused by Puccinia striiformis f. sp. tritici, is one of the most devastating foliar diseases of common wheat worldwide. Breeding new wheat varieties with durable resistance is the most effective way of controlling the disease. Tetraploid Thinopyrum elongatum (2n = 4x = 28, EEEE) carries a variety of genes conferring resistance to multiple diseases, including stripe rust, Fusarium head blight, and powdery mildew, which makes it a valuable tertiary genetic resource for enhancing wheat cultivar improvement. Here, a novel wheat-tetraploid Th. elongatum 6E (6D) disomic substitution line (K17-1065-4) was characterized using genomic in situ hybridization and fluorescence in situ hybridization chromosome painting analyses. The evaluation of disease responses revealed that K17-1065-4 is highly resistant to stripe rust at the adult stage. By analyzing the whole-genome sequence of diploid Th. elongatum, we detected 3382 specific SSR sequences on chromosome 6E. Sixty SSR markers were developed, and thirty-three of them can accurately trace chromosome 6E of tetraploid Th. elongatum, which were linked to the disease resistance gene(s) in the wheat genetic background. The molecular marker analysis indicated that 10 markers may be used to distinguish Th. elongatum from other wheat-related species. Thus, K17-1065-4 carrying the stripe rust resistance gene(s) is a novel germplasm useful for breeding disease-resistant wheat cultivars. The molecular markers developed in this study may facilitate the mapping of the stripe rust resistance gene on chromosome 6E of tetraploid Th. elongatum.
Collapse
Affiliation(s)
- Biran Gong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Chunyan Zeng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Xu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Dandan Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiran Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lina Sha
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Haiqin Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yonghong Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
5
|
Zhang H, Zeng C, Li L, Zhu W, Xu L, Wang Y, Zeng J, Fan X, Sha L, Wu D, Cheng Y, Zhang H, Chen G, Zhou Y, Kang H. RNA-seq analysis revealed considerable genetic diversity and enabled the development of specific KASP markers for Psathyrostachys huashanica. FRONTIERS IN PLANT SCIENCE 2023; 14:1166710. [PMID: 37063223 PMCID: PMC10097992 DOI: 10.3389/fpls.2023.1166710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Psathyrostachys huashanica, which grows exclusively in Huashan, China, is an important wild relative of common wheat that has many desirable traits relevant for wheat breeding. However, the poorly characterized interspecific phylogeny and genomic variations and the relative lack of species-specific molecular markers have limited the utility of P. huashanica as a genetic resource for enhancing wheat germplasm. In this study, we sequenced the P. huashanica transcriptome, resulting in 50,337,570 clean reads that were assembled into 65,617 unigenes, of which 38,428 (58.56%) matched at least one sequence in public databases. The phylogenetic analysis of P. huashanica, Triticeae species, and Poaceae species was conducted using 68 putative orthologous gene clusters. The data revealed the distant evolutionary relationship between P. huashanica and common wheat as well as the substantial diversity between the P. huashanica genome and the wheat D genome. By comparing the transcriptomes of P. huashanica and Chinese Spring, 750,759 candidate SNPs between P. huashanica Ns genes and their common wheat orthologs were identified. Among the 90 SNPs in the exon regions with different functional annotations, 58 (64.4%) were validated as Ns genome-specific SNPs in the common wheat background by KASP genotyping assays. Marker validation analyses indicated that six specific markers can discriminate between P. huashanica and the other wheat-related species. In addition, five markers are unique to P. huashanica, P. juncea, and Leymus species, which carry the Ns genome. The Ns genome-specific markers in a wheat background were also validated regarding their specificity and stability for detecting P. huashanica chromosomes in four wheat-P. huashanica addition lines. Four and eight SNP markers were detected in wheat-P. huashanica 2Ns and 7Ns addition lines, respectively, and one marker was specific to both wheat-P. huashanica 3Ns, 4Ns, and 7Ns addition lines. These markers developed using transcriptome data may be used to elucidate the genetic relationships among Psathyrostachys, Leymus, and other closely-related species. They may also facilitate precise introgressions and the high-throughput monitoring of P. huashanica exogenous chromosomes or segments in future crop breeding programs.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Chunyan Zeng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Liangxi Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wei Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lili Xu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lina Sha
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dandan Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yiran Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Haiqin Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yonghong Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Grewal S, Coombes B, Joynson R, Hall A, Fellers J, Yang CY, Scholefield D, Ashling S, Isaac P, King IP, King J. Chromosome-specific KASP markers for detecting Amblyopyrum muticum segments in wheat introgression lines. THE PLANT GENOME 2022; 15:e20193. [PMID: 35102721 DOI: 10.1002/tpg2.20193] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/20/2021] [Indexed: 05/23/2023]
Abstract
Many wild-relative species are being used in prebreeding programs to increase the genetic diversity of wheat (Triticum aestivum L.). Genotyping tools such as single nucleotide polymorphism (SNP)-based arrays and molecular markers have been widely used to characterize wheat-wild relative introgression lines. However, due to the polyploid nature of the recipient wheat genome, it is difficult to develop SNP-based Kompetitive allele-specific polymerase chain reaction (KASP) markers that are codominant to track the introgressions from the wild species. Previous attempts to develop KASP markers have involved both exome- and polymerase chain reaction (PCR)-amplicon-based sequencing of the wild species. But chromosome-specific KASP assays have been hindered by homoeologous SNPs within the wheat genome. This study involved whole genome sequencing of the diploid wheat wild relative Amblyopyrum muticum (Boiss.) Eig and development of a de novo SNP discovery pipeline that generated ∼38,000 SNPs in unique wheat genome sequences. New assays were designed to increase the density of Am. muticum polymorphic KASP markers. With a goal of one marker per 60 Mbp, 335 new KASP assays were validated as diagnostic for Am. muticum in a wheat background. Together with assays validated in previous studies, 498 well distributed chromosome-specific markers were used to recharacterize previously genotyped wheat-Am. muticum doubled haploid (DH) introgression lines. The chromosome-specific nature of the KASP markers allowed clarification of which wheat chromosomes were involved with recombination events or substituted with Am. muticum chromosomes and the higher density of markers allowed detection of new small introgressions in these DH lines.
Collapse
Affiliation(s)
- Surbhi Grewal
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, Univ. of Nottingham, Loughborough, UK
| | | | - Ryan Joynson
- Earlham Institute, Norwich Research Park, Norwich, UK
- Current address: Limagrain Europe, Clermont-Ferrand, France
| | - Anthony Hall
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - John Fellers
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, USA
| | - Cai-Yun Yang
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, Univ. of Nottingham, Loughborough, UK
| | - Duncan Scholefield
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, Univ. of Nottingham, Loughborough, UK
| | - Stephen Ashling
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, Univ. of Nottingham, Loughborough, UK
| | - Peter Isaac
- iDna Genetics Ltd., Norwich Research Park, Norwich, UK
| | - Ian P King
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, Univ. of Nottingham, Loughborough, UK
| | - Julie King
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, Univ. of Nottingham, Loughborough, UK
| |
Collapse
|
7
|
Yang S, Yu W, Wei X, Wang Z, Zhao Y, Zhao X, Tian B, Yuan Y, Zhang X. An extended KASP-SNP resource for molecular breeding in Chinese cabbage(Brassica rapa L. ssp. pekinensis). PLoS One 2020; 15:e0240042. [PMID: 33007009 PMCID: PMC7531813 DOI: 10.1371/journal.pone.0240042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/18/2020] [Indexed: 12/31/2022] Open
Abstract
Kompetitive allele-specific PCR (KASP) is a cost-effective single-step SNP genotyping technology, With an objective to enhance the marker repertoire and develop high efficient KASP-SNP markers in Chinese cabbage, we re-sequenced four Chinese cabbage doubled haploid (DH) lines, Y177-47, Y635-10, Y510-1 and Y510-9, and generated a total of more than 38.5 billion clean base pairs. A total of 827,720 SNP loci were identified with an estimated density of 3,217 SNPs/Mb. Further, a total of 387,354 SNPs with at least 30 bp to the next most adjacent SNPs on either side were selected as resource for KASP markers. From this resource, 258 (96.27%) of 268 SNP loci were successfully transformed into KASP-SNP markers using a Roche LightCycler 480-II instrument. Among these markers, 221 (85.66%) were co-dominant markers, 220 (85.27%) were non-synonymous SNPs, and 257 (99.6%) were newly developed markers. In addition, 53 markers were applied for genotyping of 34 Brassica rapa accessions. Cluster analysis separated these 34 accessions into three clusters based on heading types. The millions of SNP loci, a large set of resource for KASP markers, as well as the newly developed KASP markers in this study may facilitate further genetic and molecular breeding studies in Brassica rapa.
Collapse
Affiliation(s)
- Shuangjuan Yang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Wentao Yu
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
- College of Life Science, Zhengzhou University, Zhengzhou, China
| | - Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhiyong Wang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yanyan Zhao
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiaobin Zhao
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Baoming Tian
- College of Life Science, Zhengzhou University, Zhengzhou, China
- * E-mail: (XW-Z); (BT); (YY)
| | - Yuxiang Yuan
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
- * E-mail: (XW-Z); (BT); (YY)
| | - Xiaowei Zhang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
- * E-mail: (XW-Z); (BT); (YY)
| |
Collapse
|
8
|
Singh AK, Lo K, Dong C, Zhang P, Trethowan RM, Sharp PJ. Development of RNA-seq-based molecular markers for characterizing Thinopyrum bessarabicum and Secale introgressions in wheat. Genome 2020; 63:525-534. [PMID: 32762630 DOI: 10.1139/gen-2020-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sequence-based markers have added a new dimension in the efficiency of identifying alien introgressions in wheat. Expressed sequence tag-sequence tagged sites (EST-STS) markers have proved useful in tracing alien chromatin. In this study, we report the development of Thinopyrum bessarabicum- and Secale anatolicum-specific EST-STS markers and their application in tracing respective alien chromatin introgressions in wheat. The parental lines, Chinese Spring (CS), ISR991.1 (CS/Th. bessarabicum amphidiploid), and ISR1049.2 (CS/Secale anatolicum amphidiploid), were used as core experimental materials. Using comparative analysis of RNA-Seq data, 10 903 and 10 660 candidate sequences specific to Th. bessarabicum and S. anatolicum, respectively, were assembled and identified. To validate the genome specificity of these candidate sequences, 68 and 64 EST-STS markers were developed from randomly selected candidate sequences of Th. bessarabicum and S. anatolicum, respectively, and tested on sets of alien addition lines. Fifty-five and 53 markers for Th. bessarabicum and S. anatolicum chromatin, respectively, were assigned to chromosomal location(s), covering all seven chromosomes. Approximately 83% of S. anatolicum-specific markers were transferable to S. cereale. The genome-specific candidate sequences identified and the EST-STS markers developed will be valuable resources for exploitation of Th. bessarabicum and Secale species diversity in wheat and triticale breeding.
Collapse
Affiliation(s)
- Amit K Singh
- Plant Breeding Institute, School of Life and Environmental Sciences, The University of Sydney, Cobbitty, NSW 2570, Australia
| | - Kitty Lo
- School of Mathematics and Statistics, The University of Sydney, NSW 2006, Australia
| | - Chongmei Dong
- Plant Breeding Institute, School of Life and Environmental Sciences, The University of Sydney, Cobbitty, NSW 2570, Australia
| | - Peng Zhang
- Plant Breeding Institute, School of Life and Environmental Sciences, The University of Sydney, Cobbitty, NSW 2570, Australia
| | - Richard M Trethowan
- Plant Breeding Institute, School of Life and Environmental Sciences, The University of Sydney, Cobbitty, NSW 2570, Australia
| | - Peter J Sharp
- Plant Breeding Institute, School of Life and Environmental Sciences, The University of Sydney, Cobbitty, NSW 2570, Australia
| |
Collapse
|
9
|
Baker L, Grewal S, Yang CY, Hubbart-Edwards S, Scholefield D, Ashling S, Burridge AJ, Przewieslik-Allen AM, Wilkinson PA, King IP, King J. Exploiting the genome of Thinopyrum elongatum to expand the gene pool of hexaploid wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2213-2226. [PMID: 32313991 PMCID: PMC7311493 DOI: 10.1007/s00122-020-03591-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/31/2020] [Indexed: 05/23/2023]
Abstract
One hundred and thirty four introgressions from Thinopyrum elongatum have been transferred into a wheat background and were characterised using 263 SNP markers. Species within the genus Thinopyrum have been shown to carry genetic variation for a very wide range of traits including biotic and abiotic stresses and quality. Research has shown that one of the species within this genus, Th. elongatum, has a close relationship with the genomes of wheat making it a highly suitable candidate to expand the gene pool of wheat. Homoeologous recombination, in the absence of the Ph1 gene, has been exploited to transfer an estimated 134 introgressions from Th. elongatum into a hexaploid wheat background. The introgressions were detected and characterised using 263 single nucleotide polymorphism markers from a 35 K Axiom® Wheat-Relative Genotyping Array, spread across seven linkage groups and validated using genomic in situ hybridisation. The genetic map had a total length of 187.8 cM and the average chromosome length was 26.8 cM. Comparative analyses of the genetic map of Th. elongatum and the physical map of hexaploid wheat confirmed previous work that indicated good synteny at the macro-level, although Th. elongatum does not contain the 4A/5A/7B translocation found in wheat.
Collapse
Affiliation(s)
- Lauren Baker
- School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Surbhi Grewal
- School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Cai-Yun Yang
- School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Stella Hubbart-Edwards
- School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Duncan Scholefield
- School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Stephen Ashling
- School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Amanda J Burridge
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | | | - Paul A Wilkinson
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Ian P King
- School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Julie King
- School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK.
| |
Collapse
|
10
|
Zhang M, Zhang W, Zhu X, Sun Q, Chao S, Yan C, Xu SS, Fiedler J, Cai X. Partitioning and physical mapping of wheat chromosome 3B and its homoeologue 3E in Thinopyrum elongatum by inducing homoeologous recombination. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1277-1289. [PMID: 31970450 DOI: 10.1007/s00122-020-03547-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
We performed homoeologous recombination-based partitioning and physical mapping of wheat chromosome 3B and Th. elongatum chromosome 3E, providing a unique physical framework of this homoeologous pair for genome studies. The wheat (Triticum aestivum, 2n = 6x = 42, AABBDD) and Thinopyrum elongatum (2n = 2x = 14, EE) genomes can be differentiated from each other by fluorescent genomic in situ hybridization (FGISH) as well as molecular markers. This has facilitated homoeologous recombination-based partitioning and engineering of their genomes for physical mapping and alien introgression. Here, we constructed a special wheat genotype, which was double monosomic for wheat chromosome 3B and Th. elongatum chromosome 3E and homozygous for the ph1b mutant, to induce 3B-3E homoeologous recombination. Totally, 81 3B-3E recombinants were recovered and detected in the primary, secondary, and tertiary homoeologous recombination cycles by FGISH. Comparing to the primary recombination, the secondary and tertiary recombination shifted toward the proximal regions due to the increase in homology between the pairing partners. The 3B-3E recombinants were genotyped by high-throughput wheat 90-K single nucleotide polymorphism (SNP) arrays and their recombination breakpoints physically mapped based on the FGISH patterns and SNP results. The 3B-3E recombination physically partitioned chromosome 3B into 38 bins, and 429 SNPs were assigned to the distinct bins. Integrative analysis of FGISH and SNP results led to the construction of a composite bin map for chromosome 3B. Additionally, we developed 22 SNP-derived semi-thermal asymmetric reverse PCR markers specific for chromosome 3E and constructed a comparative map of homoeologous chromosomes 3E, 3B, 3A, and 3D. In summary, this work provides a unique physical framework for further studies of the 3B-3E homoeologous pair and diversifies the wheat genome for wheat improvement.
Collapse
Affiliation(s)
- Mingyi Zhang
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Wei Zhang
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Xianwen Zhu
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Qing Sun
- Department of Computer Science, North Dakota State University, Fargo, ND, 58108, USA
| | - Shiaoman Chao
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA
| | - Changhui Yan
- Department of Computer Science, North Dakota State University, Fargo, ND, 58108, USA
| | - Steven S Xu
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA
| | - Jason Fiedler
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA
| | - Xiwen Cai
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA.
| |
Collapse
|
11
|
Xu J, Wang L, Deal KR, Zhu T, Ramasamy RK, Luo MC, Malvick J, You FM, McGuire PE, Dvorak J. Genome-wide introgression from a bread wheat × Lophopyrum elongatum amphiploid into wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1227-1241. [PMID: 31980837 DOI: 10.1007/s00122-020-03544-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
We introgressed wheatgrass germplasm from the octoploid amphiploid Triticum aestivum× Lophopyrum elongatum into wheat by manipulating the wheat Ph1 gene and discovered and characterized 130 introgression lines harboring single or, in various combinations, complete and recombined L. elongatum chromosomes. Diploid wheatgrass Lophopyrum elongatum (genomes EE) possesses valuable traits for wheat genetics and breeding. We evaluated several strategies for introgression of this germplasm into wheat. To detect it, we developed and validated multiplexed sets of Sequenom MassARRAY single nucleotide polymorphism (SNP) markers, which differentiated disomic and monosomic L. elongatum chromosomes from wheat chromosomes. We identified 130 introgression lines (ILs), which harbored 108 complete and 89 recombined L. elongatum chromosomes. Of the latter, 59 chromosomes were recombined by one or more crossovers and 30 were involved in centromeric (Robertsonian) translocations or were telocentric. To identify wheat chromosomes substituted for or recombined with L. elongatum chromosomes, we genotyped the ILs with the wheat 90-K Infinium SNP array. We found that most of the wheat 90-K probes correctly detected their targets in the L. elongatum genome and showed that some wheat SNPs are ancient and had originated prior to the divergence of the wheat and L. elongatum lineages. Of the 130 ILs, 52% were homozygous for Ph1 deletion and thus are staged to be recombined further. We failed to detect in the L. elongatum genome the 4/5 reciprocal translocation that has been reported in Thinopyrum bessarabicum and several other Triticeae genomes.
Collapse
Affiliation(s)
- Jiale Xu
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Le Wang
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Karin R Deal
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Tingting Zhu
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Ramesh K Ramasamy
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Julia Malvick
- Veterinary Genetics Laboratory, University of California, Davis, CA, 95616, USA
| | - Frank M You
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, K1A 0C6, Canada
| | - Patrick E McGuire
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Jan Dvorak
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
12
|
Li D, Zhang J, Liu H, Tan B, Zhu W, Xu L, Wang Y, Zeng J, Fan X, Sha L, Zhang H, Ma J, Chen G, Zhou Y, Kang H. Characterization of a wheat-tetraploid Thinopyrum elongatum 1E(1D) substitution line K17-841-1 by cytological and phenotypic analysis and developed molecular markers. BMC Genomics 2019; 20:963. [PMID: 31823771 PMCID: PMC6905003 DOI: 10.1186/s12864-019-6359-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/01/2019] [Indexed: 01/17/2023] Open
Abstract
Background Tetraploid Thinopyrum elongatum (2n = 4x = 28) is a promising source of useful genes, including those related to adaptability and resistance to diverse biotic (Fusarium head blight, rust, powdery mildew, and yellow dwarf virus) and abiotic (cold, drought, and salt) stresses. However, gene transfer rates are low for this species and relatively few species-specific molecular markers are available. Results The wheat-tetraploid Th. elongatum line K17–841-1 derived from a cross between a hexaploid Trititrigia and Sichuan wheat cultivars was characterized based on sequential genomic and fluorescence in situ hybridizations and simple sequence repeat markers. We revealed that K17–841-1 is a 1E (1D) chromosomal substitution line that is highly resistant to stripe rust pathogen strains prevalent in China. By comparing the sequences generated during genotyping-by-sequencing (GBS), we obtained 597 specific fragments on the 1E chromosome of tetraploid Th. elongatum. A total of 235 primers were designed and 165 new Th. elongatum-specific markers were developed, with an efficiency of up to 70%. Marker validation analyses indicated that 25 specific markers can discriminate between the tetraploid Th. elongatum chromosomes and the chromosomes of other wheat-related species. An evaluation of the utility of these markers in a F2 breeding population suggested these markers are linked to the stripe rust resistance gene on chromosome 1E. Furthermore, 28 markers are unique to diploid Th. elongatum, tetraploid Th. elongatum, or decaploid Thinopyrum ponticum, which carry the E genome. Finally, 48 and 74 markers revealed polymorphisms between Thinopyrum E-genome- containing species and Thinopyrum bessarabicum (Eb) and Pseudoroegneria libanotica (St), respectively. Conclusions This new substitution line provide appropriate bridge–breeding–materials for alien gene introgression to improve wheat stripe rust resistance. The markers developed using GBS technology in this study may be useful for the high-throughput and accurate detection of tetraploid Th. elongatum DNA in diverse materials. They may also be relevant for investigating the genetic differences and phylogenetic relationships among E, Eb, St, and other closely-related genomes and for further characterizing these complex species.
Collapse
Affiliation(s)
- Daiyan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Juwei Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Haijiao Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Binwen Tan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Wei Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lili Xu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lina Sha
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Haiqin Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yonghong Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
13
|
Mariotti R, Fornasiero A, Mousavi S, Cultrera NG, Brizioli F, Pandolfi S, Passeri V, Rossi M, Magris G, Scalabrin S, Scaglione D, Di Gaspero G, Saumitou-Laprade P, Vernet P, Alagna F, Morgante M, Baldoni L. Genetic Mapping of the Incompatibility Locus in Olive and Development of a Linked Sequence-Tagged Site Marker. FRONTIERS IN PLANT SCIENCE 2019; 10:1760. [PMID: 32117338 PMCID: PMC7025539 DOI: 10.3389/fpls.2019.01760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/16/2019] [Indexed: 05/20/2023]
Abstract
The genetic control of self-incompatibility (SI) has been recently disclosed in olive. Inter-varietal crossing confirmed the presence of only two incompatibility groups (G1 and G2), suggesting a simple Mendelian inheritance of the trait. A double digest restriction associated DNA (ddRAD) sequencing of a biparental population segregating for incompatibility groups has been performed and high-density linkage maps were constructed in order to map the SI locus and identify gene candidates and linked markers. The progeny consisted of a full-sib family of 229 individuals derived from the cross 'Leccino' (G1) × 'Dolce Agogia' (G2) varieties, segregating 1:1 (G1:G2), in accordance with a diallelic self-incompatibility (DSI) model. A total of 16,743 single nucleotide polymorphisms was identified, 7,006 in the female parent 'Leccino' and 9,737 in the male parent 'Dolce Agogia.' Each parental map consisted of 23 linkage groups and showed an unusual large size (5,680 cM in 'Leccino' and 3,538 cM in 'Dolce Agogia'). Recombination was decreased across all linkage groups in pollen mother cells of 'Dolce Agogia,' the parent with higher heterozygosity, compared to megaspore mother cells of 'Leccino,' in a context of a species that showed exceptionally high recombination rates. A subset of 109 adult plants was assigned to either incompatibility group by a stigma test and the diallelic self-incompatibility (DSI) locus was mapped to an interval of 5.4 cM on linkage group 18. This region spanned a size of approximately 300 Kb in the olive genome assembly. We developed a sequence-tagged site marker in the DSI locus and identified five haplotypes in 57 cultivars with known incompatibility group assignment. A combination of two single-nucleotide polymorphisms (SNPs) was sufficient to predict G1 or G2 phenotypes in olive cultivars, enabling early marker-assisted selection of compatible genotypes and allowing for a rapid screening of inter-compatibility among cultivars in order to guarantee effective fertilization and increase olive production. The construction of high-density linkage maps has led to the development of the first functional marker in olive and provided positional candidate genes in the SI locus.
Collapse
Affiliation(s)
- Roberto Mariotti
- CNR - Institute of Biosciences and Bioresources (IBBR), Perugia, Italy
| | - Alice Fornasiero
- Institute of Applied Genomics, Udine, Italy
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Soraya Mousavi
- CNR - Institute of Biosciences and Bioresources (IBBR), Perugia, Italy
| | | | - Federico Brizioli
- CNR - Institute of Biosciences and Bioresources (IBBR), Perugia, Italy
| | - Saverio Pandolfi
- CNR - Institute of Biosciences and Bioresources (IBBR), Perugia, Italy
| | - Valentina Passeri
- CNR - Institute of Biosciences and Bioresources (IBBR), Perugia, Italy
| | - Martina Rossi
- CNR - Institute of Biosciences and Bioresources (IBBR), Perugia, Italy
| | - Gabriele Magris
- Institute of Applied Genomics, Udine, Italy
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | | | | | | | | | - Philippe Vernet
- University of Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000, Lille, France
| | | | - Michele Morgante
- Institute of Applied Genomics, Udine, Italy
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Luciana Baldoni
- CNR - Institute of Biosciences and Bioresources (IBBR), Perugia, Italy
- *Correspondence: Luciana Baldoni,
| |
Collapse
|
14
|
Identification of COS markers specific for Thinopyrum elongatum chromosomes preliminary revealed high level of macrosyntenic relationship between the wheat and Th. elongatum genomes. PLoS One 2018; 13:e0208840. [PMID: 30540828 PMCID: PMC6291125 DOI: 10.1371/journal.pone.0208840] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/25/2018] [Indexed: 11/19/2022] Open
Abstract
Thinopyrum elongatum (Host) D.R. Dewey has served as an important gene source for wheat breeding improvement for many years. The exact characterization of its chromosomes is important for the detailed analysis of prebreeding materials produced with this species. The major aim of this study was to identify and characterize new molecular markers to be used for the rapid analysis of E genome chromatin in wheat background. Sixty of the 169 conserved orthologous set (COS) markers tested on diverse wheat-Th. elongatum disomic/ditelosomic addition lines were assigned to various Th. elongatum chromosomes and will be used for marker-assisted selection. The macrosyntenic relationship between the wheat and Th. elongatum genomes was investigated using EST sequences. Several rearrangements were revealed in homoeologous chromosome groups 2, 5, 6 and 7, while chromosomes 1 and 4 were conserved. Molecular cytogenetic and marker analysis showed the presence of rearranged chromosome involved in 6ES and 2EL arms in the 6E disomic addition line. The selected chromosome arm-specific COS markers will make it possible to identify gene introgressions in breeding programmes and will also be useful in the development of new chromosome-specific markers, evolutionary analysis and gene mapping.
Collapse
|
15
|
Li D, Li T, Wu Y, Zhang X, Zhu W, Wang Y, Zeng J, Xu L, Fan X, Sha L, Zhang H, Zhou Y, Kang H. FISH-Based Markers Enable Identification of Chromosomes Derived From Tetraploid Thinopyrum elongatum in Hybrid Lines. FRONTIERS IN PLANT SCIENCE 2018; 9:526. [PMID: 29765383 PMCID: PMC5938340 DOI: 10.3389/fpls.2018.00526] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/04/2018] [Indexed: 05/19/2023]
Abstract
Tetraploid Thinopyrum elongatum, which has superior abiotic stress tolerance characteristics, and exhibits resistance to stripe rust, powdery mildew, and Fusarium head blight, is a wild relative of wheat and a promising source of novel genes for wheat improvement. Currently, a high-resolution Fluorescence in situ hybridization (FISH) karyotype of tetraploid Th. elongatum is not available. To develop chromosome-specific FISH-based markers, the hexaploid Trititrigia 8801 and two accessions of tetraploid Th. elongatum were characterized by different repetitive sequences probes. We found that all E-genome chromosomes could be unambiguously identified using a combination of pSc119.2, pTa535, pTa71, and pTa713 repeats, and the E-genome chromosomes of the wild accessions and the partial amphiploid failed to exhibit any significant variation in the probe hybridization patterns. To verify the validation of these markers, the chromosome constitution of eight wheat- Th. elongatum hybrid derivatives were analyzed. We revealed that these probes could quickly detect wheat and tetraploid Th. elongatum chromosomes in hybrid lines. K16-712-1-2 was a 1E (1D) chromosome substitution line, K16-681-4 was a 2E disomic chromosome addition line, K16-562-3 was a 3E, 4E (3D, 4D) chromosome substitution line, K15-1033-8-2 contained one 4E, two 5E, and one 4ES⋅1DL Robertsonian translocation chromosome, and four other lines carried monosomic 4E, 5E, 6E, and 7E chromosome, respectively. Furthermore, the E-genome specific molecular markers analysis corresponded perfectly with the FISH results. The developed FISH markers will facilitate rapid identification of tetraploid Th. elongatum chromosomes in wheat improvement programs and allow appropriate alien chromosome transfer.
Collapse
Affiliation(s)
- Daiyan Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Tinghui Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yanli Wu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaohui Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wei Zhu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Lili Xu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Lina Sha
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Haiqin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Chengdu, China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
16
|
Li D, Long D, Li T, Wu Y, Wang Y, Zeng J, Xu L, Fan X, Sha L, Zhang H, Zhou Y, Kang H. Cytogenetics and stripe rust resistance of wheat- Thinopyrum elongatum hybrid derivatives. Mol Cytogenet 2018; 11:16. [PMID: 29441130 PMCID: PMC5800275 DOI: 10.1186/s13039-018-0366-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 01/31/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Amphidiploids generated by distant hybridization are commonly used as genetic bridge to transfer desirable genes from wild wheat species into cultivated wheat. This method is typically used to enhance the resistance of wheat to biotic or abiotic stresses, and to increase crop yield and quality. Tetraploid Thinopyrum elongatum exhibits strong adaptability, resistance to stripe rust and Fusarium head blight, and tolerance to salt, drought, and cold. RESULTS In the present study, we produced hybrid derivatives by crossing and backcrossing the Triticum durum-Th. elongatum partial amphidiploid (Trititrigia 8801, 2n = 6× = 42, AABBEE) with wheat cultivars common to the Sichuan Basin. By means of cytogenetic and disease resistance analyses, we identified progeny harboring alien chromosomes and measured their resistance to stripe rust. Hybrid progenies possessed chromosome numbers ranging from 40 to 47 (mean = 42.72), with 40.0% possessing 42 chromosomes. Genomic in situ hybridization revealed that the number of alien chromosomes ranged from 1 to 11. Out of the 50 of analyzed lines, five represented chromosome addition (2n = 44 = 42 W + 2E) and other five were chromosome substitution lines (2n = 42 = 40 W + 2E). Importantly, a single chromosome derived from wheat-Th. elongatum intergenomic Robertsonian translocations chromosome was occurred in 12 lines. Compared with the wheat parental cultivars ('CN16' and 'SM482'), the majority (70%) of the derivative lines were highly resistant to strains of stripe rust pathogen known to be prevalent in China. CONCLUSION The findings suggest that these hybrid-derivative lines with stripe rust resistance could potentially be used as germplasm sources for further wheat improvement.
Collapse
Affiliation(s)
- Daiyan Li
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, Sichuan 611130 China
| | - Dan Long
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, Sichuan 611130 China
| | - Tinghui Li
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, Sichuan 611130 China
| | - Yanli Wu
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, Sichuan 611130 China
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, Sichuan 611130 China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, Sichuan 611130 China
| | - Lili Xu
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, Sichuan 611130 China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, Sichuan 611130 China
| | - Lina Sha
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, Sichuan 611130 China
| | - Haiqin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, Sichuan 611130 China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, Sichuan 611130 China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, Sichuan 611130 China
| |
Collapse
|