1
|
Su QY, Jiang ZQ, Song XY, Zhang SX. Regulatory B cells in autoimmune diseases: Insights and therapeutic potential. J Autoimmun 2024; 149:103326. [PMID: 39520834 DOI: 10.1016/j.jaut.2024.103326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/06/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Autoimmune diseases are characterized by the body's immune system attacking its own cells, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS). In recent studies, regulatory B cells (Bregs), which play a vital role in maintaining peripheral tolerance and controlling persistent autoimmune diseases (ADs), have shown great potential in treating ADs. This review synthesizes the latest advancements in targeted therapies for ADs, with a particular emphasis on the subgroups, phenotypic markers, and signal pathways associated with Bregs. Following an examination of these elements, the discussion pivots to innovative Breg-based therapeutic approaches for the management of ADs.
Collapse
Affiliation(s)
- Qin-Yi Su
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China
| | - Zhong-Qing Jiang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China
| | - Xuan-Yi Song
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China
| | - Sheng-Xiao Zhang
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
2
|
Hu F, Shi L, Liu X, Chen Y, Zhang X, Jia Y, Liu X, Guo J, Zhu H, Liu H, Xu L, Li Y, Wang P, Fang X, Xue J, Xie Y, Wei C, Song J, Zheng X, Liu YY, Li Y, Ren L, Xu D, Lu L, Qiu X, Mu R, He J, Wang M, Zhang X, Liu W, Li Z. Proinflammatory phenotype of B10 and B10pro cells elicited by TNF-α in rheumatoid arthritis. Ann Rheum Dis 2024; 83:576-588. [PMID: 38302261 DOI: 10.1136/ard-2023-224878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024]
Abstract
OBJECTIVES B10 and B10pro cells suppress immune responses via secreting interleukin (IL)-10. However, their regulators and underlying mechanisms, especially in human autoimmune diseases, are elusive. This study aimed to address these questions in rheumatoid arthritis (RA), one of the most common highly disabling autoimmune diseases. METHODS The frequencies and functions of B10 and B10pro cells in healthy individuals and patients with RA were first analysed. The effects of proinflammatory cytokines, particularly tumour necrosis factor (TNF)-α on the quantity, stability and pathogenic phenotype of these cells, were then assessed in patients with RA before and after anti-TNF therapy. The underlying mechanisms were further investigated by scRNA-seq database reanalysis, transcriptome sequencing, TNF-α-/- and B cell-specific SHIP-1-/- mouse disease model studies. RESULTS TNF-α was a key determinant for B10 cells. TNF-α elicited the proinflammatory feature of B10 and B10pro cells by downregulating IL-10, and upregulating interferon-γ and IL-17A. In patients with RA, B10 and B10pro cells were impaired with exacerbated proinflammatory phenotype, while anti-TNF therapy potently restored their frequencies and immunosuppressive functions, consistent with the increased B10 cells in TNF-α-/- mice. Mechanistically, TNF-α diminished B10 and B10pro cells by inhibiting their glycolysis and proliferation. TNF-α also regulated the phosphatidylinositol phosphate signalling of B10 and B10pro cells and dampened the expression of SHIP-1, a dominant phosphatidylinositol phosphatase regulator of these cells. CONCLUSIONS TNF-α provoked the proinflammatory phenotype of B10 and B10pro cells by disturbing SHIP-1 in RA, contributing to the disease development. Reinstating the immunosuppressive property of B10 and B10pro cells might represent novel therapeutic approaches for RA.
Collapse
Affiliation(s)
- Fanlei Hu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Lianjie Shi
- Department of Rheumatology and Immunology, Peking University Shougang Hospital, Beijing, China
| | - Xiaohang Liu
- State Key Laboratory of Membrane Biology, China Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Yingjia Chen
- State Key Laboratory of Membrane Biology, China Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing, China
| | - Xia Zhang
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Yuan Jia
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Xu Liu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Jianping Guo
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Huaqun Zhu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Hongjiang Liu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Liling Xu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Yingni Li
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Ping Wang
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Xiangyu Fang
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Jimeng Xue
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Yang Xie
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Chaonan Wei
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Jing Song
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Xi Zheng
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Yan-Ying Liu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Yuhui Li
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Limin Ren
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Dakang Xu
- Faculty of Medical Laboratory Science, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liwei Lu
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Science, Peking University, Beijing, China
| | - Rong Mu
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
| | - Jing He
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Min Wang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Wanli Liu
- State Key Laboratory of Membrane Biology, China Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
3
|
Daamen AR, Alajoleen RM, Grammer AC, Luo XM, Lipsky PE. Single-cell RNA sequencing analysis reveals the heterogeneity of IL-10 producing regulatory B cells in lupus-prone mice. Front Immunol 2023; 14:1282770. [PMID: 38155972 PMCID: PMC10752970 DOI: 10.3389/fimmu.2023.1282770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023] Open
Abstract
Introduction B cells can have both pathogenic and protective roles in autoimmune diseases, including systemic lupus erythematosus (SLE). Deficiencies in the number or immunosuppressive function of IL-10 producing regulatory B cells (Bregs) can cause exacerbated autoimmune inflammation. However, the exact role of Bregs in lupus pathogenesis has not been elucidated. Methods We carried out gene expression analysis by scRNA-seq to characterize differences in splenic Breg subsets and molecular profiles through stages of disease progression in lupus-prone mice. Transcriptome-based changes in Bregs from mice with active disease were confirmed by phenotypic analysis. Results We found that a loss of marginal zone (MZ) lineage Bregs, an increase in plasmablast/plasma cell (PB-PC) lineage Bregs, and overall increases in inflammatory gene signatures were characteristic of active disease as compared to Bregs from the pre-disease stage. However, the frequencies of both MZ Bregs and PB-PCs expressing IL-10 were significantly decreased in active-disease mice. Conclusion Overall, we have identified changes to the repertoire and transcriptional landscape of Breg subsets associated with active disease that provide insights into the role of Bregs in lupus pathogenesis. These results could inform the design of Breg-targeted therapies and interventions to restore Breg suppressive function in autoimmunity.
Collapse
Affiliation(s)
- Andrea R. Daamen
- AMPEL BioSolutions LLC and the RILITE Research Institute, Charlottesville, VA, United States
| | - Razan M. Alajoleen
- Department of Biomedical Sciences and Pathology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Amrie C. Grammer
- AMPEL BioSolutions LLC and the RILITE Research Institute, Charlottesville, VA, United States
| | - Xin M. Luo
- Department of Biomedical Sciences and Pathology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Peter E. Lipsky
- AMPEL BioSolutions LLC and the RILITE Research Institute, Charlottesville, VA, United States
| |
Collapse
|
4
|
Tsai YG, Liao PF, Hsiao KH, Wu HM, Lin CY, Yang KD. Pathogenesis and novel therapeutics of regulatory T cell subsets and interleukin-2 therapy in systemic lupus erythematosus. Front Immunol 2023; 14:1230264. [PMID: 37771588 PMCID: PMC10522836 DOI: 10.3389/fimmu.2023.1230264] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/15/2023] [Indexed: 09/30/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous multisystem inflammatory disease with wide variability in clinical manifestations. Natural arising CD4+ regulatory T cells (Tregs) play a critical role in maintaining peripheral tolerance by suppressing inflammation and preventing autoimmune responses in SLE. Additionally, CD8+ regulatory T cells, type 1 regulatory T cells (Tr1), and B regulatory cells also have a less well-defined role in the pathogenesis of SLE. Elucidation of the roles of various Treg subsets dedicated to immune homeostasis will provide a novel therapeutic approach that governs immune tolerance for the remission of active lupus. Diminished interleukin (IL)-2 production is associated with a depleted Treg cell population, and its reversibility by IL-2 therapy provides important reasons for the treatment of lupus. This review focuses on the pathogenesis and new therapeutics of human Treg subsets and low-dose IL-2 therapy in clinical benefits with SLE.
Collapse
Affiliation(s)
- Yi-Giien Tsai
- Department of Pediatrics, Changhua Christian Children’s Hospital, Changhua, Taiwan
- School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Pei-Fen Liao
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Allergy, Asthma and Rheumatology, Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Kai-Hung Hsiao
- Department of Allergy, Immunology and Rheumatology, Changhua Christian Hospital, Changhua, Taiwan
| | - Hung-Ming Wu
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
| | - Ching-Yuang Lin
- Division of Pediatric Nephrology, Children’s Hospital, China Medical University Hospital, Taichung, Taiwan
| | - Kuender D. Yang
- Department of Pediatrics, Mackay Memorial Hospital, New Taipei City, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
5
|
Barcelos F, Brás-Geraldes C, Martins C, Papoila AL, Monteiro R, Cardigos J, Madeira N, Alves N, Vaz-Patto J, Cunha-Branco J, Borrego LM. Added value of lymphocyte subpopulations in the classification of Sjögren's syndrome. Sci Rep 2023; 13:6872. [PMID: 37106029 PMCID: PMC10140065 DOI: 10.1038/s41598-023-31782-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/17/2023] [Indexed: 04/29/2023] Open
Abstract
Sjögren's Syndrome (SjS) is a chronic systemic immune-mediated inflammatory disease characterized by lymphocytic infiltration and consequent lesion of exocrine glands. SjS diagnosis and classification remains a challenge, especially at SjS onset, when patients may have milder phenotypes of the disease or uncommon presentations. New biomarkers are needed for the classification of SjS, thus, we aimed to evaluate the added-value of lymphocyte subpopulations in discriminating SjS and non-Sjögren Sicca patients. Lymphocyte subsets from 62 SjS and 63 Sicca patients were characterized by flow cytometry. The 2002 AECG and the 2016 ACR/EULAR SjS classification criteria were compared with clinical diagnosis. The added discriminative ability of joining lymphocytic populations to classification criteria was assessed by the area under the Receiver-Operating-Characteristic Curve (AUC). Considering clinical diagnosis as the gold-standard, we obtained an AUC = 0.952 (95% CI: 0.916-0.989) for AECG and an AUC = 0.921 (95% CI: 0.875-0.966) for ACR/EULAR criteria. Adding Tfh and Bm1 subsets to AECG criteria, performance increased, attaining an AUC = 0.985 (95% CI: 0.968-1.000) (p = 0.021). Th1/Breg-like CD24hiCD27+ and switched-memory B-cells maximized the AUC of ACR/EULAR criteria to 0.953 (95% CI: 0.916-0.990) (p = 0.043). Our exploratory study supports the potential use of lymphocyte subpopulations, such as unswitched memory B cells, to improve the performance of classification criteria, since their discriminative ability increases when specific subsets are added to the criteria.
Collapse
Affiliation(s)
- Filipe Barcelos
- Comprehensive Health Research Centre, CEDOC, Chronic Diseases Research Center, Immunology, NOVA Medical School, Universidade Nova de Lisboa, Campo Dos Mártires da Pátria, 130, 1169-056, Lisbon, Portugal.
- Comprehensive Health Research Centre (CHRC), NOVA Medical School, FCM, Universidade Nova de Lisboa, Lisbon, Portugal.
- Rheumatology Department, Instituto Português de Reumatologia, Lisbon, Portugal.
- Rheumatology Department, Hospital CUF Descobertas, Lisbon, Portugal.
| | - Carlos Brás-Geraldes
- ISEL-Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal
- Centro de Estatística E Aplicações, CEAUL, Universidade de Lisboa, Lisbon, Portugal
| | - Catarina Martins
- Comprehensive Health Research Centre, CEDOC, Chronic Diseases Research Center, Immunology, NOVA Medical School, Universidade Nova de Lisboa, Campo Dos Mártires da Pátria, 130, 1169-056, Lisbon, Portugal
- Comprehensive Health Research Centre (CHRC), NOVA Medical School, FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Ana-Luísa Papoila
- Centro de Estatística E Aplicações, CEAUL, Universidade de Lisboa, Lisbon, Portugal
- NOVA Medical School, FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Ricardo Monteiro
- Comprehensive Health Research Centre, CEDOC, Chronic Diseases Research Center, Immunology, NOVA Medical School, Universidade Nova de Lisboa, Campo Dos Mártires da Pátria, 130, 1169-056, Lisbon, Portugal
- Comprehensive Health Research Centre (CHRC), NOVA Medical School, FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Joana Cardigos
- Ophthalmology Department, Centro Hospitalar de Lisboa Central, Hospital de Santo António Dos Capuchos, Lisbon, Portugal
| | - Nathalie Madeira
- Rheumatology Department, Instituto Português de Reumatologia, Lisbon, Portugal
| | - Nuno Alves
- Ophthalmology Department, Centro Hospitalar de Lisboa Central, Hospital de Santo António Dos Capuchos, Lisbon, Portugal
- Ophthalmology Department, Hospital CUF Descobertas, Lisbon, Portugal
| | - José Vaz-Patto
- Rheumatology Department, Instituto Português de Reumatologia, Lisbon, Portugal
| | - Jaime Cunha-Branco
- Comprehensive Health Research Centre (CHRC), NOVA Medical School, FCM, Universidade Nova de Lisboa, Lisbon, Portugal
- Rheumatology Department, Hospital CUF Descobertas, Lisbon, Portugal
- Chronic Diseases Research Center, NOVA Medical School, FCM, Universidade Nova de Lisboa, Lisbon, Portugal
- Rheumatology Department, Centro Hospitalar de Lisboa Ocidental, Hospital de Egas Moniz, Lisbon, Portugal
| | - Luís-Miguel Borrego
- Comprehensive Health Research Centre, CEDOC, Chronic Diseases Research Center, Immunology, NOVA Medical School, Universidade Nova de Lisboa, Campo Dos Mártires da Pátria, 130, 1169-056, Lisbon, Portugal
- Comprehensive Health Research Centre (CHRC), NOVA Medical School, FCM, Universidade Nova de Lisboa, Lisbon, Portugal
- Immunoalergy Department, Hospital da Luz Lisboa, Lisbon, Portugal
| |
Collapse
|
6
|
Xiong H, Tang Z, Xu Y, Shi Z, Guo Z, Liu X, Tan G, Ai X, Guo Q. CD19 +CD24 highCD27 + B cell and interleukin 35 as potential biomarkers of disease activity in systemic lupus erythematosus patients. Adv Rheumatol 2022; 62:48. [PMID: 36494762 DOI: 10.1186/s42358-022-00279-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/19/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a systemic autoimmune disease that associates with aberrant activation of B lymphocytes and excessive autoantibodies. Interleukin 10 (IL-10)/interleukin 35 (IL-35) and IL-10/IL-35-producing regulatory B cells have been demonstrated to possess immunosuppressive functions during systemic lupus erythematosus. Here, we detected the proportion of CD19+CD24highCD27+ B cells as well as IL-10 and IL-35 levels in peripheral blood of SLE patients and healthy individuals, and investigated their relations with clinical features of SLE. METHODS 41 SLE patients and 25 healthy controls were recruited. The patients were divided into groups based on SLEDAI score, anti-dsDNA antibody, rash, nephritis and hematological disorder. Flow cytometry was used to detect the proportion of CD24hiCD27+ B cells. ELISA was used to detect serum levels of IL-10 and IL-35. RESULTS Our results showed that the CD19+CD24highCD27+ B population was decreased in active SLE patients, and anti-correlated with the disease activity. Of note, we found significant increase of IL-10 and decrease of IL-35 in SLE patients with disease activity score > 4, lupus nephritis or hematological disorders compared to those without related clinical features. CONCLUSIONS Reduced CD19+CD24highCD27+ B cells expression may be involved in the pathogenesis of SLE. Moreover, we supposed that IL-35 instead of IL-10 played a crucial role in immune regulation during SLE disease.
Collapse
Affiliation(s)
- Hui Xiong
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetic and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Zengqi Tang
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Ying Xu
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Zhenrui Shi
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Zhixuan Guo
- Department of Dermatology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518040, Guangdong, China
| | - Xiuting Liu
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Guozhen Tan
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Xuechen Ai
- Department of Dermatology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, Guangdong, China.
| | - Qing Guo
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
7
|
Li H, Wang D, Zhou X, Ding S, Guo W, Zhang S, Li Z, Huang T, Cai YD. Characterization of spleen and lymph node cell types via CITE-seq and machine learning methods. Front Mol Neurosci 2022; 15:1033159. [PMID: 36311013 PMCID: PMC9608858 DOI: 10.3389/fnmol.2022.1033159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
The spleen and lymph nodes are important functional organs for human immune system. The identification of cell types for spleen and lymph nodes is helpful for understanding the mechanism of immune system. However, the cell types of spleen and lymph are highly diverse in the human body. Therefore, in this study, we employed a series of machine learning algorithms to computationally analyze the cell types of spleen and lymph based on single-cell CITE-seq sequencing data. A total of 28,211 cell data (training vs. test = 14,435 vs. 13,776) involving 24 cell types were collected for this study. For the training dataset, it was analyzed by Boruta and minimum redundancy maximum relevance (mRMR) one by one, resulting in an mRMR feature list. This list was fed into the incremental feature selection (IFS) method, incorporating four classification algorithms (deep forest, random forest, K-nearest neighbor, and decision tree). Some essential features were discovered and the deep forest with its optimal features achieved the best performance. A group of related proteins (CD4, TCRb, CD103, CD43, and CD23) and genes (Nkg7 and Thy1) contributing to the classification of spleen and lymph nodes cell types were analyzed. Furthermore, the classification rules yielded by decision tree were also provided and analyzed. Above findings may provide helpful information for deepening our understanding on the diversity of cell types.
Collapse
Affiliation(s)
- Hao Li
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Deling Wang
- State Key Laboratory of Oncology in South China, Department of Radiology, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xianchao Zhou
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shijian Ding
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences (SIBS), Shanghai Jiao Tong University School of Medicine (SJTUSM), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Shiqi Zhang
- Department of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Zhandong Li
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Tao Huang
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Tao Huang,
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
- Yu-Dong Cai,
| |
Collapse
|
8
|
Marginal Zone B-Cell Populations and Their Regulatory Potential in the Context of HIV and Other Chronic Inflammatory Conditions. Int J Mol Sci 2022; 23:ijms23063372. [PMID: 35328792 PMCID: PMC8949885 DOI: 10.3390/ijms23063372] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammation in the context of Human Immunodeficiency Virus (HIV) establishes early and persists beyond antiretroviral therapy (ART). As such, we have shown excess B-cell activating factor (BAFF) in the blood of HIV-infected progressors, as soon as in the acute phase, and despite successful ART. Excess BAFF was associated with deregulation of the B-cell compartment; notably, with increased frequencies of a population sharing features of both transitional immature (TI) and marginal zone (MZ) B-cells, we termed Marginal Zone precursor-like (MZp). We have reported similar observations with HIV-transgenic mice, Simian Immunodeficiency Virus (SIV)-infected macaques, and more recently, with HIV-infected Beninese commercial sex workers, which suggests that excess BAFF and increased frequencies of MZp B-cells are reliable markers of inflammation in the context of HIV. Importantly, we have recently shown that in healthy individuals, MZps present an important regulatory B-cell (Breg) profile and function. Herein, we wish to review our current knowledge on MZ B-cell populations, especially their Breg status, and that of other B-cell populations sharing similar features. BAFF and its analog A Proliferation-Inducing Ligand (APRIL) are important in shaping the MZ B-cell pool; moreover, the impact that excess BAFF—encountered in the context of HIV and several chronic inflammatory conditions—may exert on MZ B-cell populations, Breg and antibody producing capacities is a threat to the self-integrity of their antibody responses and immune surveillance functions. As such, deregulations of MZ B-cell populations contribute to autoimmune manifestations and the development of MZ lymphomas (MZLs) in the context of HIV and other inflammatory diseases. Therefore, further comprehending the mechanisms regulating MZ B-cell populations and their functions could be beneficial to innovative therapeutic avenues that could be deployed to restore MZ B-cell immune competence in the context of chronic inflammation involving excess BAFF.
Collapse
|
9
|
Zhu Q, Rui K, Wang S, Tian J. Advances of Regulatory B Cells in Autoimmune Diseases. Front Immunol 2021; 12:592914. [PMID: 33936028 PMCID: PMC8082147 DOI: 10.3389/fimmu.2021.592914] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
With the ability to induce T cell activation and elicit humoral responses, B cells are generally considered as effectors of the immune system. However, the emergence of regulatory B cells (Bregs) has given new insight into the role of B cells in immune responses. Bregs exhibit immunosuppressive functions via diverse mechanisms, including the secretion of anti-inflammatory cytokines and direct cell contact. The balance between Bregs and effector B cells is important for the immune tolerance. In this review, we focus on recent advances in the characteristics of Bregs and their functional roles in autoimmunity.
Collapse
Affiliation(s)
- Qiugang Zhu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ke Rui
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jie Tian
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
10
|
Barcelos F, Martins C, Madeira N, Ângelo-Dias M, Cardigos J, Alves N, Vaz-Patto J, Cunha-Branco J, Borrego LM. Lymphocyte subpopulations in Sjögren's syndrome are distinct in anti-SSA-positive patients and related to disease activity. Clin Rheumatol 2021; 40:2791-2804. [PMID: 33443605 DOI: 10.1007/s10067-020-05537-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/28/2020] [Accepted: 12/02/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Sjögren's syndrome (SjS) patients exhibit great phenotypical heterogeneity, reinforced by the positiveness of anti-SSA antibody. We aimed to evaluate lymphocyte subpopulations in SSA-positive (SSA+SjS) and SSA-negative (SSA-SjS) SjS patients, Sicca patients, and healthy controls (HC), and to investigate associations between lymphocyte subpopulations and disease activity in SjS. METHODS According to the fulfilment of the ACR/EULAR 2016 classification criteria, patients were included as SjS or as Sicca. HC were selected from the Ophthalmology outpatient clinic. Lymphocyte subpopulations were characterized by flow cytometry. Statistical analysis was performed with GraphPad PrismTM, with statistical significance concluded if p < 0.05. RESULTS We included 53 SjS patients (38 SSA+ and 15 SSA-), 72 Sicca, and 24 HC. SSA+SjS patients presented increased IL-21+CD4+ and CD8+ T cells compared to Sicca and HC, whereas compared to SSA-SjS patients, only IL-21+CD4+ T cell percentages were increased and Tfh17 percentages and numbers were decreased. Compared to Sicca and HC, SSA+SjS patients had higher levels of CD24HiCD38Hi B cells, naïve B cells, and IgM-/+CD38++ plasmablasts, and lower levels of memory B cells, including CD24HiCD27+ B cells. SSA+SjS patients with clinically active disease had positive correlations between ESSDAI and IL-21+CD4+ (p = 0.038, r = 0.456) and IL-21+CD8+ T cells (p = 0.046, r = 0.451). CONCLUSIONS In SjS, a distinct lymphocyte subset distribution profile seems to be associated with positive anti-SSA. Moreover, the association between ESSDAI and IL-21+CD4+ and IL-21+CD8+ (follicular) T cells in SSA+SjS patients suggests the involvement of these cells in disease pathogenesis and activity, and possibly their utility for the prognosis and assessment of response to therapy. Key Points • SSA+SjS patients have a pronounced naïve/memory B cell imbalance. • SSA+SjS patients have more active disease associated with IL-21+CD4+ and IL-21+CD8+ follicular T cell expansion. • IL-21+CD4+ and IL-21+CD8+ T cell quantification may be useful for the prognosis and assessment of response to therapy.
Collapse
Affiliation(s)
- Filipe Barcelos
- CEDOC, Chronic Diseases Research Center, Immunology, NOVA Medical School
- FCM, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisbon, Portugal. .,Comprehensive Health Research Centre (CHRC), NOVA Medical School / FCM, Universidade Nova de Lisboa, Lisbon, Portugal. .,Rheumatology Department, Instituto Português de Reumatologia, Lisbon, Portugal. .,Rheumatology Department, Hospital CUF Descobertas, Lisbon, Portugal.
| | - Catarina Martins
- CEDOC, Chronic Diseases Research Center, Immunology, NOVA Medical School
- FCM, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisbon, Portugal.,Comprehensive Health Research Centre (CHRC), NOVA Medical School / FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Nathalie Madeira
- Rheumatology Department, Instituto Português de Reumatologia, Lisbon, Portugal
| | - Miguel Ângelo-Dias
- CEDOC, Chronic Diseases Research Center, Immunology, NOVA Medical School
- FCM, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisbon, Portugal
| | - Joana Cardigos
- Ophthalmology Department, Centro Hospitalar de Lisboa Central, Hospital de Santo António dos Capuchos, Lisbon, Portugal
| | - Nuno Alves
- Ophthalmology Department, Centro Hospitalar de Lisboa Central, Hospital de Santo António dos Capuchos, Lisbon, Portugal.,Ophthalmology Department, Hospital CUF Descobertas, Lisbon, Portugal
| | - José Vaz-Patto
- Rheumatology Department, Instituto Português de Reumatologia, Lisbon, Portugal
| | - Jaime Cunha-Branco
- CEDOC, Chronic Diseases Research Center, Immunology, NOVA Medical School
- FCM, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisbon, Portugal.,Comprehensive Health Research Centre (CHRC), NOVA Medical School / FCM, Universidade Nova de Lisboa, Lisbon, Portugal.,Rheumatology Department, Hospital CUF Descobertas, Lisbon, Portugal.,Rheumatology Department, Centro Hospitalar de Lisboa Ocidental, Hospital de Egas Moniz, Lisbon, Portugal
| | - Luís-Miguel Borrego
- CEDOC, Chronic Diseases Research Center, Immunology, NOVA Medical School
- FCM, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisbon, Portugal.,Comprehensive Health Research Centre (CHRC), NOVA Medical School / FCM, Universidade Nova de Lisboa, Lisbon, Portugal.,Immunoalergy Department, Hospital da Luz Lisboa, Lisbon, Portugal
| |
Collapse
|
11
|
Guo X, Xu T, Zheng J, Cui X, Li M, Wang K, Su M, Zhang H, Zheng K, Sun C, Song S, Liu H. Accumulation of synovial fluid CD19 +CD24 hiCD27 + B cells was associated with bone destruction in rheumatoid arthritis. Sci Rep 2020; 10:14386. [PMID: 32873834 PMCID: PMC7462986 DOI: 10.1038/s41598-020-71362-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/10/2020] [Indexed: 12/29/2022] Open
Abstract
Regulatory CD19+CD24hiCD27+ B cells were proved to be numerically decreased and functionally impaired in the peripheral blood (PB) from rheumatoid arthritis (RA), with the potential of converting into osteoclast-priming cells. However, the distribution and function of CD19+CD24hiCD27+ B cells in RA synovial fluid (SF) were unclear. In this study, we investigated whether RA SF CD19+CD24hiCD27+ B cells were increased and associated with bone destruction. We found that the proportion of RA SF CD19+CD24hiCD27+ B cells was increased significantly, and was positively correlated with swollen joint counts, tender joint counts and disease activity. CXCL12, CXCL13, CCL19 contributed to the recruitment of CD19+CD24hiCD27+ B cells in RA SF. Notably, CD19+CD24hiCD27+ B cells in the SF from RA expressed significantly more RANKL compared to OA and that in the PB from RA. Critically, RA CD19+CD24hiCD27+ B cells promoted osteoclast (OC) differentiation in vitro, and the number of OCs was higher in cultures with RA SF CD19+CD24hiCD27+ B cells than in those derived from RA PB. Collectively, these findings revealed the accumulation of CD19+CD24hiCD27+ B cells in SF and their likely contribution to joint destruction in RA. Modulating the status of CD19+CD24hiCD27+ B cells might provide novel therapeutic strategies for RA.
Collapse
Affiliation(s)
- Xiaofeng Guo
- Department of Rheumatology and Immunology, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, No. 4, Hudi Street, Xiling District, Yichang, 443000, Hubei Province, China
| | - Tingting Xu
- Department of Rheumatology and Immunology, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, No. 4, Hudi Street, Xiling District, Yichang, 443000, Hubei Province, China
| | - Jing Zheng
- Department of Hematology, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, Yichang, 443000, Hubei Province, China
| | - Xiangjun Cui
- Department of Rheumatology and Immunology, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, No. 4, Hudi Street, Xiling District, Yichang, 443000, Hubei Province, China
| | - Ming Li
- Department of Rheumatology and Immunology, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, No. 4, Hudi Street, Xiling District, Yichang, 443000, Hubei Province, China
| | - Kai Wang
- Department of Rheumatology and Immunology, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, No. 4, Hudi Street, Xiling District, Yichang, 443000, Hubei Province, China
| | - Min Su
- Department of Rheumatology and Immunology, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, No. 4, Hudi Street, Xiling District, Yichang, 443000, Hubei Province, China
| | - Huifang Zhang
- Department of Rheumatology and Immunology, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, No. 4, Hudi Street, Xiling District, Yichang, 443000, Hubei Province, China
| | - Ke Zheng
- Department of Rheumatology and Immunology, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, No. 4, Hudi Street, Xiling District, Yichang, 443000, Hubei Province, China
| | - Chongling Sun
- Department of Rheumatology and Immunology, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, No. 4, Hudi Street, Xiling District, Yichang, 443000, Hubei Province, China
| | - Shulin Song
- Department of Rheumatology and Immunology, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, No. 4, Hudi Street, Xiling District, Yichang, 443000, Hubei Province, China.
| | - Hongjiang Liu
- Department of Rheumatology and Immunology, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, No. 4, Hudi Street, Xiling District, Yichang, 443000, Hubei Province, China.
| |
Collapse
|
12
|
Shi L, Hu F, Zhu L, Xu C, Zhu H, Li Y, Liu H, Li C, Liu N, Xu L, Mu R, Li Z. CD70-mediated CD27 expression downregulation contributed to the regulatory B10 cell impairment in rheumatoid arthritis. Mol Immunol 2020; 119:92-100. [PMID: 32006824 DOI: 10.1016/j.molimm.2020.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 01/10/2020] [Accepted: 01/23/2020] [Indexed: 01/08/2023]
Abstract
Regulatory B10 cells have been shown to exhibit impaired functions in autoimmune diseases. However, the underlying mechanism is still obscure. In the present study, we aimed to understand the regulatory characteristics of regulatory B10 cells and how these cells are involved in the development of rheumatoid arthritis (RA). Here, we chose CD19+CD24hiCD27+ as the phenotype of regulatory B10 cells. We found that the frequencies of CD19+CD24hiCD27+ regulatory B10 cells were decreased and that their IL-10-producing function was impaired in patients with RA compared with healthy controls (HCs). The impairment in CD19+CD24hiCD27+ B10 cells was partially attributed to the decreased expression of CD27 induced by the upregulated CD70 expression on CD19 + B cells and CD4 + T cells. The proportion of CD19+CD24hiCD27+ regulatory B10 cells could be restored by blocking the CD70-CD27 interaction with an anti-CD70 antibody. Furthermore, the CD70-CD27 interaction significantly elevated IL-10 expression and might compensate for the decreased number of CD19+CD24hiCD27+ B cells. Hence, the CD70-CD27 interaction might play a critical role in the numerical and functional impairments of regulatory B10 cells, thus contributing to RA pathogenesis. In conclusion, the change in CD19+CD24hiCD27+ regulatory B10 cells in RA was only a consequence, not the cause, of RA development, but the increased expression of CD70 might be the culprit.
Collapse
Affiliation(s)
- Lianjie Shi
- Department of Rheumatology and Immunology, Peking University International Hospital, Beijing, China; Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, China
| | - Fanlei Hu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Lei Zhu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Chuanhui Xu
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore
| | - Huaqun Zhu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Yingni Li
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Hongjiang Liu
- The First People's Hospital of Yichang, China Three Gorges University, Yichang, Hubei, China
| | - Chun Li
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Na Liu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Liling Xu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Rong Mu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China.
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China.
| |
Collapse
|
13
|
Stożek K, Grubczak K, Marolda V, Eljaszewicz A, Moniuszko M, Bossowski A. Lower proportion of CD19+IL-10+ and CD19+CD24+CD27+ but not CD1d+CD5+CD19+CD24+CD27+ IL-10+ B cells in children with autoimmune thyroid diseases. Autoimmunity 2019; 53:46-55. [DOI: 10.1080/08916934.2019.1697690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Karolina Stożek
- Department of Pediatric Endocrinology, Diabetology with Cardiology Division, Medical University of Bialystok, Bialystok, Poland
| | - Kamil Grubczak
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
| | - Viviana Marolda
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
| | - Andrzej Eljaszewicz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
| | - Artur Bossowski
- Department of Pediatric Endocrinology, Diabetology with Cardiology Division, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
14
|
Singh A, Ramachandran S, Graham ML, Daneshmandi S, Heller D, Suarez-Pinzon WL, Balamurugan AN, Ansite JD, Wilhelm JJ, Yang A, Zhang Y, Palani NP, Abrahante JE, Burlak C, Miller SD, Luo X, Hering BJ. Long-term tolerance of islet allografts in nonhuman primates induced by apoptotic donor leukocytes. Nat Commun 2019; 10:3495. [PMID: 31375697 PMCID: PMC6677762 DOI: 10.1038/s41467-019-11338-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 07/09/2019] [Indexed: 02/06/2023] Open
Abstract
Immune tolerance to allografts has been pursued for decades as an important goal in transplantation. Administration of apoptotic donor splenocytes effectively induces antigen-specific tolerance to allografts in murine studies. Here we show that two peritransplant infusions of apoptotic donor leukocytes under short-term immunotherapy with antagonistic anti-CD40 antibody 2C10R4, rapamycin, soluble tumor necrosis factor receptor and anti-interleukin 6 receptor antibody induce long-term (≥1 year) tolerance to islet allografts in 5 of 5 nonsensitized, MHC class I-disparate, and one MHC class II DRB allele-matched rhesus macaques. Tolerance in our preclinical model is associated with a regulatory network, involving antigen-specific Tr1 cells exhibiting a distinct transcriptome and indirect specificity for matched MHC class II and mismatched class I peptides. Apoptotic donor leukocyte infusions warrant continued investigation as a cellular, nonchimeric and translatable method for inducing antigen-specific tolerance in transplantation. Injection of donor apoptotic cells induces graft tolerance in mice. Here the authors combine this approach with short immunosuppressive therapy to achieve long-term tolerance to allogeneic islets and restoration of normoglycemia in diabetic nonhuman primates, and delineate cellular and molecular correlates of tolerance induction.
Collapse
Affiliation(s)
- Amar Singh
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Sabarinathan Ramachandran
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Melanie L Graham
- Preclinical Research Center, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Saeed Daneshmandi
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - David Heller
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Wilma Lucia Suarez-Pinzon
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Appakalai N Balamurugan
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA.,Center for Cellular Transplantation, Cardiovascular Innovation Institute, Department of Surgery, University of Louisville, Louisville, KY, 40202, USA
| | - Jeffrey D Ansite
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Joshua J Wilhelm
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Amy Yang
- Biostatistics Collaboration Center, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Ying Zhang
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Nagendra P Palani
- University of Minnesota Genomics Center, Minneapolis, MN, 55455, USA
| | - Juan E Abrahante
- University of Minnesota Informatics Institute, Minneapolis, MN, 55455, USA
| | - Christopher Burlak
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology and Interdepartmental Immunology Center, Northwestern University, Chicago, IL, 60611, USA.
| | - Xunrong Luo
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA. .,Biostatistics Collaboration Center, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA. .,Duke Transplant Center, Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA.
| | - Bernhard J Hering
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
15
|
Fang J, Lin L, Lin D, Zhang R, Liu X, Wang D, Duan C, Lin X. The imbalance between regulatory memory B cells reveals possible pathogenesis involvement in pediatric immune thrombocytopenia. ACTA ACUST UNITED AC 2019; 24:473-479. [PMID: 31142214 DOI: 10.1080/16078454.2019.1622292] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: CD19+CD24hiCD38hi regulatory B cells (Bregs) and CD19+CD27+ memory B cells (Bmems) are B cell subsets with specific immunoregulatory properties. In this study, the balance of these subsets was investigated in pediatric immune thrombocytopenia (ITP) patients, and the frequencies of Bregs and Bmems before and after first-line therapy were measured. Methods: Forty-nine pediatric ITP patients and 19 normal controls were enrolled in this study. The total CD19+ B cells, Bregs and Bmems in the peripheral blood (PB) of all cases were measured by flow cytometry. Results: We found higher frequencies of total CD19+ B cells and Bmems in newly diagnosed ITP patients than those in normal controls (p < 0.01), whereas the frequencies of CD19+CD24hiCD38hi Bregs was significantly lower in ITP patients (p < 0.001). After therapy with MP + IVIG, the level of CD19+CD24hiCD38hi Bregs and Bmems were almost normalized. Conclusion: Our results indicated that pediatric ITP patients were characterized by a decline in CD19+CD24hiCD38hi Bregs and increment of CD19+CD27+Bmems, and an increase of total CD19+ B cells in their peripheral blood.
Collapse
Affiliation(s)
- Junyue Fang
- a Department of Clinical Laboratory , Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou , People's Republic of China.,b Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation , Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou , People's Republic of China
| | - Li Lin
- b Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation , Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou , People's Republic of China.,c Department of Dermatology , Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou , People's Republic of China
| | - Dijin Lin
- a Department of Clinical Laboratory , Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou , People's Republic of China.,b Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation , Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou , People's Republic of China
| | - Ruihao Zhang
- a Department of Clinical Laboratory , Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou , People's Republic of China.,b Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation , Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou , People's Republic of China
| | - Xiuli Liu
- a Department of Clinical Laboratory , Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou , People's Republic of China.,b Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation , Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou , People's Republic of China
| | - Di Wang
- d Department of Pediatrics , The First Affiliated Hospital, Sun Yat-Sen University , Guangzhou , People's Republic of China
| | - Chaohui Duan
- a Department of Clinical Laboratory , Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou , People's Republic of China.,b Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation , Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou , People's Republic of China
| | - Xianghua Lin
- a Department of Clinical Laboratory , Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou , People's Republic of China.,b Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation , Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou , People's Republic of China
| |
Collapse
|
16
|
Chen X, Cai C, Xu D, Liu Q, Zheng S, Liu L, Li G, Zhang X, Li X, Ma Y, Huang L, Chen J, Shi J, Du X, Xia W, Xiang AP, Peng Y. Human Mesenchymal Stem Cell-Treated Regulatory CD23 +CD43 + B Cells Alleviate Intestinal Inflammation. Am J Cancer Res 2019; 9:4633-4647. [PMID: 31367246 PMCID: PMC6643430 DOI: 10.7150/thno.32260] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/21/2019] [Indexed: 01/06/2023] Open
Abstract
Rationale: Mesenchymal stem cells (MSCs) have been demonstrated to ameliorate inflammatory bowel disease by their actions on multiple immune cells, especially on regulatory B cells (Breg cells). However, the phenotypes and functions of human MSCs (hMSCs)-treated Breg cell subsets are not yet clear. Methods: Purified B cells were cocultured with MSCs and the phenotypes and immunomodulatory functions of the B cells were analyzed by FACS and proliferation assays in vitro. Also, a trinitrobenzenesulfonic acid-induced mouse colitis model was employed to detect the function of MSC-treated Breg cells in vivo. Results: We demonstrated that coculturing with hMSCs significantly enhanced the immunomodulatory activity of B cells by up-regulating IL-10 expression. We then identified that a novel regulatory B cell population characterized by CD23 and CD43 phenotypic markers could be induced by hMSCs. The CD23+CD43+ Breg cells substantially inhibited the inflammatory cytokine secretion and proliferation of T cells through an IL-10-dependent pathway. More significantly, intraperitoneal injection of hMSCs ameliorated the clinical and histopathological severity in the mouse experimental colitis model, accompanied by an increase in the number of CD23+CD43+ Breg cells. The adoptive transfer of CD23+CD43+ B cells effectively alleviated murine colitis, as compared with the CD23-CD43- B cells. Treatment with CD23+CD43+ B cells, and not hMSCs, substantially improved the symptoms of colitis in B cell-depleted mice. Conclusion: the novel CD23+CD43+ Breg cell subset appears to be involved in the immunomodulatory function of hMSCs and sheds new light on elucidating the therapeutic mechanism of hMSCs for the treatment of inflammation-related diseases.
Collapse
|
17
|
Lin J, Yu Y, Ma J, Ren C, Chen W. PD-1+CXCR5−CD4+T cells are correlated with the severity of systemic lupus erythematosus. Rheumatology (Oxford) 2019; 58:2188-2192. [PMID: 31180450 DOI: 10.1093/rheumatology/kez228] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/14/2019] [Indexed: 11/13/2022] Open
Abstract
Abstract
Objectives
PD-1+CXCR5−CD4+T peripheral helper (Tph) cells, a recently identified T cell subset, are proven to promote B cell responses and antibody production in rheumatoid arthritis, but their role in the pathogenesis of SLE is unknown. We explored the role of Tph in lupus disease development.
Methods
This cohort study included 68 patients with SLE and 41 age- and sex-matched healthy individuals. The frequency of PD-1+CXCR5−CD4+T cells was analysed in peripheral blood by flow cytometry. Inducible T-cell costimulator, CD38, MHC-II, IL-21, CXCR3 and CCR6 expression were measured in Tph cells. Comparisons between the two groups were performed, and correlations between Tph cells and other parameters were investigated.
Results
We revealed a markedly expanded population of Tph cells (8.31 ± 5.45 vs 2.86 ± 1.31%, P < 0.0001) in the circulation of patients with SLE (n = 68), compared with healthy controls (n = 41). Tph cells were much higher in the active group than in the inactive group (14.21 ± 5.21 vs 5.49 ± 2.52%, P < 0.0001). Tph cells were significantly associated with SLEDAI score (r = 0.802), ESR (r = 0.415), IgG (r = 0.434), C3 (r = −0.543), C4 (r = −0.518) and IL-21 level (r = 0.628), and ANA titre (r = 0.272). Furthermore, Tph cells were much higher in lupus patients with arthritis, nephritis, rash, alopecia, pleuritis, pericarditis and haematological involvement. Tph cells were associated with CD138+/CD19+ plasma cells (r = 0.518). Furthermore, MHC-II, inducible T-cell costimulator, CD38, and IL-21 expression were all higher in Tph cells from SLE patients compared with healthy controls. CXCR3+CCR6−Tph (Tph1) cells were expanded in the SLE patients.
Conclusion
Our data show that relative number of Tph cells is correlated with disease measures in patients with SLE, suggesting an important role in lupus disease development.
Collapse
Affiliation(s)
- Jin Lin
- Division of Rheumatology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Ye Yu
- Division of Rheumatology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jilin Ma
- Division of Nephrology, Zhejiang Traditional Chinese Medicine and Western Medicine Hospital, Hangzhou, Zhejiang Province, China
| | - Chunyun Ren
- Department of Laboratory Medicine, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Weiqian Chen
- Division of Rheumatology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
18
|
Luo J, Guo H, Liu Z, Peng T, Hu X, Han M, Yang X, Zhou X, Li H. Analysis of Peripheral B Cell Subsets in Patients With Allergic Rhinitis. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2018; 10:236-243. [PMID: 29676070 PMCID: PMC5911442 DOI: 10.4168/aair.2018.10.3.236] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/31/2017] [Accepted: 01/11/2018] [Indexed: 01/04/2023]
Abstract
Purpose Recent evidence suggests that B cells can both promote and inhibit the development and progression of allergic disease. However, the characteristics of B cell subsets in patients with allergic rhinitis (AR) have not been well documented. This study aimed to analyze the characteristics of B cell subsets in the peripheral blood of AR patients. Methods Forty-seven AR patients and 54 healthy controls were enrolled in this study, and the B cell subsets in peripheral blood of all subjects were analyzed by flow cytometry. Moreover, the serum total immunoglobulin E (IgE) and IgE concentrations secreted into the cultured peripheral blood mononuclear cells (PBMCs) were measured by using enzyme-linked immunosorbent assay. Results We found the peripheral blood of AR patients contained higher percentages of memory B cells, plasma cells, and CD19+CD24hiCD27+ regulatory B cells (Bregs) than those of age-matched healthy controls (P<0.05), while the percentages of naïve B cells and CD19+CD24hiCD38hi Bregs were significantly lower in AR patients than in healthy individuals (P<0.05). In addition, the serum total IgE and IgE concentrations secreted into the cultured PBMCs were elevated in AR patients than in the healthy controls (P<0.05). Conclusions Our findings indicate that AR patients were characterized by increase in terminally differentiated memory B cells or plasma cells and decreases in CD19+CD24hiCD38hi Breg cells in the peripheral blood.
Collapse
Affiliation(s)
- Jing Luo
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huanhuan Guo
- Department of Otolaryngology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhuofu Liu
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Tao Peng
- Department of Otolaryngology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xianting Hu
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Miaomiao Han
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Xiangping Yang
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuhong Zhou
- Department of Otolaryngology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Huabin Li
- Department of Otolaryngology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Otolaryngology, Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Respiratory Disease, Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
19
|
Sakkas LI. Regulatory B cells in autoimmune rheumatic diseases. Mediterr J Rheumatol 2017; 28:75-79. [PMID: 32185261 PMCID: PMC7046031 DOI: 10.31138/mjr.28.2.75] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 02/14/2017] [Accepted: 02/25/2017] [Indexed: 01/15/2023] Open
Abstract
Background:
Regulatory B cells (regulatory B cells, Breg cells) in recent years have been shown to be important immunoregulatory factors.
Aim:
To review the role of Breg cells in autoimmune rheumatic diseases.
Methods:
This descriptional review was carried out after research on PubMed using the keywords “Bregs and rheumatoid arthritis”, “systemic lupus erythematosus”, “Sjögren’s syndrome”, “systemic sclerosis”, “vasculitis”, and “dermatomyositis”.
Results:
Breg cells have an inhibitory effect on pro-inflammatory Th1 and Th17 cells and prevent the development of autoimmune diseases. Breg cells mediate their effects through interleukin-10 (IL-10, IL-10+Breg cells), but recently other Breg cells have been recognized that mediate their effects through IL-35 (IL-35+Breg cells), or through transforming growth factor-β (TGFβ, TGFβ+Breg cells). In experimental models of autoimmune diseases, Breg cells are decreased, and when expanded ex vivo and re-infused back into animals, they ameliorate disease. In humans, IL-10+Breg cells are decreased in active autoimmune diseases, such as rheumatoid arthritis, ANCA-associated vasculitis, and systemic sclerosis, and may increase to normal levels in disease remission.
Conclusions:
The deficiency of IL-10+Breg cells during active autoimmune rheumatic disease suggests that Breg cells may be used as biomarkers and be a possible therapeutic target in these diseases.
Collapse
Affiliation(s)
- Lazaros I Sakkas
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
20
|
Hu F, Liu H, Liu X, Zhang X, Xu L, Zhu H, Li Y, Shi L, Ren L, Zhang J, Li Z, Jia Y. Pathogenic conversion of regulatory B10 cells into osteoclast-priming cells in rheumatoid arthritis. J Autoimmun 2017; 76:53-62. [DOI: 10.1016/j.jaut.2016.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 08/25/2016] [Accepted: 09/04/2016] [Indexed: 10/20/2022]
|
21
|
Yang J, Li W, Luo F, Zhao N, Zhang W, Zhang D, Qian J, Yu Y, Zheng X, Wang Y, Feng Y, Liu T, Chu Y. Low percentage of CD24hiCD27+CD19+ B cells decelerates gastric cancer progression in XELOX-treated patients. Int Immunopharmacol 2015; 26:322-7. [DOI: 10.1016/j.intimp.2015.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 03/23/2015] [Accepted: 04/06/2015] [Indexed: 11/29/2022]
|
22
|
Suppression of autoimmunity by CD5(+) IL-10-producing B cells in lupus-prone mice. Genes Immun 2015; 16:311-20. [PMID: 25973757 DOI: 10.1038/gene.2015.17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/05/2015] [Accepted: 03/19/2015] [Indexed: 12/30/2022]
Abstract
Systemic lupus erythematosus is a complex autoimmune disorder characterized by the production of pathogenic anti-nuclear antibodies. Previous work from our laboratory has shown that the introgression of a New Zealand Black-derived chromosome 4 interval onto a lupus-prone background suppresses the disease. Interestingly, the same genetic interval promoted the expansion of both Natural Killer T- and CD5(+) B cells in suppressed mice. In this study, we show that ablation of NKT cells with a CD1d knockout had no impact on either the suppression of lupus or the expansion of CD5(+) B cells. On the other hand, suppressed mice had an expanded population of IL-10-producing B cells that predominantly localized to the CD5(+)CD1d(low) compartment. The expansion of CD5(+) B cells negatively correlated with the frequency of pro-inflammatory IL-17 A-producing T-cells and kidney damage. Adoptive transfer with a single injection of total B cells with an enriched CD5(+) compartment reduced the frequency of memory/activated, IFNγ-producing, and IL-17 A-producing CD4 T-cells but did not significantly reduce autoantibody levels. Taken together, these data suggest that the expansion of CD5(+) IL-10-producing B cells and not NKT cells protects against lupus in these mice, by limiting the expansion of pro-inflammatory IL-17 A- and IFNγ-producing CD4 T-cells.
Collapse
|
23
|
CD24: from a Hematopoietic Differentiation Antigen to a Genetic Risk Factor for Multiple Autoimmune Diseases. Clin Rev Allergy Immunol 2015; 50:70-83. [DOI: 10.1007/s12016-015-8470-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Mazer B. Is there a place for B cells as regulators of immune tolerance in allergic diseases? Clin Exp Allergy 2014; 44:469-71. [PMID: 24666519 DOI: 10.1111/cea.12274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- B Mazer
- Meakins Christie Laboratories, The Research Institute of the McGill University Health Center, Montreal, QC, Canada
| |
Collapse
|
25
|
James JA, Danda D. New perspectives and insights to Asian systemic lupus erythematosus: renal disease, genetic predisposition and disease activity. Int J Rheum Dis 2013; 16:611-4. [DOI: 10.1111/1756-185x.12281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Judith A. James
- Departments of Arthritis and Clinical Immunology; Oklahoma Medical Research Foundation; Oklahoma City USA
- Departments of Medicine, Microbiology & Immunology, and Pathology; University of Oklahoma Health Sciences Center; Oklahoma City OK USA
| | - Debashish Danda
- Departments of Clinical Immunology & Rheumatology; Christian Medical College & Hospital; Vellore India
| |
Collapse
|