1
|
Battlay P, Craig S, Putra AR, Monro K, De Silva NP, Wilson J, Bieker VC, Kabir S, Shamaya N, van Boheemen L, Rieseberg LH, Stinchcombe JR, Fournier-Level A, Martin MD, Hodgins KA. Rapid Parallel Adaptation in Distinct Invasions of Ambrosia Artemisiifolia Is Driven by Large-Effect Structural Variants. Mol Biol Evol 2025; 42:msae270. [PMID: 39812008 PMCID: PMC11733498 DOI: 10.1093/molbev/msae270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/21/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
When introduced to multiple distinct ranges, invasive species provide a compelling natural experiment for understanding the repeatability of adaptation. Ambrosia artemisiifolia is an invasive, noxious weed, and chief cause of hay fever. Leveraging over 400 whole-genome sequences spanning the native-range in North America and 2 invasions in Europe and Australia, we inferred demographically distinct invasion histories on each continent. Despite substantial differences in genetic source and effective population size changes during introduction, scans of both local climate adaptation and divergence from the native-range revealed genomic signatures of parallel adaptation between invasions. Disproportionately represented among these parallel signatures are 37 large haploblocks-indicators of structural variation-that cover almost 20% of the genome and exist as standing genetic variation in the native-range. Many of these haploblocks are associated with traits important for adaptation to local climate, like size and the timing of flowering, and have rapidly reformed native-range clines in invaded ranges. Others show extreme frequency divergence between ranges, consistent with a response to divergent selection on different continents. Our results demonstrate the key role of large-effect standing variants in rapid adaptation during range expansion, a pattern that is robust to diverse invasion histories.
Collapse
Affiliation(s)
- Paul Battlay
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Samuel Craig
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Andhika R Putra
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Keyne Monro
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Nissanka P De Silva
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Jonathan Wilson
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Vanessa C Bieker
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Saila Kabir
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Nawar Shamaya
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Lotte van Boheemen
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S3B2, Canada
| | | | - Michael D Martin
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Kathryn A Hodgins
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
2
|
Hodgins KA, Battlay P, Bock DG. The genomic secrets of invasive plants. THE NEW PHYTOLOGIST 2025. [PMID: 39748162 DOI: 10.1111/nph.20368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/28/2024] [Indexed: 01/04/2025]
Abstract
Genomics has revolutionised the study of invasive species, allowing evolutionary biologists to dissect mechanisms of invasion in unprecedented detail. Botanical research has played an important role in these advances, driving much of what we currently know about key determinants of invasion success (e.g. hybridisation, whole-genome duplication). Despite this, a comprehensive review of plant invasion genomics has been lacking. Here, we aim to address this gap, highlighting recent discoveries that have helped progress the field. For example, by leveraging genomics in natural and experimental populations, botanical research has confirmed the importance of large-effect standing variation during adaptation in invasive species. Further, genomic investigations of plants are increasingly revealing that large structural variants, as well as genetic changes induced by whole-genome duplication such as genomic redundancy or the breakdown of dosage-sensitive reproductive barriers, can play an important role during adaptive evolution of invaders. However, numerous questions remain, including when chromosomal inversions might help or hinder invasions, whether adaptive gene reuse is common during invasions, and whether epigenetically induced mutations can underpin the adaptive evolution of plasticity in invasive populations. We conclude by highlighting these and other outstanding questions that genomic studies of invasive plants are poised to help answer.
Collapse
Affiliation(s)
- Kathryn A Hodgins
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, Vic., 3800, Australia
| | - Paul Battlay
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, Vic., 3800, Australia
| | - Dan G Bock
- School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, Qld, 4111, Australia
| |
Collapse
|
3
|
Chhina AK, Abhari N, Mooers A, Lewthwaite JMM. Linking the spatial and genomic structure of adaptive potential for conservation management: a review. Genome 2024; 67:403-423. [PMID: 39083766 DOI: 10.1139/gen-2024-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
We unified the recent literature with the goal to contribute to the discussion on how genetic diversity might best be conserved. We argue that this decision will be guided by how genomic variation is distributed among manageable populations (i.e., its spatial structure), the degree to which adaptive potential is best predicted by variation across the entire genome or the subset of that variation that is identified as putatively adaptive (i.e., its genomic structure), and whether we are managing species as single entities or as collections of diversifying lineages. The distribution of genetic variation and our ultimate goal will have practical implications for on-the-ground management. If adaptive variation is largely polygenic or responsive to change, its spatial structure might be broadly governed by the forces determining genome-wide variation (linked selection, drift, and gene flow), making measurement and prioritization straightforward. If we are managing species as single entities, then population-level prioritization schemes are possible so as to maximize future pooled genetic variation. We outline one such scheme based on the popular Shapley value from cooperative game theory that considers the relative genetic contribution of a population to an unknown future collection of populations.
Collapse
Affiliation(s)
- Avneet K Chhina
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Niloufar Abhari
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
- Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada
| | - Arne Mooers
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Jayme M M Lewthwaite
- Marine and Environmental Biology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
4
|
Lazic D, Geßner C, Liepe KJ, Lesur-Kupin I, Mader M, Blanc-Jolivet C, Gömöry D, Liesebach M, González-Martínez SC, Fladung M, Degen B, Müller NA. Genomic variation of European beech reveals signals of local adaptation despite high levels of phenotypic plasticity. Nat Commun 2024; 15:8553. [PMID: 39362898 PMCID: PMC11450180 DOI: 10.1038/s41467-024-52933-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 09/20/2024] [Indexed: 10/05/2024] Open
Abstract
Local adaptation is key for ecotypic differentiation and species evolution. Understanding underlying genomic patterns can allow the prediction of future maladaptation and ecosystem stability. Here, we report the whole-genome resequencing of 874 individuals from 100 range-wide populations of European beech (Fagus sylvatica L.), an important forest tree species in Europe. We show that genetic variation closely mirrors geography with a clear pattern of isolation-by-distance. Genome-wide analyses for genotype-environment associations (GEAs) identify relatively few potentially adaptive variants after correcting for an overwhelming signal of statistically significant but non-causal GEAs. We characterize the single high confidence genomic region and pinpoint a candidate gene possibly involved in winter temperature adaptation via modulation of spring phenology. Surprisingly, allelic variation at this locus does not result in any apparent fitness differences in a common garden. More generally, reciprocal transplant experiments across large climate distances suggest extensive phenotypic plasticity. Nevertheless, we find indications of polygenic adaptation which may be essential in natural ecosystems. This polygenic signal exhibits broad- and fine-scale variation across the landscape, highlighting the relevance of spatial resolution. In summary, our results emphasize the importance, but also exemplify the complexity, of employing natural genetic variation for forest conservation under climate change.
Collapse
Affiliation(s)
- Desanka Lazic
- Thünen Institute of Forest Genetics, Grosshansdorf, Germany
| | | | | | | | - Malte Mader
- Thünen Institute of Forest Genetics, Grosshansdorf, Germany
| | | | - Dušan Gömöry
- Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | | | | | | | - Bernd Degen
- Thünen Institute of Forest Genetics, Grosshansdorf, Germany
| | - Niels A Müller
- Thünen Institute of Forest Genetics, Grosshansdorf, Germany.
| |
Collapse
|
5
|
Whiting JR, Booker TR, Rougeux C, Lind BM, Singh P, Lu M, Huang K, Whitlock MC, Aitken SN, Andrew RL, Borevitz JO, Bruhl JJ, Collins TL, Fischer MC, Hodgins KA, Holliday JA, Ingvarsson PK, Janes JK, Khandaker M, Koenig D, Kreiner JM, Kremer A, Lascoux M, Leroy T, Milesi P, Murray KD, Pyhäjärvi T, Rellstab C, Rieseberg LH, Roux F, Stinchcombe JR, Telford IRH, Todesco M, Tyrmi JS, Wang B, Weigel D, Willi Y, Wright SI, Zhou L, Yeaman S. The genetic architecture of repeated local adaptation to climate in distantly related plants. Nat Ecol Evol 2024; 8:1933-1947. [PMID: 39187610 PMCID: PMC11461274 DOI: 10.1038/s41559-024-02514-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 07/22/2024] [Indexed: 08/28/2024]
Abstract
Closely related species often use the same genes to adapt to similar environments. However, we know little about why such genes possess increased adaptive potential and whether this is conserved across deeper evolutionary lineages. Adaptation to climate presents a natural laboratory to test these ideas, as even distantly related species must contend with similar stresses. Here, we re-analyse genomic data from thousands of individuals from 25 plant species as diverged as lodgepole pine and Arabidopsis (~300 Myr). We test for genetic repeatability based on within-species associations between allele frequencies in genes and variation in 21 climate variables. Our results demonstrate significant statistical evidence for genetic repeatability across deep time that is not expected under randomness, identifying a suite of 108 gene families (orthogroups) and gene functions that repeatedly drive local adaptation to climate. This set includes many orthogroups with well-known functions in abiotic stress response. Using gene co-expression networks to quantify pleiotropy, we find that orthogroups with stronger evidence for repeatability exhibit greater network centrality and broader expression across tissues (higher pleiotropy), contrary to the 'cost of complexity' theory. These gene families may be important in helping wild and crop species cope with future climate change, representing important candidates for future study.
Collapse
Affiliation(s)
- James R Whiting
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.
| | - Tom R Booker
- Department of Zoology, Faculty of Science, University of British Columbia, Vancouver, British Colombia, Canada
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Clément Rougeux
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Brandon M Lind
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pooja Singh
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Mengmeng Lu
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Kaichi Huang
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael C Whitlock
- Department of Zoology, Faculty of Science, University of British Columbia, Vancouver, British Colombia, Canada
| | - Sally N Aitken
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rose L Andrew
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - Justin O Borevitz
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jeremy J Bruhl
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - Timothy L Collins
- Department of Planning and Environment, Queanbeyan, New South Wales, Australia
- Department of Climate Change, Energy, the Environment and Water, Queanbeyan, New South Wales, Australia
| | - Martin C Fischer
- ETH Zurich: Institute of Integrative Biology (IBZ), ETH Zurich, Zurich, Switzerland
| | - Kathryn A Hodgins
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Jason A Holliday
- Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA, USA
| | - Pär K Ingvarsson
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jasmine K Janes
- Biology Department, Vancouver Island University, Nanaimo, British Columbia, Canada
- Department of Ecosystem Science and Management, University of Northern British Columbia, Prince George, British Columbia, Canada
- Species Survival Commission, Orchid Specialist Group, IUCN North America, Washington, DC, USA
| | - Momena Khandaker
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - Daniel Koenig
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
- Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Julia M Kreiner
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Antoine Kremer
- UMR BIOGECO, INRAE, Université de Bordeaux; 69 Route d'Arcachon, Cestas, France
| | - Martin Lascoux
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Thibault Leroy
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - Pascal Milesi
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Kevin D Murray
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Tanja Pyhäjärvi
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | | | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fabrice Roux
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - John R Stinchcombe
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Ian R H Telford
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - Marco Todesco
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biology, University of British Columbia, Kelowna, British Columbia, Canada
| | - Jaakko S Tyrmi
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Baosheng Wang
- South China National Botanical Garden, Guangzhou, China
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Yvonne Willi
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Stephen I Wright
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Lecong Zhou
- Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA, USA
| | - Sam Yeaman
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
6
|
Kuo WH, Zhong L, Wright SJ, Goad DM, Olsen KM. Beyond cyanogenesis: Temperature gradients drive environmental adaptation in North American white clover (Trifolium repens L.). Mol Ecol 2024; 33:e17484. [PMID: 39072878 DOI: 10.1111/mec.17484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Species that repeatedly evolve phenotypic clines across environmental gradients have been highlighted as ideal systems for characterizing the genomic basis of local environmental adaptation. However, few studies have assessed the importance of observed phenotypic clines for local adaptation: conspicuous traits that vary clinally may not necessarily be the most critical in determining local fitness. The present study was designed to fill this gap, using a plant species characterized by repeatedly evolved adaptive phenotypic clines. White clover is naturally polymorphic for its chemical defence cyanogenesis (HCN release with tissue damage); climate-associated cyanogenesis clines have evolved throughout its native and introduced range worldwide. We performed landscape genomic analyses on 415 wild genotypes from 43 locations spanning much of the North American species range to assess the relative importance of cyanogenesis loci vs. other genomic factors in local climatic adaptation. We find clear evidence of local adaptation, with temperature-related climatic variables best describing genome-wide differentiation between sampling locations. The same climatic variables are also strongly correlated with cyanogenesis frequencies and gene copy number variations (CNVs) at cyanogenesis loci. However, landscape genomic analyses indicate no significant contribution of cyanogenesis loci to local adaptation. Instead, several genomic regions containing promising candidate genes for plant response to seasonal cues are identified - some of which are shared with previously identified QTLs for locally adaptive fitness traits in North American white clover. Our findings suggest that local adaptation in white clover is likely determined primarily by genes controlling the timing of growth and flowering in response to local seasonal cues. More generally, this work suggests that caution is warranted when considering the importance of conspicuous phenotypic clines as primary determinants of local adaptation.
Collapse
Affiliation(s)
- Wen-Hsi Kuo
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | - Limei Zhong
- Jiangxi Key Laboratory of Molecular Biology and Gene Engineering, School of Life Sciences, Nanchang University, Nanchang, China
| | - Sara J Wright
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | - David M Goad
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | - Kenneth M Olsen
- Department of Biology, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Minadakis N, Kaderli L, Horvath R, Bourgeois Y, Xu W, Thieme M, Woods DP, Roulin AC. Polygenic architecture of flowering time and its relationship with local environments in the grass Brachypodium distachyon. Genetics 2024; 227:iyae042. [PMID: 38504651 PMCID: PMC11075549 DOI: 10.1093/genetics/iyae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/12/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024] Open
Abstract
Synchronizing the timing of reproduction with the environment is crucial in the wild. Among the multiple mechanisms, annual plants evolved to sense their environment, the requirement of cold-mediated vernalization is a major process that prevents individuals from flowering during winter. In many annual plants including crops, both a long and short vernalization requirement can be observed within species, resulting in so-called early-(spring) and late-(winter) flowering genotypes. Here, using the grass model Brachypodium distachyon, we explored the link between flowering-time-related traits (vernalization requirement and flowering time), environmental variation, and diversity at flowering-time genes by combining measurements under greenhouse and outdoor conditions. These experiments confirmed that B. distachyon natural accessions display large differences regarding vernalization requirements and ultimately flowering time. We underline significant, albeit quantitative effects of current environmental conditions on flowering-time-related traits. While disentangling the confounding effects of population structure on flowering-time-related traits remains challenging, population genomics analyses indicate that well-characterized flowering-time genes may contribute significantly to flowering-time variation and display signs of polygenic selection. Flowering-time genes, however, do not colocalize with genome-wide association peaks obtained with outdoor measurements, suggesting that additional genetic factors contribute to flowering-time variation in the wild. Altogether, our study fosters our understanding of the polygenic architecture of flowering time in a natural grass system and opens new avenues of research to investigate the gene-by-environment interaction at play for this trait.
Collapse
Affiliation(s)
- Nikolaos Minadakis
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstr. 107, 8008 Zürich, Switzerland
| | - Lars Kaderli
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstr. 107, 8008 Zürich, Switzerland
| | - Robert Horvath
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstr. 107, 8008 Zürich, Switzerland
| | - Yann Bourgeois
- DIADE, University of Montpellier, CIRAD, IRD, 34 000 Montpellier, France
| | - Wenbo Xu
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstr. 107, 8008 Zürich, Switzerland
| | - Michael Thieme
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstr. 107, 8008 Zürich, Switzerland
| | - Daniel P Woods
- Department of Plant Sciences, University of California-Davis, 104 Robbins Hall, Davis, CA 95616, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Rd, Chevy Chase, MD 20815, USA
| | - Anne C Roulin
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstr. 107, 8008 Zürich, Switzerland
| |
Collapse
|
8
|
Bernatchez L, Ferchaud AL, Berger CS, Venney CJ, Xuereb A. Genomics for monitoring and understanding species responses to global climate change. Nat Rev Genet 2024; 25:165-183. [PMID: 37863940 DOI: 10.1038/s41576-023-00657-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 10/22/2023]
Abstract
All life forms across the globe are experiencing drastic changes in environmental conditions as a result of global climate change. These environmental changes are happening rapidly, incur substantial socioeconomic costs, pose threats to biodiversity and diminish a species' potential to adapt to future environments. Understanding and monitoring how organisms respond to human-driven climate change is therefore a major priority for the conservation of biodiversity in a rapidly changing environment. Recent developments in genomic, transcriptomic and epigenomic technologies are enabling unprecedented insights into the evolutionary processes and molecular bases of adaptation. This Review summarizes methods that apply and integrate omics tools to experimentally investigate, monitor and predict how species and communities in the wild cope with global climate change, which is by genetically adapting to new environmental conditions, through range shifts or through phenotypic plasticity. We identify advantages and limitations of each method and discuss future research avenues that would improve our understanding of species' evolutionary responses to global climate change, highlighting the need for holistic, multi-omics approaches to ecosystem monitoring during global climate change.
Collapse
Affiliation(s)
- Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Anne-Laure Ferchaud
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada.
- Parks Canada, Office of the Chief Ecosystem Scientist, Protected Areas Establishment, Quebec City, Quebec, Canada.
| | - Chloé Suzanne Berger
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Clare J Venney
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Amanda Xuereb
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
9
|
Nunez JCB, Lenhart BA, Bangerter A, Murray CS, Mazzeo GR, Yu Y, Nystrom TL, Tern C, Erickson PA, Bergland AO. A cosmopolitan inversion facilitates seasonal adaptation in overwintering Drosophila. Genetics 2024; 226:iyad207. [PMID: 38051996 PMCID: PMC10847723 DOI: 10.1093/genetics/iyad207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023] Open
Abstract
Fluctuations in the strength and direction of natural selection through time are a ubiquitous feature of life on Earth. One evolutionary outcome of such fluctuations is adaptive tracking, wherein populations rapidly adapt from standing genetic variation. In certain circumstances, adaptive tracking can lead to the long-term maintenance of functional polymorphism despite allele frequency change due to selection. Although adaptive tracking is likely a common process, we still have a limited understanding of aspects of its genetic architecture and its strength relative to other evolutionary forces such as drift. Drosophila melanogaster living in temperate regions evolve to track seasonal fluctuations and are an excellent system to tackle these gaps in knowledge. By sequencing orchard populations collected across multiple years, we characterized the genomic signal of seasonal demography and identified that the cosmopolitan inversion In(2L)t facilitates seasonal adaptive tracking and shows molecular footprints of selection. A meta-analysis of phenotypic studies shows that seasonal loci within In(2L)t are associated with behavior, life history, physiology, and morphological traits. We identify candidate loci and experimentally link them to phenotype. Our work contributes to our general understanding of fluctuating selection and highlights the evolutionary outcome and dynamics of contemporary selection on inversions.
Collapse
Affiliation(s)
- Joaquin C B Nunez
- Department of Biology, University of Virginia, 90 Geldard Drive, Charlottesville, VA 22901, USA
- Department of Biology, University of Vermont, 109 Carrigan Drive, Burlington, VT 05405, USA
| | - Benedict A Lenhart
- Department of Biology, University of Virginia, 90 Geldard Drive, Charlottesville, VA 22901, USA
| | - Alyssa Bangerter
- Department of Biology, University of Virginia, 90 Geldard Drive, Charlottesville, VA 22901, USA
| | - Connor S Murray
- Department of Biology, University of Virginia, 90 Geldard Drive, Charlottesville, VA 22901, USA
| | - Giovanni R Mazzeo
- Department of Biology, University of Virginia, 90 Geldard Drive, Charlottesville, VA 22901, USA
| | - Yang Yu
- Department of Biology, University of Virginia, 90 Geldard Drive, Charlottesville, VA 22901, USA
| | - Taylor L Nystrom
- Department of Biology, University of Virginia, 90 Geldard Drive, Charlottesville, VA 22901, USA
| | - Courtney Tern
- Department of Biology, University of Virginia, 90 Geldard Drive, Charlottesville, VA 22901, USA
| | - Priscilla A Erickson
- Department of Biology, University of Virginia, 90 Geldard Drive, Charlottesville, VA 22901, USA
- Department of Biology, University of Richmond, 138 UR Drive, Richmond, VA 23173, USA
| | - Alan O Bergland
- Department of Biology, University of Virginia, 90 Geldard Drive, Charlottesville, VA 22901, USA
| |
Collapse
|
10
|
Soudi S, Jahani M, Todesco M, Owens GL, Bercovich N, Rieseberg LH, Yeaman S. Repeatability of adaptation in sunflowers reveals that genomic regions harbouring inversions also drive adaptation in species lacking an inversion. eLife 2023; 12:RP88604. [PMID: 38095362 PMCID: PMC10721221 DOI: 10.7554/elife.88604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
Local adaptation commonly involves alleles of large effect, which experience fitness advantages when in positive linkage disequilibrium (LD). Because segregating inversions suppress recombination and facilitate the maintenance of LD between locally adapted loci, they are also commonly found to be associated with adaptive divergence. However, it is unclear what fraction of an adaptive response can be attributed to inversions and alleles of large effect, and whether the loci within an inversion could still drive adaptation in the absence of its recombination-suppressing effect. Here, we use genome-wide association studies to explore patterns of local adaptation in three species of sunflower: Helianthus annuus, Helianthus argophyllus, and Helianthus petiolaris, which each harbour a large number of species-specific inversions. We find evidence of significant genome-wide repeatability in signatures of association to phenotypes and environments, which are particularly enriched within regions of the genome harbouring an inversion in one species. This shows that while inversions may facilitate local adaptation, at least some of the loci can still harbour mutations that make substantial contributions without the benefit of recombination suppression in species lacking a segregating inversion. While a large number of genomic regions show evidence of repeated adaptation, most of the strongest signatures of association still tend to be species-specific, indicating substantial genotypic redundancy for local adaptation in these species.
Collapse
Affiliation(s)
- Shaghayegh Soudi
- Department of Biological Sciences, University of CalgaryCalgaryCanada
| | - Mojtaba Jahani
- Department of Biological Sciences, University of CalgaryCalgaryCanada
- Department of Botany, University of British ColumbiaVancouverCanada
| | - Marco Todesco
- Department of Botany, University of British ColumbiaVancouverCanada
- Michael Smith Laboratories, University of British ColumbiaVancouverCanada
- Irving K. Barber Faculty of Science, University of British Columbia OkanaganKelownaCanada
| | | | | | | | - Sam Yeaman
- Department of Biological Sciences, University of CalgaryCalgaryCanada
| |
Collapse
|
11
|
Battlay P, Wilson J, Bieker VC, Lee C, Prapas D, Petersen B, Craig S, van Boheemen L, Scalone R, de Silva NP, Sharma A, Konstantinović B, Nurkowski KA, Rieseberg LH, Connallon T, Martin MD, Hodgins KA. Large haploblocks underlie rapid adaptation in the invasive weed Ambrosia artemisiifolia. Nat Commun 2023; 14:1717. [PMID: 36973251 PMCID: PMC10042993 DOI: 10.1038/s41467-023-37303-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 03/11/2023] [Indexed: 03/29/2023] Open
Abstract
Adaptation is the central feature and leading explanation for the evolutionary diversification of life. Adaptation is also notoriously difficult to study in nature, owing to its complexity and logistically prohibitive timescale. Here, we leverage extensive contemporary and historical collections of Ambrosia artemisiifolia-an aggressively invasive weed and primary cause of pollen-induced hayfever-to track the phenotypic and genetic causes of recent local adaptation across its native and invasive ranges in North America and Europe, respectively. Large haploblocks-indicative of chromosomal inversions-contain a disproportionate share (26%) of genomic regions conferring parallel adaptation to local climates between ranges, are associated with rapidly adapting traits, and exhibit dramatic frequency shifts over space and time. These results highlight the importance of large-effect standing variants in rapid adaptation, which have been critical to A. artemisiifolia's global spread across vast climatic gradients.
Collapse
Affiliation(s)
- Paul Battlay
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Jonathan Wilson
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Vanessa C Bieker
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Christopher Lee
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Diana Prapas
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Bent Petersen
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), AIMST University, 08100, Bedong, Kedah, Malaysia
| | - Sam Craig
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Lotte van Boheemen
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Romain Scalone
- Department of Crop Production Ecology, Uppsala Ecology Center, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Grapevine Breeding, Hochschule Geisenheim University, Geisenheim, Germany
| | - Nissanka P de Silva
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Amit Sharma
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Bojan Konstantinović
- Department of Environmental and Plant Protection, Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Kristin A Nurkowski
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | - Tim Connallon
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Michael D Martin
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Kathryn A Hodgins
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|