1
|
Piaggio AJ, Gierus L, Taylor DR, Holmes ND, Will DJ, Gemmell NJ, Thomas PQ. Building an eDNA surveillance toolkit for invasive rodents on islands: can we detect wild-type and gene drive Mus musculus? BMC Biol 2024; 22:261. [PMID: 39548497 PMCID: PMC11566076 DOI: 10.1186/s12915-024-02063-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Invasive management strategies range from preventing new invasive species incursions to eliminating established populations, with all requiring effective monitoring to guide action. The use of DNA sampled from the environment (eDNA) is one such tool that provides the ability to surveille and monitor target invasive species through passive sampling. Technology being developed to eliminate invasive species includes genetic biocontrol in the form of gene drive. This approach would drive a trait through a population and could be used to eliminate or modify a target population. Once a gene drive organism is released into a population then monitoring changes in density of the target species and the spread of the drive in the population would be critical. RESULTS In this paper, we use invasive Mus musculus as a model for development of an eDNA assay that detects wild-type M. musculus and gene drive M. musculus. We demonstrate successful development of an assay where environmental samples could be used to detect wild-type invasive M. musculus and the relative density of wild-type to gene drive M. musculus. CONCLUSIONS The development of a method that detects both wild-type M. musculus and a gene drive M. musculus (tCRISPR) from environmental samples expands the utility of environmental DNA. This method provides a tool that can immediately be deployed for invasive wild M. musculus management across the world. This is a proof-of-concept that a genetic biocontrol construct could be monitored using environmental samples.
Collapse
Affiliation(s)
- Antoinette J Piaggio
- U.S. Department of Agriculture, Animal Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, CO, USA.
| | - Luke Gierus
- School of Biomedicine and Robinson Research Institute, University of Adelaide, Adelaide, Australia
- Genome Editing Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Daniel R Taylor
- U.S. Department of Agriculture, Animal Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, CO, USA
| | | | | | - Neil J Gemmell
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Paul Q Thomas
- School of Biomedicine and Robinson Research Institute, University of Adelaide, Adelaide, Australia
- Genome Editing Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| |
Collapse
|
2
|
Kreitmann L, D'Souza G, Miglietta L, Vito O, Jackson HR, Habgood-Coote D, Levin M, Holmes A, Kaforou M, Rodriguez-Manzano J. A computational framework to improve cross-platform implementation of transcriptomics signatures. EBioMedicine 2024; 105:105204. [PMID: 38901146 PMCID: PMC11245942 DOI: 10.1016/j.ebiom.2024.105204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 06/22/2024] Open
Abstract
The emergence of next-generation sequencing technologies and computational advances have expanded our understanding of gene expression regulation (i.e., the transcriptome). This has also led to an increased interest in using transcriptomic biomarkers to improve disease diagnosis and stratification, to assess prognosis and predict the response to treatment. Significant progress in identifying transcriptomic signatures for various clinical needs has been made, with large discovery studies accounting for challenges such as patient variability, unwanted batch effects, and data complexities; however, obstacles related to the technical aspects of cross-platform implementation still hinder the successful integration of transcriptomic technologies into standard diagnostic workflows. In this article, we discuss the challenges associated with integrating transcriptomic signatures derived using high-throughput technologies (such as RNA-sequencing) into clinical diagnostic tools using nucleic acid amplification (NAA) techniques. The novelty of the proposed approach lies in our aim to embed constraints related to cross-platform implementation in the process of signature discovery. These constraints could include technical limitations of amplification platform and chemistry, the maximal number of targets imposed by the chosen multiplexing strategy, and the genomic context of identified RNA biomarkers. Finally, we propose to build a computational framework that would integrate these constraints in combination with existing statistical and machine learning models used for signature identification. We envision that this could accelerate the integration of RNA signatures discovered by high-throughput technologies into NAA-based approaches suitable for clinical applications.
Collapse
Affiliation(s)
- Louis Kreitmann
- Section of Adult Infectious Disease, Faculty of Medicine, Imperial College London, London, W12 0NN, United Kingdom; Centre for Antimicrobial Optimisation, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, W12 0NN, United Kingdom
| | - Giselle D'Souza
- Section of Adult Infectious Disease, Faculty of Medicine, Imperial College London, London, W12 0NN, United Kingdom; Centre for Antimicrobial Optimisation, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, W12 0NN, United Kingdom; Section of Paediatric Infectious Disease, Faculty of Medicine, Imperial College London, London, W2 1NY, United Kingdom; Centre for Paediatrics and Child Health, Imperial College London, London, W2 1NY, United Kingdom
| | - Luca Miglietta
- Section of Adult Infectious Disease, Faculty of Medicine, Imperial College London, London, W12 0NN, United Kingdom; Centre for Antimicrobial Optimisation, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, W12 0NN, United Kingdom
| | - Ortensia Vito
- Section of Paediatric Infectious Disease, Faculty of Medicine, Imperial College London, London, W2 1NY, United Kingdom; Centre for Paediatrics and Child Health, Imperial College London, London, W2 1NY, United Kingdom
| | - Heather R Jackson
- Section of Paediatric Infectious Disease, Faculty of Medicine, Imperial College London, London, W2 1NY, United Kingdom; Centre for Paediatrics and Child Health, Imperial College London, London, W2 1NY, United Kingdom
| | - Dominic Habgood-Coote
- Section of Paediatric Infectious Disease, Faculty of Medicine, Imperial College London, London, W2 1NY, United Kingdom; Centre for Paediatrics and Child Health, Imperial College London, London, W2 1NY, United Kingdom
| | - Michael Levin
- Section of Paediatric Infectious Disease, Faculty of Medicine, Imperial College London, London, W2 1NY, United Kingdom; Centre for Paediatrics and Child Health, Imperial College London, London, W2 1NY, United Kingdom
| | - Alison Holmes
- Section of Adult Infectious Disease, Faculty of Medicine, Imperial College London, London, W12 0NN, United Kingdom; Centre for Antimicrobial Optimisation, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, W12 0NN, United Kingdom
| | - Myrsini Kaforou
- Section of Paediatric Infectious Disease, Faculty of Medicine, Imperial College London, London, W2 1NY, United Kingdom; Centre for Paediatrics and Child Health, Imperial College London, London, W2 1NY, United Kingdom
| | - Jesus Rodriguez-Manzano
- Section of Adult Infectious Disease, Faculty of Medicine, Imperial College London, London, W12 0NN, United Kingdom; Centre for Antimicrobial Optimisation, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, W12 0NN, United Kingdom.
| |
Collapse
|
3
|
Blackman R, Couton M, Keck F, Kirschner D, Carraro L, Cereghetti E, Perrelet K, Bossart R, Brantschen J, Zhang Y, Altermatt F. Environmental DNA: The next chapter. Mol Ecol 2024; 33:e17355. [PMID: 38624076 DOI: 10.1111/mec.17355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024]
Abstract
Molecular tools are an indispensable part of ecology and biodiversity sciences and implemented across all biomes. About a decade ago, the use and implementation of environmental DNA (eDNA) to detect biodiversity signals extracted from environmental samples opened new avenues of research. Initial eDNA research focused on understanding population dynamics of target species. Its scope thereafter broadened, uncovering previously unrecorded biodiversity via metabarcoding in both well-studied and understudied ecosystems across all taxonomic groups. The application of eDNA rapidly became an established part of biodiversity research, and a research field by its own. Here, we revisit key expectations made in a land-mark special issue on eDNA in Molecular Ecology in 2012 to frame the development in six key areas: (1) sample collection, (2) primer development, (3) biomonitoring, (4) quantification, (5) behaviour of DNA in the environment and (6) reference database development. We pinpoint the success of eDNA, yet also discuss shortfalls and expectations not met, highlighting areas of research priority and identify the unexpected developments. In parallel, our retrospective couples a screening of the peer-reviewed literature with a survey of eDNA users including academics, end-users and commercial providers, in which we address the priority areas to focus research efforts to advance the field of eDNA. With the rapid and ever-increasing pace of new technical advances, the future of eDNA looks bright, yet successful applications and best practices must become more interdisciplinary to reach its full potential. Our retrospect gives the tools and expectations towards concretely moving the field forward.
Collapse
Affiliation(s)
- Rosetta Blackman
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Marjorie Couton
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - François Keck
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Dominik Kirschner
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, Ecosystems and Landscape Evolution, ETH Zürich, Zürich, Switzerland
- Department of Landscape Dynamics & Ecology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Luca Carraro
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Eva Cereghetti
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Kilian Perrelet
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
- Department of Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- Department of Urban Water Management, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Raphael Bossart
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Jeanine Brantschen
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Yan Zhang
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Florian Altermatt
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| |
Collapse
|
4
|
Wilcox TM, Kronenberger JA, Young MK, Mason DH, Franklin TW, Schwartz MK. The unknown unknown: A framework for assessing environmental DNA assay specificity against unsampled taxa. Mol Ecol Resour 2024; 24:e13932. [PMID: 38263813 DOI: 10.1111/1755-0998.13932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 12/21/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
Taxon-specific quantitative PCR (qPCR) assays are commonly used for environmental DNA sampling-based inference of animal presence. These assays require thorough validation to ensure that amplification truly indicates detection of the target taxon, but a thorough validation is difficult when there are potentially many non-target taxa, some of which may have incomplete taxonomies. Here, we use a previously published, quantitative model of cross-amplification risk to describe a framework for assessing qPCR assay specificity when there is missing information and it is not possible to assess assay specificity for each individual non-target confamilial. In this framework, we predict assay specificity against unsampled taxa (non-target taxa without sequence data available) using the sequence information that is available for other confamilials. We demonstrate this framework using four case study assays for: (1) An endemic, freshwater arthropod (meltwater stonefly; Lednia tumana), (2) a globally distributed, marine ascidian (Didemnum perlucidum), (3) a continentally distributed freshwater crustacean (virile crayfish; Faxonius virilis, deanae and nais species complex) and (4) a globally distributed freshwater teleost (common carp; Cyprinus carpio and its close relative C. rubrofuscus). We tested the robustness of our approach to missing information by simulating application of our framework for all possible subsamples of 20-all non-target taxa. Our results suggest that the modelling framework results in estimates which are largely concordant with observed levels of cross-amplification risk using all available sequence data, even when there are high levels of data missingness. We explore potential limitations and extensions of this approach for assessing assay specificity and provide users with an R Markdown template for generating reproducible reports to support their own assay validation efforts.
Collapse
Affiliation(s)
- Taylor M Wilcox
- USDA Forest Service, Rocky Mountain Research Station, National Genomics Center for Wildlife and Fish Conservation, Forestry Sciences Laboratory, Missoula, Montana, USA
| | - John A Kronenberger
- USDA Forest Service, Rocky Mountain Research Station, National Genomics Center for Wildlife and Fish Conservation, Forestry Sciences Laboratory, Missoula, Montana, USA
| | - Michael K Young
- USDA Forest Service, Rocky Mountain Research Station, National Genomics Center for Wildlife and Fish Conservation, Forestry Sciences Laboratory, Missoula, Montana, USA
| | - Daniel H Mason
- USDA Forest Service, Rocky Mountain Research Station, National Genomics Center for Wildlife and Fish Conservation, Forestry Sciences Laboratory, Missoula, Montana, USA
| | - Thomas W Franklin
- USDA Forest Service, Rocky Mountain Research Station, National Genomics Center for Wildlife and Fish Conservation, Forestry Sciences Laboratory, Missoula, Montana, USA
| | - Michael K Schwartz
- USDA Forest Service, Rocky Mountain Research Station, National Genomics Center for Wildlife and Fish Conservation, Forestry Sciences Laboratory, Missoula, Montana, USA
| |
Collapse
|
5
|
Varzandi AR, Zanet S, Rubele E, Occhibove F, Vada R, Benatti F, Ferroglio E. Development of a qPCR Duplex Assay for simultaneous detection of Fascioloides magna and Galba truncatula in eDNA samples: Monitoring beyond boundaries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170338. [PMID: 38266734 DOI: 10.1016/j.scitotenv.2024.170338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/27/2023] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Parasites constitute a significant economic burden and highly impact environmental, public, and animal health. The emergence of many parasitic diseases is environmentally mediated and they share the same biogeography with humans and both domestic and wild animals. American liver fluke, Fascioloides magna - a trematode parasite of domestic and wild ungulates - is an example of the anthropogenic introduction of an "invasive alien species" in Italy and Europe. Multiple introductions to Europe have led to the biogeographical expansion of the parasite across the Danube region mainly provided by the presence of suitable habitats for all hosts involved in the parasite's life cycle, human-assisted transport, and drastic environmental events such as flooding. In Italy, it was introduced and established in La Mandria Regional Park (LMRP) near Turin in 1865 along with imported wapitis (Cervus elaphus canadensis) from North America (Bassi, 1875), but with no reported expansion to the surrounding areas. LMRP isolated F. magna focus, poses an important threat of possible expansion since the enclosed area is vulnerable to occasional bidirectional passage of roe deer. Additionally, tributary rivers to the Po river system, traversing the enclosed area, could further bolster the possibility of such spread. In this study, we developed a duplex qPCR assay for F. magna and its principal intermediate host Galba truncatula optimized for testing eDNA samples to meet the needs for surveillance of the parasite. Moreover, we validated the developed assay in natura by testing samples derived from filtered water and sediments collected inside and outside LMRP's fenced-off area. Our findings for the first time demonstrate the presence of F. magna's eDNA outside the park's internal fenced-off area.
Collapse
Affiliation(s)
- Amir Reza Varzandi
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, TO, Italy.
| | - Stefania Zanet
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, TO, Italy
| | - Elisa Rubele
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, TO, Italy
| | - Flavia Occhibove
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, TO, Italy
| | - Rachele Vada
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, TO, Italy
| | - Francesco Benatti
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, TO, Italy
| | - Ezio Ferroglio
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, TO, Italy
| |
Collapse
|
6
|
Vanderpool DD, Wilcox TM, Young MK, Pilgrim KL, Schwartz MK. Simultaneous species detection and discovery with environmental DNA metabarcoding: A freshwater mollusk case study. Ecol Evol 2024; 14:e11020. [PMID: 38371866 PMCID: PMC10870330 DOI: 10.1002/ece3.11020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 02/20/2024] Open
Abstract
Environmental DNA (eDNA) sampling is a powerful tool for rapidly characterizing biodiversity patterns for specious, cryptic taxa with incomplete taxonomies. One such group that are also of high conservation concern are North American freshwater gastropods. In particular, springsnails of the genus Pyrgulopsis (Family: Hydrobiidae) are prevalent throughout the western United States where >140 species have been described. Many of the described species are narrow endemics known from a single spring or locality, and it is believed that there are likely many additional species which have yet to be described. The distribution of these species across the landscape is of interest because habitat loss and degradation, climate change, groundwater mining, and pollution have resulted in springsnail imperilment rates as high as 92%. Determining distributions with conventional sampling methods is limited by the fact that these snails are often <5 mm in length with few distinguishing morphological characters, making them both difficult to detect and to identify. We developed an eDNA metabarcoding protocol that is both inexpensive and capable of rapid, accurate detection of all known Pyrgulopsis species. When compared with conventional collection techniques, our pipeline consistently resulted in detection at sites previously known to contain Pyrgulopsis springsnails and at a cost per site that is likely to be substantially less than the conventional sampling and individual barcoding that has been done historically. Additionally, because our method uses eDNA extracted from filtered water, it is non-destructive and suitable for the detection of endangered species where "no take" restrictions may be in effect. This effort represents both a tool which is immediately applicable to taxa of high conservation concern across western North America and a case study in the broader application of eDNA sampling for landscape assessments of cryptic taxa of conservation concern.
Collapse
Affiliation(s)
- Daniel D. Vanderpool
- USDA Forest Service Rocky Mountain Research Station, National Genomics Center for Wildlife and Fish ConservationMissoulaMontanaUSA
| | - Taylor M. Wilcox
- USDA Forest Service Rocky Mountain Research Station, National Genomics Center for Wildlife and Fish ConservationMissoulaMontanaUSA
| | - Michael K. Young
- USDA Forest Service Rocky Mountain Research Station, National Genomics Center for Wildlife and Fish ConservationMissoulaMontanaUSA
| | - Kristine L. Pilgrim
- USDA Forest Service Rocky Mountain Research Station, National Genomics Center for Wildlife and Fish ConservationMissoulaMontanaUSA
| | - Michael K. Schwartz
- USDA Forest Service Rocky Mountain Research Station, National Genomics Center for Wildlife and Fish ConservationMissoulaMontanaUSA
| |
Collapse
|
7
|
Tournayre O, Wolfe R, McCurdy-Adams H, Chabot AA, Lougheed SC. A species-specific digital PCR assay for the endangered blue racer ( Coluber constrictor foxii) in Canada. Genome 2023; 66:251-260. [PMID: 37270848 DOI: 10.1139/gen-2023-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The only population of the endangered blue racer (Coluber constrictor foxii) in Canada occurs on Pelee Island, Ontario. The species is threatened by multiple factors, including habitat degradation and loss, road mortality, persecution, and potentially predation. We designed and evaluated the performance of an environmental DNA droplet digital PCR assay that can be used for multiple facets of conservation of this species. We tested the assay in silico and in vitro using DNA of blue racers and co-occurring snake species and estimated the LOD and LOQ using synthetic DNA. As wild turkey predation has been suggested to negatively affect racers, we tested the assay on eight wild turkey faecal samples. Our assay is specific, can detect the target species at very low levels of concentration (0.002 copies/µL), and can accurately quantify copy numbers ≥ 0.26 copies/µL. We detected no racer DNA in any wild turkey faecal sample. More faecal samples collected at strategic locations during snake peak activity on Pelee Island would enable a more thorough assessment of the possibility of turkey predation. Our assay should be effective for other environmental samples and can be used for investigating other factors negatively affecting blue racers, for example, helping to quantify blue racer habitat suitability and site occupancy.
Collapse
Affiliation(s)
- Orianne Tournayre
- Biology Department, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Ryan Wolfe
- Natural Resource Solutions Inc., Waterloo, ON N2L 3X2, Canada
| | | | - Amy A Chabot
- African Lion Safari, Cambridge, ON N1R 5S2, Canada
| | | |
Collapse
|
8
|
Takahashi M, Saccò M, Kestel JH, Nester G, Campbell MA, van der Heyde M, Heydenrych MJ, Juszkiewicz DJ, Nevill P, Dawkins KL, Bessey C, Fernandes K, Miller H, Power M, Mousavi-Derazmahalleh M, Newton JP, White NE, Richards ZT, Allentoft ME. Aquatic environmental DNA: A review of the macro-organismal biomonitoring revolution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162322. [PMID: 36801404 DOI: 10.1016/j.scitotenv.2023.162322] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Environmental DNA (eDNA) is the fastest growing biomonitoring tool fuelled by two key features: time efficiency and sensitivity. Technological advancements allow rapid biodiversity detection at both species and community levels with increasing accuracy. Concurrently, there has been a global demand to standardise eDNA methods, but this is only possible with an in-depth overview of the technological advancements and a discussion of the pros and cons of available methods. We therefore conducted a systematic literature review of 407 peer-reviewed papers on aquatic eDNA published between 2012 and 2021. We observed a gradual increase in the annual number of publications from four (2012) to 28 (2018), followed by a rapid growth to 124 publications in 2021. This was mirrored by a tremendous diversification of methods in all aspects of the eDNA workflow. For example, in 2012 only freezing was applied to preserve filter samples, whereas we recorded 12 different preservation methods in the 2021 literature. Despite an ongoing standardisation debate in the eDNA community, the field is seemingly moving fast in the opposite direction and we discuss the reasons and implications. Moreover, by compiling the largest PCR-primer database to date, we provide information on 522 and 141 published species-specific and metabarcoding primers targeting a wide range of aquatic organisms. This works as a user-friendly 'distillation' of primer information that was hitherto scattered across hundreds of papers, but the list also reflects which taxa are commonly studied with eDNA technology in aquatic environments such as fish and amphibians, and reveals that groups such as corals, plankton and algae are under-studied. Efforts to improve sampling and extraction methods, primer specificity and reference databases are crucial to capture these ecologically important taxa in future eDNA biomonitoring surveys. In a rapidly diversifying field, this review synthetises aquatic eDNA procedures and can guide eDNA users towards best practice.
Collapse
Affiliation(s)
- Miwa Takahashi
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia; Commonwealth Scientific and Industrial Research Organization, Indian Oceans Marine Research Centre, Environomics Future Science Platform, Crawley, Western Australia, Australia.
| | - Mattia Saccò
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia.
| | - Joshua H Kestel
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Georgia Nester
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Matthew A Campbell
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Mieke van der Heyde
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Matthew J Heydenrych
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia; Jarman Laboratory, Indian Ocean Marine Research Centre, School of Biological Sciences, University of Western Australia, Australia
| | - David J Juszkiewicz
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Paul Nevill
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Kathryn L Dawkins
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Cindy Bessey
- Commonwealth Scientific and Industrial Research Organization, Indian Oceans Marine Research Centre, Oceans and Atmosphere, Crawley, Western Australia, Australia
| | - Kristen Fernandes
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Haylea Miller
- Commonwealth Scientific and Industrial Research Organization, Indian Oceans Marine Research Centre, Environomics Future Science Platform, Crawley, Western Australia, Australia
| | - Matthew Power
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Mahsa Mousavi-Derazmahalleh
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Joshua P Newton
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Nicole E White
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Zoe T Richards
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Morten E Allentoft
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia; Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
9
|
Bass D, Christison KW, Stentiford GD, Cook LSJ, Hartikainen H. Environmental DNA/RNA for pathogen and parasite detection, surveillance, and ecology. Trends Parasitol 2023; 39:285-304. [PMID: 36759269 DOI: 10.1016/j.pt.2022.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 02/11/2023]
Abstract
Detection of pathogens, parasites, and other symbionts in environmental samples via eDNA/eRNA (collectively eNA) is an increasingly important source of information about their occurrence and activity. There is great potential for using such detections as a proxy for infection of host organisms in connected habitats, for pathogen monitoring and surveillance, and for early warning systems for disease. However, many factors require consideration, and appropriate methods developed and verified, in order that eNA detections can be reliably interpreted and adopted for surveillance and assessment of disease risk, and potentially inclusion in international standards, such as the World Organisation for Animal Health guidelines. Disease manifestation results from host-symbiont-environment interactions between hosts, demanding a multifactorial approach to interpretation of eNA signals.
Collapse
Affiliation(s)
- David Bass
- International Centre of Excellence for Aquatic Animal Health, The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK; Sustainable Aquaculture Futures, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, UK.
| | - Kevin W Christison
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa; Department of Forestry, Fisheries and the Environment, Private Bag X2, Vlaeberg, 8012, South Africa
| | - Grant D Stentiford
- International Centre of Excellence for Aquatic Animal Health, The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK; Sustainable Aquaculture Futures, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, UK
| | - Lauren S J Cook
- International Centre of Excellence for Aquatic Animal Health, The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK; Royal Holloway, University of London, Egham Hill, Egham TW20 0EX, UK
| | - Hanna Hartikainen
- University of Nottingham, School of Life Sciences, University Park, NG7 2RD, Nottingham, UK
| |
Collapse
|