1
|
Shakeri M, Aminian A, Mokhtari K, Bahaeddini M, Tabrizian P, Farahani N, Nabavi N, Hashemi M. Unraveling the molecular landscape of osteoarthritis: A comprehensive review focused on the role of non-coding RNAs. Pathol Res Pract 2024; 260:155446. [PMID: 39004001 DOI: 10.1016/j.prp.2024.155446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024]
Abstract
Osteoarthritis (OA) poses a significant global health challenge, with its prevalence anticipated to increase in the coming years. This review delves into the emerging molecular biomarkers in OA pathology, focusing on the roles of various molecules such as metabolites, noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Advances in omics technologies have transformed biomarker identification, enabling comprehensive analyses of the complex pathways involved in OA pathogenesis. Notably, ncRNAs, especially miRNAs and lncRNAs, exhibit dysregulated expression patterns in OA, presenting promising opportunities for diagnosis and therapy. Additionally, the intricate interplay between epigenetic modifications and OA progression highlights the regulatory role of epigenetics in gene expression dynamics. Genome-wide association studies have pinpointed key genes undergoing epigenetic changes, providing insights into the inflammatory processes and chondrocyte hypertrophy typical of OA. Understanding the molecular landscape of OA, including biomarkers and epigenetic mechanisms, holds significant potential for developing innovative diagnostic tools and therapeutic strategies for OA management.
Collapse
Affiliation(s)
- Mohammadreza Shakeri
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Aminian
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Khatere Mokhtari
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mohammadreza Bahaeddini
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Pouria Tabrizian
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Arjun A, Chellamuthu G, Jeyaraman N, Jeyaraman M, Khanna M. Metabolomics in Osteoarthritis Knee: A Systematic Review of Literature. Indian J Orthop 2024; 58:813-828. [PMID: 38948380 PMCID: PMC11208384 DOI: 10.1007/s43465-024-01169-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/23/2024] [Indexed: 07/02/2024]
Abstract
Introduction Osteoarthritis (OA) is a common degenerative disorder of the synovial joints and is usually an age-related disease that occurs due to continuous wear and tear of the cartilage in the joints. Presently, there is no proven medical management to halt the progression of the disease in the early stages. The purpose of our systematic review is to analyze the possible metabolites and metabolic pathways that are specifically involved in OA pathogenesis and early treatment of the disease. Materials and Methods The articles were collected from PubMed, Cochrane, Google Scholar, Embase, and Scopus databases. "Knee", "Osteoarthritis", "Proteomics", "Lipidomics", "Metabolomics", "Metabolic Methods", and metabolic* were employed for finding the articles. Only original articles with human or animal OA models with healthy controls were included. Results From the initial screening, a total of 458 articles were identified from the 5 research databases. From these, 297 articles were selected in the end for screening, of which 53 papers were selected for full-text screening. Finally, 50 articles were taken for the review based on body fluid: 6 urine studies, 15 plasma studies, 16 synovial fluid studies, 11 serum studies, 4 joint tissue studies, and 1 fecal study. Many metabolites were found to be elevated in OA. Some of these metabolites can be used to stage the OA Three pathways that were found to be commonly involved are the TCA cycle, the glycolytic pathway, and the lipid metabolism. Conclusion All these studies showed a vast array of metabolites and metabolic pathways associated with OA. Metabolites like lysophospholipids, phospholipids, arginine, BCCA, and histidine were identified as potential biomarkers of OA but a definite association was not identified, Three pathways (glycolytic pathway, TCA cycle, and lipid metabolic pathways) have been found as highly significant in OA pathogenesis. These metabolic pathways could provide novel therapeutic targets for the prevention and progression of the disease. Supplementary Information The online version contains supplementary material available at 10.1007/s43465-024-01169-5.
Collapse
Affiliation(s)
- Akhilesh Arjun
- Department of Orthopaedics, KIMS Health Hospital, Kollam, Kerala India
- Dr RML National Law University, Lucknow, Uttar Pradesh India
| | - Girinivasan Chellamuthu
- Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu India
- Orthopaedic Research Group, Coimbatore, Tamil Nadu India
| | - Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu 600077 India
| | - Madhan Jeyaraman
- Orthopaedic Research Group, Coimbatore, Tamil Nadu India
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu 600077 India
| | - Manish Khanna
- Department of Orthopaedics, Dr KNS Mayo Institute of Medical Sciences, Lucknow, Uttar Pradesh India
| |
Collapse
|
3
|
Coppola C, Greco M, Munir A, Musarò D, Quarta S, Massaro M, Lionetto MG, Maffia M. Osteoarthritis: Insights into Diagnosis, Pathophysiology, Therapeutic Avenues, and the Potential of Natural Extracts. Curr Issues Mol Biol 2024; 46:4063-4105. [PMID: 38785519 PMCID: PMC11119992 DOI: 10.3390/cimb46050251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/05/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Osteoarthritis (OA) stands as a prevalent and progressively debilitating clinical condition globally, impacting joint structures and leading to their gradual deterioration through inflammatory mechanisms. While both non-modifiable and modifiable factors contribute to its onset, numerous aspects of OA pathophysiology remain elusive despite considerable research strides. Presently, diagnosis heavily relies on clinician expertise and meticulous differential diagnosis to exclude other joint-affecting conditions. Therapeutic approaches for OA predominantly focus on patient education for self-management alongside tailored exercise regimens, often complemented by various pharmacological interventions primarily targeting pain alleviation. However, pharmacological treatments typically exhibit short-term efficacy and local and/or systemic side effects, with prosthetic surgery being the ultimate resolution in severe cases. Thus, exploring the potential integration or substitution of conventional drug therapies with natural compounds and extracts emerges as a promising frontier in enhancing OA management. These alternatives offer improved safety profiles and possess the potential to target specific dysregulated pathways implicated in OA pathogenesis, thereby presenting a holistic approach to address the condition's complexities.
Collapse
Affiliation(s)
- Chiara Coppola
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Lecce-Arnesano, 73100 Lecce, Italy; (C.C.); (A.M.)
| | - Marco Greco
- Department of Biological and Environmental Science and Technology, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy; (M.G.); (D.M.); (S.Q.); (M.G.L.)
| | - Anas Munir
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Lecce-Arnesano, 73100 Lecce, Italy; (C.C.); (A.M.)
| | - Debora Musarò
- Department of Biological and Environmental Science and Technology, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy; (M.G.); (D.M.); (S.Q.); (M.G.L.)
| | - Stefano Quarta
- Department of Biological and Environmental Science and Technology, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy; (M.G.); (D.M.); (S.Q.); (M.G.L.)
| | - Marika Massaro
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy;
| | - Maria Giulia Lionetto
- Department of Biological and Environmental Science and Technology, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy; (M.G.); (D.M.); (S.Q.); (M.G.L.)
| | - Michele Maffia
- Department of Experimental Medicine, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy
| |
Collapse
|
4
|
Pochini L, Galluccio M, Console L, Scalise M, Eberini I, Indiveri C. Inflammation and Organic Cation Transporters Novel (OCTNs). Biomolecules 2024; 14:392. [PMID: 38672410 PMCID: PMC11048549 DOI: 10.3390/biom14040392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Inflammation is a physiological condition characterized by a complex interplay between different cells handled by metabolites and specific inflammatory-related molecules. In some pathological situations, inflammation persists underlying and worsening the pathological state. Over the years, two membrane transporters namely OCTN1 (SLC22A4) and OCTN2 (SLC22A5) have been shown to play specific roles in inflammation. These transporters form the OCTN subfamily within the larger SLC22 family. The link between these proteins and inflammation has been proposed based on their link to some chronic inflammatory diseases such as asthma, Crohn's disease (CD), and rheumatoid arthritis (RA). Moreover, the two transporters show the ability to mediate the transport of several compounds including carnitine, carnitine derivatives, acetylcholine, ergothioneine, and gut microbiota by-products, which have been specifically associated with inflammation for their anti- or proinflammatory action. Therefore, the absorption and distribution of these molecules rely on the presence of OCTN1 and OCTN2, whose expression is modulated by inflammatory cytokines and transcription factors typically activated by inflammation. In the present review, we wish to provide a state of the art on OCTN1 and OCTN2 transport function and regulation in relationships with inflammation and inflammatory diseases focusing on the metabolic signature collected in different body districts and gene polymorphisms related to inflammatory diseases.
Collapse
Affiliation(s)
- Lorena Pochini
- Laboratory of Biochemistry, Molecular Biotechnology and Molecular Biology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy; (M.G.); (L.C.); (M.S.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Michele Galluccio
- Laboratory of Biochemistry, Molecular Biotechnology and Molecular Biology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy; (M.G.); (L.C.); (M.S.)
| | - Lara Console
- Laboratory of Biochemistry, Molecular Biotechnology and Molecular Biology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy; (M.G.); (L.C.); (M.S.)
| | - Mariafrancesca Scalise
- Laboratory of Biochemistry, Molecular Biotechnology and Molecular Biology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy; (M.G.); (L.C.); (M.S.)
| | - Ivano Eberini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Cesare Indiveri
- Laboratory of Biochemistry, Molecular Biotechnology and Molecular Biology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy; (M.G.); (L.C.); (M.S.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
5
|
Sandhu A, Rockel JS, Lively S, Kapoor M. Emerging molecular biomarkers in osteoarthritis pathology. Ther Adv Musculoskelet Dis 2023; 15:1759720X231177116. [PMID: 37359177 PMCID: PMC10288416 DOI: 10.1177/1759720x231177116] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/24/2023] [Indexed: 06/28/2023] Open
Abstract
Osteoarthritis (OA) is the most common form of arthritis resulting in joint discomfort and disability, culminating in decline in life quality. Attention has been drawn in recent years to disease-associated molecular biomarkers found in readily accessible biofluids due to low invasiveness of acquisition and their potential to detect early pathological molecular changes not observed with traditional imaging methodology. These biochemical markers of OA have been found in synovial fluid, blood, and urine. They include emerging molecular classes, such as metabolites and noncoding RNAs, as well as classical biomarkers, like inflammatory mediators and by-products of degradative processes involving articular cartilage. Although blood-based biomarkers tend to be most studied, the use of synovial fluid, a more isolated biofluid in the synovial joint, and urine as an excreted fluid containing OA biomarkers can offer valuable information on local and overall disease activity, respectively. Furthermore, larger clinical studies are required to determine relationships between biomarkers in different biofluids, and their impacts on patient measures of OA. This narrative review provides a concise overview of recent studies of OA using these four classes of biomarkers as potential biomarker for measuring disease incidence, staging, prognosis, and therapeutic intervention efficacy.
Collapse
Affiliation(s)
- Amit Sandhu
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Jason S. Rockel
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Starlee Lively
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Mohit Kapoor
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, 60 Leonard Avenue, 5th Floor Krembil Discovery Tower, Toronto, ON M5G 2C4, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Surgery and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Van Pevenage PM, Birchmier JT, June RK. Utilizing metabolomics to identify potential biomarkers and perturbed metabolic pathways in osteoarthritis: A systematic review. Semin Arthritis Rheum 2023; 59:152163. [PMID: 36736024 PMCID: PMC9992342 DOI: 10.1016/j.semarthrit.2023.152163] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/15/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023]
Abstract
PURPOSE Osteoarthritis (OA) is a joint disease that is clinically diagnosed using components of history, physical exam, and characteristic radiographic findings, such as joint space narrowing. Currently, there are no laboratory findings that are specific to a diagnosis of OA. The purpose of this systematic review is to evaluate the state of current studies of metabolomic biomarkers that can aid in the diagnosis and treatment of OA. METHODS Articles were gathered from PubMed and Web of Science using the search terms "osteoarthritis" and "biomarkers" and "metabolomics". Last search of databases took place December 3rd, 2022. Duplicates were manually screened, along with any other results that were not original journal articles. Only original reports involving populations with diagnosed primary or secondary OA (human participants) or surgically induced OA (animal participants) and a healthy control group for comparison were considered for inclusion. Metabolites and metabolic pathways reported in included articles were then manually extracted and evaluated for importance based on reported a priori p-values and/or area under the receiver-operator curve (AUC). RESULTS Of the 161 results that were returned in the database searches, 43 unique articles met the inclusion criteria. Articles were categorized based on body fluid analyzed: 6 studies on urine samples, 13 studies on plasma samples, 11 studies on synovial fluid (SF) samples, 11 studies on serum samples, 1 study on both synovial fluid and serum, and 1 study that involved both plasma and synovial fluid. To synthesize results, individual metabolites, as well as metabolic pathways that involve frequently reported metabolites, are presented for each study. Indications as to whether metabolite levels were increased or decreased are also included if this data was included in the original articles. CONCLUSIONS These studies clearly show that there are a wide range of metabolic pathways perturbed in OA. For this period, there was no consensus on a single metabolite, or panel of metabolites, that would be clinically useful in early diagnosis of OA or distinguishing OA from a healthy control. However, many common metabolic pathways were identified in the studies, including TCA cycle, fatty acid metabolism, amino acid metabolism (notably BCAA metabolism and tryptophan metabolism via kynurenine pathway), nucleotide metabolism, urea cycle, cartilage matrix components, and phospholipid metabolism. Future research is needed to define effective clinical biomarkers of osteoarthritis from metabolomic and other data.
Collapse
Affiliation(s)
| | - Jaedyn T Birchmier
- Department of Mechanical & Industrial Engineering, Montana State University, United States
| | - Ronald K June
- Department of Mechanical & Industrial Engineering, Montana State University, United States; Department of Microbiology & Cell Biology, Montana State University, United States; Department of Orthopaedics and Sports Medicine, University of Washington, United States.
| |
Collapse
|
7
|
Su Z, Zong Z, Deng J, Huang J, Liu G, Wei B, Cui L, Li G, Zhong H, Lin S. Lipid Metabolism in Cartilage Development, Degeneration, and Regeneration. Nutrients 2022; 14:3984. [PMID: 36235637 PMCID: PMC9570753 DOI: 10.3390/nu14193984] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Lipids affect cartilage growth, injury, and regeneration in diverse ways. Diet and metabolism have become increasingly important as the prevalence of obesity has risen. Proper lipid supplementation in the diet contributes to the preservation of cartilage function, whereas excessive lipid buildup is detrimental to cartilage. Lipid metabolic pathways can generate proinflammatory substances that are crucial to the development and management of osteoarthritis (OA). Lipid metabolism is a complicated metabolic process involving several regulatory systems, and lipid metabolites influence different features of cartilage. In this review, we examine the current knowledge about cartilage growth, degeneration, and regeneration processes, as well as the most recent research on the significance of lipids and their metabolism in cartilage, including the extracellular matrix and chondrocytes. An in-depth examination of the involvement of lipid metabolism in cartilage metabolism will provide insight into cartilage metabolism and lead to the development of new treatment techniques for metabolic cartilage damage.
Collapse
Affiliation(s)
- Zhanpeng Su
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524013, China
| | - Zhixian Zong
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Jinxia Deng
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524013, China
| | - Jianping Huang
- Department of Prosthodontics, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Guihua Liu
- Institute of Orthopaedics, Huizhou Municipal Central Hospital, Huizhou 516001, China
| | - Bo Wei
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524013, China
| | - Liao Cui
- Department of Pharmacology, Marine Biomedical Research Institute, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical Unversity, Zhanjiang 524023, China
| | - Gang Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Huan Zhong
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524013, China
| | - Sien Lin
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524013, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| |
Collapse
|
8
|
Zhang Q, Yao Y, Wang J, Chen Y, Ren D, Wang P. A Simple Nomogram for Predicting Osteoarthritis Severity in Patients with Knee Osteoarthritis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3605369. [PMID: 36092788 PMCID: PMC9462991 DOI: 10.1155/2022/3605369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/09/2022] [Accepted: 08/20/2022] [Indexed: 11/25/2022]
Abstract
Objective To explore the influencing factors of knee osteoarthritis (KOA) severity and establish a KOA nomogram model. Methods Inpatient data collected in the Department of Joint Surgery, Chengde Medical University Affiliated Hospital from January 2020 to January 2022 were used as the training cohort. Patients with knee osteoarthritis who were admitted to the Third Hospital of Hebei Medical University from February 2022 to May 2022 were taken as the external validation group of the model. In the training group, the least absolute shrinkage and selection operator (LASSO) method was used to screen the factors of KOA severity to determine the best prediction index. Then, after combining the significant factors from the LASSO and multivariate logistic regressions, a prediction model was established. All potential prediction factors were included in the KOA severity prediction model, and the corresponding nomogram was drawn. The consistency index (C-index), area under the receiver operating characteristic (ROC) curve (AUC), GiViTi calibration band, net classification improvement (NRI) index, and integrated discrimination improvement (IDI) index evaluation of a model predicted KOA severity. Decision curve analysis (DCA) and clinical influence curves were used to study the model's potential clinical value. The validation group also used the above evaluation indexes to measure the diagnostic efficiency of the model. Spearman correlation was used to investigate the relationship between nomogram-related markers and osteoarthritis severity. Results The total sample included 572 patients with knee osteoarthritis, including 400 patients in the training cohort and 172 patients in the validation cohort. The nomogram's predictive factors were age, pulse, absolute value of lymphocytes, mean corpuscular haemoglobin concentration (MCHC), and blood urea nitrogen (BUN). The C-index and AUC of the model were 0.802. The GiViTi calibration band (P = 0.065), NRI (0.091), and IDI (0.033) showed that the modified model can distinguish between severe KOA and nonsevere KOA. DCA showed that the KOA severity nomogram has clinical application value with threshold probabilities between 0.01 and 0.78. The external verification results also show the stability and diagnosis of the model. Age, pulse, MCHC, and BUN are correlated with osteoarthritis severity. Conclusions A nomogram model for predicting KOA severity was established for the first time that can visually identify patients with severe KOA and is novel for indirectly evaluating KOA severity by nonimaging means.
Collapse
Affiliation(s)
- Qingzhu Zhang
- Orthopedic Trauma Service Center, Third Hospital of Hebei Medical University, Major Laboratory of Orthopedic Biomechanics in Hebei Province, Shijiazhuang, Hebei Province, China
- Department of Orthopedics, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei Province, China
| | - Yinhui Yao
- Department of Pharmacy, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei Province, China
| | - Jinzhu Wang
- Department of Orthopedics, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei Province, China
| | - Yufeng Chen
- Orthopedic Trauma Service Center, Third Hospital of Hebei Medical University, Major Laboratory of Orthopedic Biomechanics in Hebei Province, Shijiazhuang, Hebei Province, China
| | - Dong Ren
- Orthopedic Trauma Service Center, Third Hospital of Hebei Medical University, Major Laboratory of Orthopedic Biomechanics in Hebei Province, Shijiazhuang, Hebei Province, China
| | - Pengcheng Wang
- Orthopedic Trauma Service Center, Third Hospital of Hebei Medical University, Major Laboratory of Orthopedic Biomechanics in Hebei Province, Shijiazhuang, Hebei Province, China
| |
Collapse
|
9
|
Venn-Watson S, Reiner J, Jensen ED. Pentadecanoylcarnitine is a newly discovered endocannabinoid with pleiotropic activities relevant to supporting physical and mental health. Sci Rep 2022; 12:13717. [PMID: 35999445 PMCID: PMC9399118 DOI: 10.1038/s41598-022-18266-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 08/08/2022] [Indexed: 11/09/2022] Open
Abstract
As an emerging dietary essential fatty acid, pentadecanoic acid (C15:0) is expected to have bioactive metabolites with broad health benefits. Here, we evaluated pentadecanoylcarnitine, an endogenous C15:0 metabolite, for dose dependent cell-based activities, including measurement of its effects on 148 clinically relevant biomarkers across twelve primary human cell systems mimicking various disease states. Mechanisms of action for pentadecanoylcarnitine were also assessed across 78 cell-based target assays. Pentadecanoylcarnitine had dose-dependent anti-inflammatory activities, including lower IL-1α, ITAC, MCP-1, and IP-10, across five cell systems relevant to treating cardiovascular, immune, neoplastic, pulmonary, and skin diseases. Targeted assays showed pentadecanoylcarnitine as a full-acting cannabinoid 1 and 2 receptor agonist (EC50 3.7 and 3.2 µM, 111% and 106% maximum activity compared to the positive control, respectively). Pentadecanoylcarnitine also had 5-HT1A and 5-HT1B receptor agonist and histamine H1 and H2 receptor antagonist activities. In summary, pentadecanoylcarnitine, a second discovered full-acting endocannabinoid, had broad pleiotropic activities relevant to regulating inflammation, pain, mood, and sleep. This study's findings further the need to evaluate the potential health impacts of C15:0 nutritional deficiencies caused by population-wide avoidance of all dietary saturated fats, including C15:0.
Collapse
Affiliation(s)
- Stephanie Venn-Watson
- Epitracker Inc., San Diego, CA, 92106, USA. .,Seraphina Therapeutics, Inc., San Diego, CA, 92106, USA.
| | | | - Eric D Jensen
- US Navy Marine Mammal Program, Naval Warfare Information Center Pacific, San Diego, CA, 92106, USA
| |
Collapse
|
10
|
Xie Z, Aitken D, Liu M, Lei G, Jones G, Cicuttini F, Zhai G. Serum Metabolomic Signatures for Knee Cartilage Volume Loss over 10 Years in Community-Dwelling Older Adults. Life (Basel) 2022; 12:869. [PMID: 35743900 PMCID: PMC9225196 DOI: 10.3390/life12060869] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoarthritis (OA) is the most prevalent joint disorder characterized by joint structural pathological changes with the loss of articular cartilage as its hallmark. Tools that can predict cartilage loss would help identify people at high risk, thus preventing OA development. The recent advance of the metabolomics provides a new avenue to systematically investigate metabolic alterations in disease and identify biomarkers for early diagnosis. Using a metabolomics approach, the current study aimed to identify serum metabolomic signatures for predicting knee cartilage volume loss over 10 years in the Tasmania Older Adult Cohort (TASOAC). Cartilage volume was measured in the medial, lateral, and patellar compartments of the knee by MRI at baseline and follow-up. Changes in cartilage volume over 10 years were calculated as percentage change per year. Fasting serum samples collected at 2.6-year follow-up were metabolomically profiled using the TMIC Prime Metabolomics Profiling Assay and pairwise metabolite ratios as the proxies of enzymatic reaction were calculated. Linear regression was used to identify metabolite ratio(s) associated with change in cartilage volume in each of the knee compartments with adjustment for age, sex, and BMI. The significance level was defined at α = 3.0 × 10−6 to control multiple testing. A total of 344 participants (51% females) were included in the study. The mean age was 62.83 ± 6.13 years and the mean BMI was 27.48 ± 4.41 kg/m2 at baseline. The average follow-up time was 10.84 ± 0.66 years. Cartilage volume was reduced by 1.34 ± 0.72%, 1.06 ± 0.58%, and 0.98 ± 0.46% per year in the medial, lateral, and patellar compartments, respectively. Our data showed that the increased ratios of hexadecenoylcarnitine (C16:1) to tetradecanoylcarnitine (C14) and C16:1 to dodecanoylcarnitine (C12) were associated with 0.12 ± 0.02% reduction per year in patellar cartilage volume (both p < 3.03 × 10−6). In conclusion, our data suggested that alteration of long chain fatty acid β-oxidation was involved in patellar cartilage loss. While confirmation is needed, the ratios of C16:1 to C14 and C12 might be used to predict long-term cartilage loss.
Collapse
Affiliation(s)
- Zikun Xie
- Division of Biomedical Sciences (Genetics), Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6, Canada; (Z.X.); (M.L.)
- Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Dawn Aitken
- Menzies Institute for Medical Research, University of Tasmania, Hobart 7005, Australia; (D.A.); (G.J.)
| | - Ming Liu
- Division of Biomedical Sciences (Genetics), Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6, Canada; (Z.X.); (M.L.)
| | - Guanghua Lei
- Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Graeme Jones
- Menzies Institute for Medical Research, University of Tasmania, Hobart 7005, Australia; (D.A.); (G.J.)
| | - Flavia Cicuttini
- Department of Epidemiology and Preventive Medicine, Monash University Medical School, Melbourne 3006, Australia;
| | - Guangju Zhai
- Division of Biomedical Sciences (Genetics), Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6, Canada; (Z.X.); (M.L.)
| |
Collapse
|
11
|
Paapstel K, Kals J. Metabolomics of Arterial Stiffness. Metabolites 2022; 12:370. [PMID: 35629874 PMCID: PMC9146333 DOI: 10.3390/metabo12050370] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 12/18/2022] Open
Abstract
Arterial stiffness (AS) is one of the earliest detectable signs of structural and functional alterations of the vessel wall and an independent predictor of cardiovascular events and death. The emerging field of metabolomics can be utilized to detect a wide spectrum of intermediates and products of metabolism in body fluids that can be involved in the pathogenesis of AS. Research over the past decade has reinforced this idea by linking AS to circulating acylcarnitines, glycerophospholipids, sphingolipids, and amino acids, among other metabolite species. Some of these metabolites influence AS through traditional cardiovascular risk factors (e.g., high blood pressure, high blood cholesterol, diabetes, smoking), while others seem to act independently through both known and unknown pathophysiological mechanisms. We propose the term 'arteriometabolomics' to indicate the research that applies metabolomics methods to study AS. The 'arteriometabolomics' approach has the potential to allow more personalized cardiovascular risk stratification, disease monitoring, and treatment selection. One of its major goals is to uncover the causal metabolic pathways of AS. Such pathways could represent valuable treatment targets in vascular ageing.
Collapse
Affiliation(s)
- Kaido Paapstel
- Endothelial Research Centre, University of Tartu, 8 Puusepa Street, 51014 Tartu, Estonia;
- Department of Cardiology, Institute of Clinical Medicine, University of Tartu, 8 Puusepa Street, 51014 Tartu, Estonia
- Heart Clinic, Tartu University Hospital, 8 Puusepa Street, 51014 Tartu, Estonia
| | - Jaak Kals
- Endothelial Research Centre, University of Tartu, 8 Puusepa Street, 51014 Tartu, Estonia;
- Department of Surgery, Institute of Clinical Medicine, University of Tartu, 8 Puusepa Street, 51014 Tartu, Estonia
- Surgery Clinic, Tartu University Hospital, 8 Puusepa Street, 51014 Tartu, Estonia
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| |
Collapse
|
12
|
Shen CL, Watkins BA, Kahathuduwa C, Chyu MC, Zabet-Moghaddam M, Elmassry MM, Luk HY, Brismée JM, Knox A, Lee J, Zumwalt M, Wang R, Wager TD, Neugebauer V. Tai Chi Improves Brain Functional Connectivity and Plasma Lysophosphatidylcholines in Postmenopausal Women With Knee Osteoarthritis: An Exploratory Pilot Study. Front Med (Lausanne) 2022; 8:775344. [PMID: 35047525 PMCID: PMC8761802 DOI: 10.3389/fmed.2021.775344] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/15/2021] [Indexed: 01/08/2023] Open
Abstract
Objective: A pre/post pilot study was designed to investigate neurobiological mechanisms and plasma metabolites in an 8-week Tai-Chi (TC) group intervention in subjects with knee osteoarthritis. Methods: Twelve postmenopausal women underwent Tai-Chi group exercise for 8 weeks (60 min/session, three times/week). Outcomes were measured before and after Tai Chi intervention including pain intensity (VAS), Brief Pain Inventory (BPI), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), plasma metabolites (amino acids and lipids), as well as resting-state functional magnetic resonance imaging (rs-fMRI, 10 min, eyes open), diffusion tensor imaging (DTI, 12 min), and structural MRI (4.5 min) in a subgroup. Clinical data was analyzed using paired t-tests; plasma metabolites were analyzed using Wilcoxon signed-rank tests; and rs-fMRI data were analyzed using seed-based correlations of the left and right amygdala in a two-level mixed-effects model (FSL software). Correlations between amygdala-medial prefrontal cortex (mPFC) connectivity and corresponding changes in clinical outcomes were examined. DTI connectivity of each amygdala was modeled using a Bayesian approach and probabilistic tractography. The associations between neurobiological effects and pain/physical function were examined. Results: Significant pre/post changes were observed with reduced knee pain (VAS with most pain: p = 0.018; WOMAC-pain: p = 0.021; BPI with worst level: p = 0.018) and stiffness (WOMAC-stiffness, p = 0.020), that likely contributed to improved physical function (WOMAC-physical function: p = 0.018) with TC. Moderate to large effect sizes pre/post increase in rs-fMRI connectivity were observed between bilateral mPFC and the amygdala seed regions (i.e., left: d = 0.988, p = 0.355; right: d = 0.600, p = 0.282). Increased DTI connectivity was observed between bilateral mPFC and left amygdala (d = 0.720, p = 0.156). There were moderate-high correlations (r = 0.28–0.60) between TC-associated pre-post changes in amygdala-mPFC functional connectivity and pain/physical function improvement. Significantly higher levels of lysophosphatidylcholines were observed after TC but lower levels of some essential amino acids. Amino acid levels (alanine, lysine, and methionine) were lower after 8 weeks of TC and many of the lipid metabolites were higher after TC. Further, plasma non-HDL cholesterol levels were lower after TC. Conclusion: This pilot study showed moderate to large effect sizes, suggesting an important role that cortico-amygdala interactions related to TC have on pain and physical function in subjects with knee osteoarthritis pain. Metabolite analyses revealed a metabolic shift of higher lyso-lipids and lower amino acids that might suggest greater fatty acid catabolism, protein turnover and changes in lipid redistribution in response to TC exercise. The results also support therapeutic strategies aimed at strengthening functional and structural connectivity between the mPFC and the amygdala. Controlled clinical trials are warranted to confirm these observed preliminary effects.
Collapse
Affiliation(s)
- Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Bruce A Watkins
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Chanaka Kahathuduwa
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Laboratory Sciences and Primary Care, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Psychiatry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Ming-Chien Chyu
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Medical Engineering, Texas Tech University, Lubbock, TX, United States
| | - Masoud Zabet-Moghaddam
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, United States
| | - Moamen M Elmassry
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Hui-Ying Luk
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, United States
| | - Jean-Michel Brismée
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Rehabilitation Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Ami Knox
- Clinical Research Institute, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Jaehoon Lee
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Educational Psychology and Leadership, Texas Tech University, Lubbock, TX, United States
| | - Mimi Zumwalt
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Orthopedic Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Rui Wang
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Tor D Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States
| | - Volker Neugebauer
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
13
|
Welhaven HD, McCutchen CN, June RK. Effects of mechanical stimulation on metabolomic profiles of SW1353 chondrocytes: shear and compression. Biol Open 2022; 11:274218. [PMID: 35113136 PMCID: PMC8822358 DOI: 10.1242/bio.058895] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022] Open
Abstract
Mechanotransduction is a biological phenomenon where mechanical stimuli are converted to biochemical responses. A model system for studying mechanotransduction are the chondrocytes of articular cartilage. Breakdown of this tissue results in decreased mobility, increased pain, and reduced quality of life. Either disuse or overloading can disrupt cartilage homeostasis, but physiological cyclical loading promotes cartilage homeostasis. To model this, we exposed SW1353 cells to cyclical mechanical stimuli, shear and compression, for different durations of time (15 and 30 min). By utilizing liquid chromatography-mass spectroscopy (LC-MS), metabolomic profiles were generated detailing metabolite features and biological pathways that are altered in response to mechanical stimulation. In total, 1457 metabolite features were detected. Statistical analyses identified several pathways of interest. Taken together, differences between experimental groups were associated with inflammatory pathways, lipid metabolism, beta-oxidation, central energy metabolism, and amino acid production. These findings expand our understanding of chondrocyte mechanotransduction under varying loading conditions and time periods. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Hope D Welhaven
- Department of Chemistry & Biochemistry and Molecular Biosciences Program, Montana State University, Bozeman, MT 59717, USA
| | - Carley N McCutchen
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT 59717, USA
| | - Ronald K June
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT 59717, USA.,Department of Microbiology & Cell Biology, Montana State University, Bozeman MT 59717, USA.,Department of Orthopaedics & Sports Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
14
|
Xu B, Su H, Wang R, Wang Y, Zhang W. Metabolic networks of plasma and joint fluid base on differential correlation. PLoS One 2021; 16:e0247191. [PMID: 33617578 PMCID: PMC7899361 DOI: 10.1371/journal.pone.0247191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/02/2021] [Indexed: 11/18/2022] Open
Abstract
Whether osteoarthritis (OA) is a systemic metabolic disorder remains controversial. The aim of this study was to investigate the metabolic characteristics between plasma and knee joint fluid (JF) of patients with advanced OA using a differential correlation metabolic (DCM) networks approach. Plasma and JF were collected during the joint replacement surgery of patients with knee OA. The biological samples were pretreated with standard procedures for metabolite analysis. The metabolic profiling was conducted by means of liquid mass spectrometry coupled with a AbsoluteIDQ kit. A DCM network approach was adopted for analyzing the metabolomics data between the plasma and JF. The variation in the correlation of the pairwise metabolites was quantified across the plasma and JF samples, and networks analysis was used to characterize the difference in the correlations of the metabolites from the two sample types. Core metabolites that played an important role in the DCM networks were identified via topological analysis. One hundred advanced OA patients (50 men and 50 women) were included in this study, with an average age of 65.0 ± 7.6 years (65.6 ± 7.1 years for females and 64.4 ± 8.1 years for males) and a mean BMI of 32.6 ± 5.8 kg/m2 (33.4 ± 6.3 kg/m2 for females and 31.7 ± 5.3 kg/m2 for males). Age and BMI matched between the male and female groups. One hundred and forty-five nodes, 567 edges, and 131 nodes, 407 edges were found in the DCM networks (p < 0.05) of the female and male groups, respectively. Six metabolites in the female group and 5 metabolites in the male group were identified as key nodes in the network. There was a significant difference in the differential correlation metabolism networks of plasma and JF that may be related to local joint metabolism. Focusing on these key metabolites may help uncover the pathogenesis of knee OA. In addition, the differential metabolic correlation between plasma and JF mostly overlapped, indicating that these common correlations of pairwise metabolites may be a reflection of systemic characteristics of JF and that most significant correlation variations were just a result of "housekeeping” biological reactions.
Collapse
Affiliation(s)
- Bingyong Xu
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
- Hangzhou Heze Pharmaceutical Technology CO.,LTD, Hangzhou, Zhejiang, China
| | - Hong Su
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
- Department of Pharmacy and Examination, Daqing Medical College, Daqing, Heilongjiang, China
| | - Ruya Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Yixiao Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Weidong Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
- * E-mail:
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Osteoarthritis is a heterogeneous, multifactorial condition regulated by complex biological interactions at multiple levels. Comprehensive understanding of these regulatory interactions is required to develop feasible advances to improve patient outcomes. Improvements in technology have made extensive genomic, transcriptomic, epigenomic, proteomic, and metabolomic profiling possible. This review summarizes findings over the past 20 months related to omics technologies in osteoarthritis and examines how using a multiomics approach is necessary for advancing our understanding of osteoarthritis as a disease to improve precision osteoarthritis treatments. RECENT FINDINGS Using the search terms 'genomics' or 'transcriptomics' or 'epigenomics' or 'proteomics' or 'metabolomics' and 'osteoarthritis' from January 1, 2018 to August 31, 2019, we identified advances in omics approaches applied to osteoarthritis. Trends include untargeted whole genome, transcriptome, proteome, and metabolome analyses leading to identification of novel molecular signatures, cell subpopulations and multiomics validation approaches. SUMMARY To address the complexity of osteoarthritis, integration of multitissue analyses by multiomics approaches with the inclusion of longitudinal clinical data is necessary for a comprehensive understanding of the disease process, and for appropriate development of efficacious diagnostics, prognostics, and biotherapeutics.
Collapse
|
16
|
Metabolomic Signature of Amino Acids, Biogenic Amines and Lipids in Blood Serum of Patients with Severe Osteoarthritis. Metabolites 2020; 10:metabo10080323. [PMID: 32784380 PMCID: PMC7464318 DOI: 10.3390/metabo10080323] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/01/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
Metabolomic analysis is an emerging new diagnostic tool, which holds great potential for improving the understanding of osteoarthritis (OA)-caused metabolomic shifts associated with systemic inflammation and oxidative stress. The main aim of the study was to map the changes of amino acid, biogenic amine and complex lipid profiles in severe OA, where the shifts should be more eminent compared with early stages. The fasting serum of 70 knee and hip OA patients and 82 controls was assessed via a targeted approach using the AbsoluteIDQ™ p180 kit. Changes in the serum levels of amino acids, sphingomyelins, phoshatidylcholines and lysophosphatidylcholines of the OA patients compared with controls suggest systemic inflammation in severe OA patients. Furthermore, the decreased spermine to spermidine ratio indicates excessive oxidative stress to be associated with OA. Serum arginine level was positively correlated with radiographic severity of OA, potentially linking inflammation through NO synthesis to OA. Further, the level of glycine was negatively associated with the severity of OA, which might refer to glycine deficiency in severe OA. The current study demonstrates significant changes in the amino acid, biogenic amine and low-molecular weight lipid profiles of severe OA and provides new insights into the complex interplay between chronic inflammation, oxidative stress and OA.
Collapse
|
17
|
Jarrell ZR, Smith MR, Hu X, Orr M, Liu KH, Quyyumi AA, Jones DP, Go YM. Plasma acylcarnitine levels increase with healthy aging. Aging (Albany NY) 2020; 12:13555-13570. [PMID: 32554854 PMCID: PMC7377890 DOI: 10.18632/aging.103462] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/27/2020] [Indexed: 05/27/2023]
Abstract
Acylcarnitines transport fatty acids into mitochondria and are essential for β-oxidation and energy metabolism. Decreased mitochondrial activity results in increased plasma acylcarnitines, and increased acylcarnitines activate proinflammatory signaling and associate with age-related disease. Changes in acylcarnitines associated with healthy aging, however, are not well characterized. In the present study, we examined the associations of plasma acylcarnitines with age (range: 20-90) in 163 healthy, non-diseased individuals from the predictive medicine research cohort (NCT00336570) and tested for gender-specific differences. The results show that long-chain and very long-chain acylcarnitines increased with age, while many odd-chain acylcarnitines decreased with age. Gender-specific differences were observed for several acylcarnitines, e.g., eicosadienoylcarnitine varied with age in males, and hydroxystearoylcarnitine varied in females. Metabolome-wide association study (MWAS) of age-associated acylcarnitines with all untargeted metabolic features showed little overlap between genders. These results show that plasma concentrations of acylcarnitines vary with age and gender in individuals selected for criteria of health. Whether these variations reflect mitochondrial dysfunction with aging, mitochondrial reprogramming in response to chronic environmental exposures, early pre-disease change, or an adaptive response to healthy aging, is unclear. The results highlight a potential utility for untargeted metabolomics research to elucidate gender-specific mechanisms of aging and age-related disease.
Collapse
Affiliation(s)
- Zachery R. Jarrell
- Division of Pulmonary, Allergy and Critical Care Medicine, Atlanta, GA 30322, USA
| | - M. Ryan Smith
- Division of Pulmonary, Allergy and Critical Care Medicine, Atlanta, GA 30322, USA
| | - Xin Hu
- Division of Pulmonary, Allergy and Critical Care Medicine, Atlanta, GA 30322, USA
| | - Michael Orr
- Division of Pulmonary, Allergy and Critical Care Medicine, Atlanta, GA 30322, USA
| | - Ken H. Liu
- Division of Pulmonary, Allergy and Critical Care Medicine, Atlanta, GA 30322, USA
| | - Arshed A. Quyyumi
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dean P. Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Atlanta, GA 30322, USA
| | - Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
18
|
Costello CA, Hu T, Liu M, Zhang W, Furey A, Fan Z, Rahman P, Randell EW, Zhai G. Metabolomics Signature for Non-Responders to Total Joint Replacement Surgery in Primary Osteoarthritis Patients: The Newfoundland Osteoarthritis Study. J Orthop Res 2020; 38:793-802. [PMID: 31743460 DOI: 10.1002/jor.24529] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 11/10/2019] [Indexed: 02/04/2023]
Abstract
Although total joint replacement (TJR) surgery is considered as the most effective treatment for advanced osteoarthritis (OA) patients, up to one-third of patients reported unfavorable long-term post-operative pain outcomes. We aimed to identify metabolic biomarkers to predict non-responders to TJR using a metabolomics approach. TJR patients were recruited and followed-up at least 1-year post-surgery; TJR outcomes were assessed by Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain and function subscales. Targeted metabolomic profiling was performed on plasma samples collected pre-surgery and pairwise metabolite ratios, as proxies for enzymatic reactions, were calculated. Association tests were performed between each metabolite ratio and non-responders. The metabolome-wide significance was defined as p < 2 × 10-5 . A total of 461 TJR patients due to primary OA were included in the analysis. Fifteen percent of patients were classified as pain non-responders; 16% were classified as function non-responders. Lower baseline WOMAC pain and function scores were significantly associated with pain and function non-responders, respectively (both p < 0.03). Two metabolite ratios were significantly associated with pain non-responders; acetylcarnitine (C2) to phosphatidylcholine acyl-alkyl C40:1 (PC ae C40:1) was five times higher in pain non-responders whereas phosphatidylcholine diacyl C36:4 (PC aa C36:4) to isoleucine was twenty one times lower in pain non-responders than responders (all p ≤ 1.93 × 10-5 ). One metabolite ratio, glutamine to isoleucine, was significantly lower in function non-responders than responders (eight times lower; p = 1.08 × 10-5 ). Three metabolite ratios (C2 to PC ae C40:1, PC aa C36:4, and glutamine to isoleucine) related to inflammation and muscle breakdown could be considered as novel plasma markers for predicting non-responders to TJR and warrant further investigation. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:793-802, 2020.
Collapse
Affiliation(s)
- Christie A Costello
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Ting Hu
- Department of Computer Science, Faculty of Science, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Ming Liu
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Weidong Zhang
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.,School of Pharmaceutical Sciences, Jilin University, Changchun, P. R. China
| | - Andrew Furey
- Division of Orthopaedic Surgery, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Zhaozhi Fan
- Department of Mathematics and Statistics, Faculty of Science, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Proton Rahman
- Discipline of Medicine, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Edward W Randell
- Discipline of Laboratory Medicine, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Guangju Zhai
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
19
|
Osteoarthritis year in review 2019: biomarkers (biochemical markers). Osteoarthritis Cartilage 2020; 28:296-315. [PMID: 31887390 DOI: 10.1016/j.joca.2019.11.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/04/2019] [Accepted: 11/11/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To provide an insightful summary of studies on biochemical markers for osteoarthritis (OA). DESIGN Two investigators systematically searched the electronic PubMed database for clinical studies into soluble biochemical markers for OA in humans that were published between 01-03-2018 and 01-03-2019. Data from selected publications were systematically extracted and tabulated and were summarized in a narrative review. RESULTS Out of 1,279 publications, 124 fulfilled all selection criteria and were selected for data extraction. The majority were around knee OA, cross-sectional in design, relatively small, and/or focused on one or a few biochemical markers. Among the intervention studies, relatively many were on non-pharmacological interventions, used clinical outcomes and/or were rather short. Some leads that were provided by this year's studies pertained to less conventional inflammatory mediators, oxidative stress, acidosis, angiogenesis and/or autoantibody formation. CONCLUSIONS This year's biochemical marker studies did provide potential leads for therapeutic targets or other biochemical marker applications that require robust and strategic follow-up research to be validated.
Collapse
|
20
|
Zhai G. Alteration of Metabolic Pathways in Osteoarthritis. Metabolites 2019; 9:E11. [PMID: 30634493 PMCID: PMC6359189 DOI: 10.3390/metabo9010011] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 12/27/2022] Open
Abstract
Sir Archibald Edward Garrod, who pioneered the field of inborn errors of metabolism and first elucidated the biochemical basis of alkaptonuria over 100 years ago, suggested that inborn errors of metabolism were "merely extreme examples of variations of chemical behavior which are probably everywhere present in minor degrees, just as no two individuals of a species are absolutely identical in bodily structure neither are their chemical processes carried out on exactly the same lines", and that this "chemical individuality [confers] predisposition to and immunities from various mishaps which are spoken of as diseases". Indeed, with advances in analytical biochemistry, especially the development of metabolomics in the post-genomic era, emerging data have been demonstrating that the levels of many metabolites do show substantial interindividual variation, and some of which are likely to be associated with common diseases, such as osteoarthritis (OA). Much work has been reported in the literature on the metabolomics of OA in recent years. In this narrative review, we provided an overview of the identified alteration of metabolic pathways in OA and discussed the role of those identified metabolites and related pathways in OA diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Guangju Zhai
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada.
| |
Collapse
|
21
|
Rockel JS, Kapoor M. The Metabolome and Osteoarthritis: Possible Contributions to Symptoms and Pathology. Metabolites 2018; 8:metabo8040092. [PMID: 30551581 PMCID: PMC6315757 DOI: 10.3390/metabo8040092] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/22/2022] Open
Abstract
Osteoarthritis (OA) is a progressive, deteriorative disease of articular joints. Although traditionally viewed as a local pathology, biomarker exploration has shown that systemic changes can be observed. These include changes to cytokines, microRNAs, and more recently, metabolites. The metabolome is the set of metabolites within a biological sample and includes circulating amino acids, lipids, and sugar moieties. Recent studies suggest that metabolites in the synovial fluid and blood could be used as biomarkers for OA incidence, prognosis, and response to therapy. However, based on clinical, demographic, and anthropometric factors, the local synovial joint and circulating metabolomes may be patient specific, with select subsets of metabolites contributing to OA disease. This review explores the contribution of the local and systemic metabolite changes to OA, and their potential impact on OA symptoms and disease pathogenesis.
Collapse
Affiliation(s)
- Jason S Rockel
- Arthritis Program, University Health Network, Toronto, ON M5T 2S8, Canada.
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada.
| | - Mohit Kapoor
- Arthritis Program, University Health Network, Toronto, ON M5T 2S8, Canada.
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada.
- Department of Surgery, University of Toronto, Toronto, ON M1C 1A4, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M1C 1A4, Canada.
| |
Collapse
|