1
|
Tao T, Tang A, Lv L, Yuan J, Wu L, Zhao L, Chen J. Investigating the causal relationship and potential shared diagnostic genes between primary biliary cholangitis and systemic lupus erythematosus using bidirectional Mendelian randomization and transcriptomic analyses. Front Immunol 2024; 15:1270401. [PMID: 38464525 PMCID: PMC10921416 DOI: 10.3389/fimmu.2024.1270401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
Background The co-occurrence of primary biliary cholangitis (PBC) and systemic lupus erythematosus (SLE) has been consistently reported in observational studies. Nevertheless, the underlying causal correlation between these two conditions still needs to be established. Methods We performed a bidirectional two-sample Mendelian randomization (MR) study to assess their causal association. Five MR analysis methods were utilized for causal inference, with inverse-variance weighted (IVW) selected as the primary method. The Mendelian Randomization Pleiotropy RESidual Sum and Outlier (MR-PRESSO) and the IVW Radial method were applied to exclude outlying SNPs. To assess the robustness of the MR results, five sensitivity analyses were carried out. Multivariable MR (MVMR) analysis was also employed to evaluate the effect of possible confounders. In addition, we integrated transcriptomic data from PBC and SLE, employing Weighted Gene Co-expression Network Analysis (WGCNA) to explore shared genes between the two diseases. Then, we used Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment methods to perform on the shared genes. The Least Absolute Shrinkage and Selection Operator (LASSO) regression algorithm was utilized to identify potential shared diagnostic genes. Finally, we verified the potential shared diagnostic genes in peripheral blood mononuclear cells (PBMCs)-specific cell populations of SLE patients by single-cell analysis. Results Our MR study provided evidence that PBC had a causal relationship with SLE (IVW, OR: 1.347, 95% CI: 1.276 - 1.422, P < 0.001) after removing outliers (MR-PRESSO, rs35464393, rs3771317; IVW Radial, rs11065987, rs12924729, rs3745516). Conversely, SLE also had a causal association with PBC (IVW, OR: 1.225, 95% CI: 1.141 - 1.315, P < 0.001) after outlier correction (MR-PRESSO, rs11065987, rs3763295, rs7774434; IVW Radial, rs2297067). Sensitivity analyses confirmed the robustness of the MR findings. MVMR analysis indicated that body mass index (BMI), smoking and drinking were not confounding factors. Moreover, bioinformatic analysis identified PARP9, ABCA1, CEACAM1, and DDX60L as promising diagnostic biomarkers for PBC and SLE. These four genes are highly expressed in CD14+ monocytes in PBMCs of SLE patients and potentially associated with innate immune responses and immune activation. Conclusion Our study confirmed the bidirectional causal relationship between PBC and SLE and identified PARP9, ABCA1, CEACAM1, and DDX60L genes as the most potentially shared diagnostic genes between the two diseases, providing insights for the exploration of the underlying mechanisms of these disorders.
Collapse
Affiliation(s)
- Tian Tao
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Anqi Tang
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lizeyu Lv
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianhua Yuan
- Department of Cardiovascular Medicine, Chengdu Second People’s Hospital, Chengdu, Chengdu, China
| | - Ling Wu
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liangbin Zhao
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Chen
- Department of Intensive Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Shakiba S, Haddadi NS, Afshari K, Lubov JE, Raef HS, Li R, Yildiz-Altay Ü, Daga M, Refat MA, Kim E, de Laflin JG, Akabane A, Sherman S, MacDonald E, Strassner JP, Zhang L, Leon M, Baer CE, Dresser K, Liang Y, Whitley JB, Skopelja-Gardner S, Harris JE, Deng A, Vesely MD, Rashighi M, Richmond J. Spatial characterization of interface dermatitis in cutaneous lupus reveals novel chemokine ligand-receptor pairs that drive disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574422. [PMID: 38260617 PMCID: PMC10802382 DOI: 10.1101/2024.01.05.574422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Chemokines play critical roles in the recruitment and activation of immune cells in both homeostatic and pathologic conditions. Here, we examined chemokine ligand-receptor pairs to better understand the immunopathogenesis of cutaneous lupus erythematosus (CLE), a complex autoimmune connective tissue disorder. We used suction blister biopsies to measure cellular infiltrates with spectral flow cytometry in the interface dermatitis reaction, as well as 184 protein analytes in interstitial skin fluid using Olink targeted proteomics. Flow and Olink data concordantly demonstrated significant increases in T cells and antigen presenting cells (APCs). We also performed spatial transcriptomics and spatial proteomics of punch biopsies using digital spatial profiling (DSP) technology on CLE skin and healthy margin controls to examine discreet locations within the tissue. Spatial and Olink data confirmed elevation of interferon (IFN) and IFN-inducible CXCR3 chemokine ligands. Comparing involved versus uninvolved keratinocytes in CLE samples revealed upregulation of essential inflammatory response genes in areas near interface dermatitis, including AIM2. Our Olink data confirmed upregulation of Caspase 8, IL-18 which is the final product of AIM2 activation, and induced chemokines including CCL8 and CXCL6 in CLE lesional samples. Chemotaxis assays using PBMCs from healthy and CLE donors revealed that T cells are equally poised to respond to CXCR3 ligands, whereas CD14+CD16+ APC populations are more sensitive to CXCL6 via CXCR1 and CD14+ are more sensitive to CCL8 via CCR2. Taken together, our data map a pathway from keratinocyte injury to lymphocyte recruitment in CLE via AIM2-Casp8-IL-18-CXCL6/CXCR1 and CCL8/CCR2, and IFNG/IFNL1-CXCL9/CXCL11-CXCR3.
Collapse
Affiliation(s)
- Saeed Shakiba
- UMass Chan Medical School, Dept of Dermatology, Worcester, MA, USA
| | | | | | - Janet E. Lubov
- UMass Chan Medical School, Dept of Dermatology, Worcester, MA, USA
| | - Haya S. Raef
- UMass Chan Medical School, Dept of Dermatology, Worcester, MA, USA
| | - Robert Li
- UMass Chan Medical School, Dept of Dermatology, Worcester, MA, USA
| | | | - Mridushi Daga
- UMass Chan Medical School, Dept of Dermatology, Worcester, MA, USA
| | | | - Evangeline Kim
- UMass Chan Medical School, Dept of Dermatology, Worcester, MA, USA
| | | | - Andressa Akabane
- UMass Chan Medical School, Dept of Dermatology, Worcester, MA, USA
| | - Shany Sherman
- UMass Chan Medical School, Dept of Dermatology, Worcester, MA, USA
| | | | | | | | | | - Christina E. Baer
- UMass Chan Medical School, Sanderson Center for Optical Experimentation, Dept of Microbiology and Physiological Systems, Worcester, MA, USA
| | - Karen Dresser
- UMass Chan Medical School, Dept of Pathology, Worcester, MA, USA
| | - Yan Liang
- NanoString Technologies, Seattle, WA, USA
| | - James B Whitley
- Dartmouth Hitchcock Medical Center, Dept of Medicine, Lebanon, NH, USA
| | | | - John E Harris
- UMass Chan Medical School, Dept of Dermatology, Worcester, MA, USA
| | - April Deng
- UMass Chan Medical School, Dept of Pathology, Worcester, MA, USA
| | - Matthew D. Vesely
- Yale University School of Medicine, Dept of Dermatology, New Haven, CT, USA
| | - Mehdi Rashighi
- UMass Chan Medical School, Dept of Dermatology, Worcester, MA, USA
| | - Jillian Richmond
- UMass Chan Medical School, Dept of Dermatology, Worcester, MA, USA
| |
Collapse
|
3
|
Jatta N, Stanslas J, Yong ACH, Ho WC, Wan Ahmad Kammal WSL, Chua EW, How KN. Whole blood hydroxychloroquine: Does genetic polymorphism of cytochrome P450 enzymes have a role? Clin Exp Med 2023; 23:4141-4152. [PMID: 37480404 DOI: 10.1007/s10238-023-01142-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/12/2023] [Indexed: 07/24/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with a wide range of clinical manifestations and multifactorial etiologies ranging from environmental to genetic. SLE is associated with dysregulated immunological reactions, with increased immune complex formation leading to end-organ damages such as lupus nephritis, cutaneous lupus, and musculoskeletal disorders. Lupus treatment aims to reduce disease activity, prevent organ damage, and improve long-term patient survival and quality of life. Antimalarial, hydroxychloroquine (HCQ) is used as a first-line systemic treatment for lupus. It has shown profound efficacy in lupus and its associated conditions. However, wide variation in terms of clinical response to this drug has been observed among this group of patients. This variability has limited the potential of HCQ to achieve absolute clinical benefits. Several factors, including genetic polymorphisms of cytochrome P450 enzymes, have been stipulated as key entities leading to this inter-individual variation. Thus, there is a need for more studies to understand the role of genetic polymorphisms in CYP450 enzymes in the clinical response to HCQ. Focusing on the role of genetic polymorphism on whole blood HCQ in lupus disorder, this review aims to highlight up-to-date pathophysiology of SLE, the mechanism of action of HCQ, and finally the role of genetic polymorphism of CYP450 enzymes on whole blood HCQ level as well as clinical response in lupus.
Collapse
Affiliation(s)
- Njundu Jatta
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Johnson Stanslas
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Audrey Chee Hui Yong
- School of Pharmacy, MAHSA University, Bandar Saujana Putra, Jenjarom, Selangor, Malaysia
| | - Wen Chung Ho
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Dermatology Unit, Hospital Sultan Abdul Aziz Shah, Universiti Putra Malaysia, Serdang, Malaysia
| | - Wan Syazween Lyana Wan Ahmad Kammal
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Dermatology Unit, Hospital Sultan Abdul Aziz Shah, Universiti Putra Malaysia, Serdang, Malaysia
| | - Eng Wee Chua
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Kang Nien How
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Dermatology Unit, Hospital Sultan Abdul Aziz Shah, Universiti Putra Malaysia, Serdang, Malaysia.
| |
Collapse
|
4
|
Al-Shujairi A, Elbadawi F, Al-Saleh J, Hamouda M, Vasylyev A, Khamashta M. Literature review of lupus nephritis From the Arabian Gulf region. Lupus 2023; 32:155-165. [PMID: 36331103 PMCID: PMC9810828 DOI: 10.1177/09612033221137248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
INTRODUCTION The severity of lupus nephritis (LN) varies between different ethnicities. However, there are limited data regarding disease severity for LN in patients from the Arabian Gulf region; moreover, there are no treatment guidelines developed specifically for this population. The objective of this review was to characterise the incidence of LN, current treatment practices, the severity of LN, and the pathophysiology and biomarkers associated with LN in the Arabian Gulf region. METHODS A literature search using EMBASE was conducted in October, 2021 to identify publications reporting on the incidence, treatment practices, severity, pathophysiology or biomarkers associated with LN, from countries in the Arabian Gulf region (including Bahrain, Kuwait, Oman, Qatar, Saudi Arabia and the United Arab Emirates). Additional relevant publications were provided by collaborators. A manual review of the publications was conducted to determine their relevance and data on the outcomes of interest were extracted. RESULTS Of 3705 publications, 54 publications were identified as relevant. LN is one of the most commonly diagnosed renal diseases within the Arabian Gulf and approximately 10%-36% of all renal biopsies are for LN. Treatment patterns within the region appear to vary and generally follow treatment guidelines recommended by the Asia Pacific League of Associations for Rheumatology (APLAR), the European Alliance of Associations for Rheumatology (EULAR) and Kidney Disease Improving Global Outcomes (KDIGO). The majority of patients receive cyclophosphamide for induction therapy, whilst others receive mycophenolate mofetil. Most studies showed that the most frequently diagnosed class of LN within the Arabian Gulf region was Class IV (up to 63% of patients with LN). Sustained or increased levels of serum creatinine and proteinuria; and depressed levels of complement C3/C4 were commonly seen among patients with LN from the Arabian Gulf region. CONCLUSIONS This review identified that LN may manifest more severely among patients from the Arabian Gulf region than in other populations, such as Caucasian populations. A greater understanding of LN and the treatment practices within the region, as well as the development of more specific treatment guidelines for this population may help improve outcomes for patients with LN in the Arabian Gulf region.
Collapse
Affiliation(s)
| | - Faisal Elbadawi
- Department of Rheumatology,
Dubai
Hospital, Dubai, United Arab
Emirates
| | - Jamal Al-Saleh
- Department of Rheumatology,
Dubai
Hospital, Dubai, United Arab
Emirates
| | | | | | - Munther Khamashta
- GSK, Medical
Affairs, Dubai, United Arab Emirates,Department of Women and Children’s
Health, Kings College
London, St Thomas' Hospital, London,
UK,Munther Khamashta; GSK, Medical Affairs,
ARENCO Tower 19th Floor, Dubai Media City, United Arab Emirates, 50199, Dubai.
| |
Collapse
|
5
|
Tabouni M, Ali A, Aljaberi N, Alblooshi H. Lupus nephritis: A focus on the United Arab Emirates and the potential role of genetics. Lupus 2022; 31:1415-1422. [PMID: 36017600 DOI: 10.1177/09612033221122982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lupus nephritis (LN) is a severe manifestation of systemic lupus erythematosus (SLE), characterized by chronic and progressive inflammation of the kidneys. As with many other autoimmune diseases, LN is a multifactorial disease caused by genetic and environmental factors. Globally, LN can affect around 60% of SLE patients, and it was observed to be less frequent and severe in Caucasian patients compared to other ethnic groups, including Arabs. Data on LN in the United Arab Emirates (UAE) are scattered and scarce in literature. Nevertheless, LN is common, occurring in around 43%-55% of SLE patients in the UAE. Anecdotally, the demographics and clinical features of SLE in the UAE have been distinct. However, the paucity of supporting literature makes it difficult to draw meaningful conclusions. Over the past two decades, there have been improvements in understanding the pathogenesis of LN; however, many cellular and molecular mechanisms which are implicated in the disease development and progression remain ambiguous. Investigating the clinical, pathological, and genetic characteristics of LN in different cohorts of patients is of importance for a better understanding of its pathogenesis, and thus improving its outcome. As a result, we acknowledge the need for large-scale epidemiological, clinical, and genetic investigation of LN cohorts in the UAE and surrounding regions.
Collapse
Affiliation(s)
- Mohammed Tabouni
- Department of Genetics and Genomics, College of Medicine and Health Sciences, 62776United Arab Emirates University, Al Ain, United Arab Emirates
| | - Amanat Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, 62776United Arab Emirates University, Al Ain, United Arab Emirates
| | - Najla Aljaberi
- Department of Pediatrics, College of Medicine and Health Sciences, 62776United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hiba Alblooshi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, 62776United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
6
|
Ma H, Liu J, Li Z, Xiong H, Zhang Y, Song Y, Lai J. Expression profile analysis reveals hub genes that are associated with immune system dysregulation in primary myelofibrosis. ACTA ACUST UNITED AC 2021; 26:478-490. [PMID: 34238135 DOI: 10.1080/16078454.2021.1945237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTION Primary myelofibrosis (PMF) is a familiar chronic myeloproliferative disease with an unfavorable prognosis. The effect of infection on the prognosis of patients with PMF is crucial. Immune system dysregulation plays a central role in the pathophysiology of PMF. To date, very little research has been conducted on the molecular mechanism of immune compromise in patients with PMF. METHODS To explore potential candidate genes, microarray datasets GSE61629 and 26049 were obtained from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) between PMF patients and normal individuals were evaluated, gene function was measured and a series of hub genes were identified. Several significant immune cells were selected via cell type enrichment analysis. The correlation between hub genes and significant immune cells was determined. RESULTS A total of 282 DEGs were found, involving 217 upregulated genes and 65 downregulated genes. Several immune cells were found to be reduced in PMF, such as CD4+ T cells, CD4+ Tems, CD4+ memory T cells. Gene Ontology (GO) enrichment analysis of DEGs reflected that most biological processes were associated with immune processes. Six hub genes, namely, HP, MPO, MMP9, EPB42, SLC4A1, and ALAS2, were identified, and correlation analysis revealed that these hub genes have a negative correlation with immune cell abundance. CONCLUSIONS Taken together, the gene expression profile of whole blood cells in PMF patients indicated a battery of immune events, and the DEGs and hub genes might contribute to immune system dysregulation.
Collapse
Affiliation(s)
- Haotian Ma
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Jincen Liu
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Zilong Li
- College of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Huaye Xiong
- College of Resources and Environment, Southwest University, Chongqing, People's Republic of China
| | - Yulei Zhang
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yanping Song
- Institute of Hematology, Central Hospital of Xi'an, Xi'an, People's Republic of China
| | - Jianghua Lai
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
7
|
Sex Differences in Correlation with Gene Expression Levels between Ifi200 Family Genes and Four Sets of Immune Disease-Relevant Genes. J Immunol Res 2018; 2018:1290814. [PMID: 30246031 PMCID: PMC6136564 DOI: 10.1155/2018/1290814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 06/13/2018] [Accepted: 06/20/2018] [Indexed: 01/04/2023] Open
Abstract
Background The HIN-200 family genes in humans have been linked to several autoimmune diseases—particularly to systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Recently, its human counterpart gene cluster, the Ifi200 family in mice, has been linked to spontaneous arthritis disease (SAD). However, many immune-mediated diseases (including RA and SLE) show gender difference. Understanding whether or not and how these genes play a role in sex difference in immune-mediated diseases is essential for diagnosis/treatment. Methods This study takes advantage of the whole genome gene expression profiles of recombinant inbred (RI) strain populations from female and male mice to analyze potential sex differences in a variety of genes in disease pathways. Expression levels and regulatory QTL of Ifi200 family genes between female and male mice were first examined in a large mouse population, including RI strains derived from C57BL/6J, DBA/2J (BXD), and classic inbred strains. Sex similarities and differences were then analyzed for correlations with gene expression levels between genes in the Ifi200 family and four selected gene sets: known immune Ifi200 pathway-related genes, lupus-relevant genes, osteoarthritis- (OA-) and RA-relevant genes, and sex hormone-related genes. Results The expression level of Ifi202b showed the most sex difference in correlation with known immune-related genes (the P value for Ifi202b is 0.0004). Ifi202b also showed gender difference in correlation with selected sex hormone genes, with a P value of 0.0243. When comparing coexpression levels between Ifi200 genes and lupus-relevant genes, Ifi203 and Ifi205 showed significant sex difference (P values: 0.0303 and 0.002, resp.). Furthermore, several key genes (e.g., Csf1r, Ifnb1, IL-20, IL-22, IL-24, Jhdm1d, Csf1r, Ifnb1, IL-20, IL-22, IL-24, and Tgfb2 that regulate sex differences in immune diseases) were discovered. Conclusions Different genes in the Ifi200 family play different roles in sex difference among dissimilar pathways of these four gene groups.
Collapse
|
8
|
Sun Y, Zhang D, Sun G, Lv Y, Li Y, Li X, Song Y, Li J, Fan Z, Wang H. RNA-sequencing study of peripheral blood mononuclear cells in sporadic Ménière's disease patients: possible contribution of immunologic dysfunction to the development of this disorder. Clin Exp Immunol 2017; 192:33-45. [PMID: 29164594 DOI: 10.1111/cei.13083] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2017] [Indexed: 12/13/2022] Open
Abstract
To date, the pathogenesis of Ménière's disease (MD) remains unclear. This study aims to investigate the possible relationship between potential immune system-related genes and sporadic MD. The whole RNA-sequencing (RNA-seq) technology was used to analyse the transcriptome of peripheral blood mononuclear cells of three MD patients and three control individuals. Of 366 differentially expressed genes (DEGs), 154 genes were up-regulated and 212 genes were down-regulated (|log2 fold change| > 1 and P < 0·05). Gene ontology (GO) enrichment analysis illustrated that immune relevant factors played a key role in the pathogenesis of MD. Of 366 DEGs, we focused upon analysing the possible immune-related genes, among which the significantly up-regulated genes [glutathione S-transferase mu 1 (GSTM1), transmembrane protein 176 (TMEM176)B, TMEM176A] and down-regulated genes [solute carrier family 4 member (SLC4A)10 and SLC4A1] especially drew our attention. The mRNA expression levels of GSTM1, TMEM176B, TMEM176A, SLC4A1 and SLC4A10 were analysed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The serum concentration of GSTM1, TMEM176B and SLC4A10 proteins were measured by enzyme-linked immunosorbent assay (ELISA). Considering the results of qRT-PCR and ELISA, it was noteworthy that GSTM1 exhibited the highest fold change between two groups, which was consistent with the deep sequencing results by RNA-seq. In conclusion, our study first offers a new perspective in MD development on the basis of RNA expression patterns, suggesting that immune factors might be involved in the MD pathogenesis. Remarkably, GSTM1 might be a possible candidate gene for the diagnostic biomarker of MD and provides the basis for further biological and functional investigations.
Collapse
Affiliation(s)
- Y Sun
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Otology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - D Zhang
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Otology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - G Sun
- Shandong Provincial Key Laboratory of Otology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Y Lv
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Y Li
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - X Li
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Y Song
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Otology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - J Li
- Shandong Provincial Key Laboratory of Otology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Z Fan
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Otology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - H Wang
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Otology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
9
|
Clemente N, Raineri D, Cappellano G, Boggio E, Favero F, Soluri MF, Dianzani C, Comi C, Dianzani U, Chiocchetti A. Osteopontin Bridging Innate and Adaptive Immunity in Autoimmune Diseases. J Immunol Res 2016; 2016:7675437. [PMID: 28097158 PMCID: PMC5206443 DOI: 10.1155/2016/7675437] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 10/02/2016] [Accepted: 10/19/2016] [Indexed: 12/21/2022] Open
Abstract
Osteopontin (OPN) regulates the immune response at multiple levels. Physiologically, it regulates the host response to infections by driving T helper (Th) polarization and acting on both innate and adaptive immunity; pathologically, it contributes to the development of immune-mediated and inflammatory diseases. In some cases, the mechanisms of these effects have been described, but many aspects of the OPN function remain elusive. This is in part ascribable to the fact that OPN is a complex molecule with several posttranslational modifications and it may act as either an immobilized protein of the extracellular matrix or a soluble cytokine or an intracytoplasmic molecule by binding to a wide variety of molecules including crystals of calcium phosphate, several cell surface receptors, and intracytoplasmic molecules. This review describes the OPN structure, isoforms, and functions and its role in regulating the crosstalk between innate and adaptive immunity in autoimmune diseases.
Collapse
Affiliation(s)
- Nausicaa Clemente
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), “A. Avogadro” University of Piemonte Orientale (UPO), Novara, Italy
| | - Davide Raineri
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), “A. Avogadro” University of Piemonte Orientale (UPO), Novara, Italy
| | - Giuseppe Cappellano
- Biocenter, Division for Experimental Pathophysiology and Immunology, Laboratory of Autoimmunity, Medical University of Innsbruck, Innsbruck, Austria
| | - Elena Boggio
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), “A. Avogadro” University of Piemonte Orientale (UPO), Novara, Italy
| | - Francesco Favero
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), “A. Avogadro” University of Piemonte Orientale (UPO), Novara, Italy
| | - Maria Felicia Soluri
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), “A. Avogadro” University of Piemonte Orientale (UPO), Novara, Italy
| | - Chiara Dianzani
- Department of Drug Science and Technology, University of Torino, Torino, Italy
| | - Cristoforo Comi
- Department of Translational Medicine, Neurology Unit, “A. Avogadro” UPO, Novara, Italy
| | - Umberto Dianzani
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), “A. Avogadro” University of Piemonte Orientale (UPO), Novara, Italy
| | - Annalisa Chiocchetti
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), “A. Avogadro” University of Piemonte Orientale (UPO), Novara, Italy
| |
Collapse
|