1
|
Chakraborty A, Kamat SS. Lysophosphatidylserine: A Signaling Lipid with Implications in Human Diseases. Chem Rev 2024; 124:5470-5504. [PMID: 38607675 DOI: 10.1021/acs.chemrev.3c00701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Lysophosphatidylserine (lyso-PS) has emerged as yet another important signaling lysophospholipid in mammals, and deregulation in its metabolism has been directly linked to an array of human autoimmune and neurological disorders. It has an indispensable role in several biological processes in humans, and therefore, cellular concentrations of lyso-PS are tightly regulated to ensure optimal signaling and functioning in physiological settings. Given its biological importance, the past two decades have seen an explosion in the available literature toward our understanding of diverse aspects of lyso-PS metabolism and signaling and its association with human diseases. In this Review, we aim to comprehensively summarize different aspects of lyso-PS, such as its structure, biodistribution, chemical synthesis, and SAR studies with some synthetic analogs. From a biochemical perspective, we provide an exhaustive coverage of the diverse biological activities modulated by lyso-PSs, such as its metabolism and the receptors that respond to them in humans. We also briefly discuss the human diseases associated with aberrant lyso-PS metabolism and signaling and posit some future directions that may advance our understanding of lyso-PS-mediated mammalian physiology.
Collapse
Affiliation(s)
- Arnab Chakraborty
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Siddhesh S Kamat
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| |
Collapse
|
2
|
Yaginuma S, Omi J, Kano K, Aoki J. Lysophospholipids and their producing enzymes: Their pathological roles and potential as pathological biomarkers. Pharmacol Ther 2023; 246:108415. [PMID: 37061204 DOI: 10.1016/j.pharmthera.2023.108415] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
Accumulating evidence suggests that lysophospholipids (LPL) serve as lipid mediators that exert their diverse pathophysiological functions via G protein-coupled receptors. These include lysophosphatidic acid (LPA), sphingosine 1-phosphate (S1P), lysophosphatidylserine (LysoPS) and lysophosphatidylinositol (LPI). Unlike S1P, which is produced intracellularly and secreted from various cell types, some LPLs, such as LPA, LysoPS and LPI, are produced in lesions, especially under pathological conditions, where they positively or negatively regulate disease progression through their autacoid-like actions. Although these LPLs are minor components of the cell membrane, recent developments in mass spectrometry techniques have made it possible to detect and quantify them in a variety of biological fluids, including plasma, serum, urine and cerebrospinal fluid. The synthetic enzymes of LPA and LysoPS are also present in these biological fluids, which also can be detected by antibody-based methods. Importantly, their levels have been found to dramatically increase during various pathological conditions. Thus, LPLs and their synthetic enzymes in these biological fluids are potential biomarkers. This review discusses the potential of these LPLs and LPL-related molecules as pathological biomarkers, including methods and problems in their measurement.
Collapse
Affiliation(s)
- Shun Yaginuma
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | - Jumpei Omi
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | - Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan.
| |
Collapse
|
3
|
Tsuchida Y, Shoda H, Sawada T, Fujio K. Role of autotaxin in systemic lupus erythematosus. Front Med (Lausanne) 2023; 10:1166343. [PMID: 37122329 PMCID: PMC10130763 DOI: 10.3389/fmed.2023.1166343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/15/2023] [Indexed: 05/02/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a prototypic systemic autoimmune disease characterized by the production of various autoantibodies and deposition of immune complexes. SLE is a heterogenous disease, and the pattern of organ involvement and response to treatment differs significantly among patients. Novel biological markers are necessary to assess the extent of organ involvement and predict treatment response in SLE. Lysophosphatidic acid is a lysophospholipid involved in various biological processes, and autotaxin (ATX), which catalyzes the production of lysophosphatidic acid in the extracellular space, has gained attention in various diseases as a potential biomarker. The concentration of ATX is increased in the serum and urine of patients with SLE and lupus nephritis. Recent evidence suggests that ATX produced by plasmacytoid dendritic cells may play an important role in the immune system and pathogenesis of SLE. Furthermore, the production of ATX is associated with type I interferons, a key cytokine in SLE pathogenesis, and ATX may be a potential biomarker and key molecule in SLE.
Collapse
Affiliation(s)
- Yumi Tsuchida
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- *Correspondence: Yumi Tsuchida,
| | - Hirofumi Shoda
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsuji Sawada
- Department of Rheumatology, Tokyo Medical University Hospital, Tokyo, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Tsuchida Y, Shoda H, Nakano M, Ota M, Okamura T, Yamamoto K, Kurano M, Yatomi Y, Fujio K, Sawada T. Autotaxin is a potential link between genetic risk factors and immunological disturbances of plasmacytoid dendritic cells in systematic lupus erythematosus. Lupus 2022; 31:1578-1585. [PMID: 36134766 DOI: 10.1177/09612033221128494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND The importance of autotaxin, an enzyme that catalyzes lysophospholipid production, has recently been recognized in various diseases, including cancer and autoimmune diseases. Herein, we examined the role of autotaxin in systemic lupus erythematosus (SLE), utilizing data from ImmuNexUT, a comprehensive database consisting of transcriptome data and expression quantitative trait locus (eQTL) data of immune cells from patients with immune-mediated disorders. METHODS Serum autotaxin concentrations in patients with SLE and healthy controls (HCs) were compared. The transcriptome data of patients with SLE and age- and sex-matched HCs were obtained from ImmuNexUT. The expression of ENPP2, the gene encoding autotaxin, was examined in peripheral blood immune cells. Next, weighted gene correlation network analysis (WGCNA) was performed to identify genes with expression patterns similar to ENPP2. The ImmuNexUT eQTL database and public epigenomic databases were used to infer the relationship between autotaxin and pathogenesis of SLE. RESULTS Autotaxin levels were elevated in the serum of patients with SLE compared to HCs. Furthermore, the expression of ENPP2 was higher in plasmacytoid dendritic cells (pDCs) than in other immune cell subsets, and its expression was elevated in pDCs of patients with SLE compared to HCs. In WGCNA, ENPP2 belonged to a module that correlated with disease activity. This module was enriched in interferon-associated genes and included genes whose expression was influenced by single-nucleotide polymorphisms associated with SLE, suggesting that it is a key module connecting genetic risk factors of SLE with disease pathogenesis. Analysis utilizing the ImmuNexUT eQTL database and public epigenomic databases suggested that the increased expression of ENPP2 in pDCs from patients with SLE may be caused by increased expression of interferon-associated genes and increased binding of STAT3 complexes to the regulatory region of ENPP2. CONCLUSIONS Autotaxin may play a critical role in connecting genetic risk factors of SLE to disease pathogenesis in pDCs.
Collapse
Affiliation(s)
- Yumi Tsuchida
- Department of Allergy and Rheumatology, Graduate School of Medicine, 13143The University of Tokyo, Tokyo, Japan
| | - Hirofumi Shoda
- Department of Allergy and Rheumatology, Graduate School of Medicine, 13143The University of Tokyo, Tokyo, Japan
| | - Masahiro Nakano
- Department of Allergy and Rheumatology, Graduate School of Medicine, 13143The University of Tokyo, Tokyo, Japan.,Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Mineto Ota
- Department of Allergy and Rheumatology, Graduate School of Medicine, 13143The University of Tokyo, Tokyo, Japan.,Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, 13143The University of Tokyo, Tokyo, Japan
| | - Tomohisa Okamura
- Department of Allergy and Rheumatology, Graduate School of Medicine, 13143The University of Tokyo, Tokyo, Japan.,Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, 13143The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Yamamoto
- Department of Allergy and Rheumatology, Graduate School of Medicine, 13143The University of Tokyo, Tokyo, Japan.,Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Makoto Kurano
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, 13143The University of Tokyo, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, 13143The University of Tokyo, Tokyo, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, 13143The University of Tokyo, Tokyo, Japan
| | - Tetsuji Sawada
- Department of Rheumatology, 38548Tokyo Medical University Hospital, Tokyo, Japan
| |
Collapse
|
5
|
Takagi Y, Nishikado S, Omi J, Aoki J. The Many Roles of Lysophospholipid Mediators and Japanese Contributions to This Field. Biol Pharm Bull 2022; 45:1008-1021. [DOI: 10.1248/bpb.b22-00304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yugo Takagi
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Shun Nishikado
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Jumpei Omi
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|
6
|
Zhang W, Liu C, Wang M, Yang Z, Yang J, Ren Y, Cao L, Han X, Huang L, Sun Z, Nie S. Phosphatidylserine-Specific Phospholipase A1 Alleviates Lipopolysaccharide-Induced Macrophage Inflammation by Inhibiting MAPKs Activation. Biol Pharm Bull 2022; 45:1061-1068. [PMID: 35650027 DOI: 10.1248/bpb.b22-00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Macrophages are key in innate immune responses and play vital roles in homeostasis and inflammatory diseases. Phosphatidylserine-specific phospholipase A1 (PS-PLA1) is a specific phospholipase which hydrolyzes fatty acid from the sn-1 position of phosphatidylserine (PS) to produce lysophosphatidylserine (lysoPS). Both PS and lysoPS are associated with activation of immune cells including macrophages. However, the effect of PS-PLA1 on macrophage inflammation remains unclear. The purpose of this study is to evaluate the role of PS-PLA1 in lipopolysaccharide (LPS)-induced macrophage inflammation. Alterations of PS-PLA1 expression in LPS-stimulated RAW264.7 macrophages were investigated via Western blot. PS-PLA1 stable knockdown and overexpression RAW264.7 cell lines were generated by infecting cells with appropriate lentiviral vectors, respectively. PS-PLA1 expression was found to be dramatically upregulated in RAW264.7 macrophages after LPS stimulation. PS-PLA1 knockdown promotes while PS-PLA1 overexpression ameliorates the release of TNF-α, IL-1β and nitric oxide from RAW264.7 cells and M1 macrophage polarization. Additionally, PS-PLA1 knockdown facilitates phosphorylation of p38, ERK and JNK, while PS-PLA1 overexpression attenuates their phosphorylation. Moreover, mitogen-activated protein kinase (MAPK) inhibitors blocks the release of TNF-α and IL-1β in PS-PLA1 knockdown RAW264.7 cells after LPS stimulation. These findings suggest PS-PLA1 ameliorates LPS-induced macrophage inflammation by inhibiting MAPKs activation, and PS-PLA1 might be considered as a target for modulating macrophage inflammation.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Emergency Medicine, Jinling Clinical Medical College of Nanjing Medical University.,Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University
| | - Chao Liu
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University
| | - Mengmeng Wang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University
| | - Zhizhou Yang
- Department of Emergency Medicine, Jinling Clinical Medical College of Nanjing Medical University.,Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University
| | - Jian Yang
- Department of Radiology, Zhongda Hospital, Jiangsu Key Laboratory of Molecular and Functional Imaging, Medical School of Southeast University
| | - Yi Ren
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University
| | - Liping Cao
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University
| | - Xiaoqin Han
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University
| | - Limin Huang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University
| | - Zhaorui Sun
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University
| | - Shinan Nie
- Department of Emergency Medicine, Jinling Clinical Medical College of Nanjing Medical University.,Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University
| |
Collapse
|
7
|
Murakami K, Tamada T, Saigusa D, Miyauchi E, Nara M, Ichinose M, Kurano M, Yatomi Y, Sugiura H. Urine autotaxin levels reflect the disease activity of sarcoidosis. Sci Rep 2022; 12:4372. [PMID: 35288647 PMCID: PMC8921313 DOI: 10.1038/s41598-022-08388-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/04/2022] [Indexed: 12/17/2022] Open
Abstract
Since the clinical outcome of patients with sarcoidosis is still unpredictable, a good prognostic biomarker is necessary. Autotaxin (ATX) and phosphatidylserine-specific phospholipase A1 (PS-PLA1) function as main enzymes to produce lysophospholipids (LPLs), and these enzymes are attracting attention as useful biomarkers for several chronic inflammatory diseases. Here, we investigated the relationships between LPLs-producing enzymes and the disease activity of sarcoidosis. In total, 157 patients with sarcoidosis (active state, 51%) were consecutively enrolled. Using plasma or urine specimens, we measured the values of LPLs-producing enzymes. Urine ATX (U-ATX) levels were significantly lower in the active state compared to those in the inactive state, while the plasma ATX (P-ATX) and PS-PLA1 levels showed no significant difference between these two states. Concerning the comparison with existing clinical biomarkers for sarcoidosis, U-ATX showed a weak negative correlation to ACE, P-ATX a weak positive correlation to both ACE and sIL-2R, and PS-PLA1 a weak positive one to sIL-2R. Notably, only the U-ATX levels inversely fluctuated depending on the status of disease activity whether OCS had been used or not. These findings suggest that U-ATX is likely to be a novel and useful molecule for assessing the disease activity of sarcoidosis.
Collapse
|
8
|
Hasse S, Julien AS, Duchez AC, Zhao C, Boilard E, Fortin PR, Bourgoin SG. Red blood cell-derived phosphatidylserine positive extracellular vesicles are associated with past thrombotic events in patients with systemic erythematous lupus. Lupus Sci Med 2022; 9:9/1/e000605. [PMID: 35260475 PMCID: PMC8905995 DOI: 10.1136/lupus-2021-000605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/18/2022] [Indexed: 12/14/2022]
Abstract
Background Extracellular vesicles (EVs) released by blood cells have proinflammation and procoagulant action. Patients with systemic lupus erythematosus (SLE) present high vascular inflammation and are prone to develop cardiovascular diseases. Therefore, we postulated that the EV populations found in blood, including platelet EVs (PEVs) and red blood cell EVs (REVs), are associated with SLE disease activity and SLE-associated cardiovascular accidents. Method We assessed autotaxin (ATX) plasma levels by ELISA, the platelet activation markers PAC1 and CD62P, ATX bound to platelets and the amounts of plasma PEVs and REVs by flow cytometry in a cohort of 102 patients with SLE, including 29 incident cases of SLE and 30 controls. Correlation analyses explored the associations with the clinical parameters. Result Platelet activation markers were increased in patients with SLE compared with healthy control, with the marker CD62P associated with the SLE disease activity index (SLEDAI). The incident cases show additional associations between platelet markers (CD62P/ATX and PAC1/CD62P) and the SLEDAI. Compared with controls, patients with SLE presented higher levels of PEVs, phosphatidylserine positive (PS+) PEVs, REVs and PS+ REVs, but there is no association with disease activity. When stratified according to the plasma level of PS+ REVs, the group of patients with SLE with a high level of PS+ REVs presented a higher number of past thrombosis events and higher ATX levels. Conclusion Incident and prevalent forms of SLE cases present similar levels of platelet activation markers, with CD62P correlating with disease activity. Though EVs are not associated with disease activity, the incidence of past thrombotic events is higher in patients with a high level of PS+ REVs.
Collapse
Affiliation(s)
- Stephan Hasse
- Axe Maladies Infectieuses et Immunitaires, Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Quebec city, Quebec, Canada
| | - Anne-Sophie Julien
- Département de mathématiques et statistique, Université Laval, Quebec city, Quebec, Canada
| | - Anne-Claire Duchez
- Axe Maladies Infectieuses et Immunitaires, Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Quebec city, Quebec, Canada
| | - Chenqi Zhao
- Axe Maladies Infectieuses et Immunitaires, Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Quebec city, Quebec, Canada
| | - Eric Boilard
- Département de microbiologie-infectiologie et immunologie, Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Quebec city, Quebec, Canada
| | - Paul R Fortin
- Département de Médecine, Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Quebec city, Quebec, Canada
| | - Sylvain G Bourgoin
- Département de microbiologie-infectiologie et immunologie, Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Quebec city, Quebec, Canada
| |
Collapse
|
9
|
Engel KM, Schiller J, Galuska CE, Fuchs B. Phospholipases and Reactive Oxygen Species Derived Lipid Biomarkers in Healthy and Diseased Humans and Animals - A Focus on Lysophosphatidylcholine. Front Physiol 2021; 12:732319. [PMID: 34858200 PMCID: PMC8631503 DOI: 10.3389/fphys.2021.732319] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/21/2021] [Indexed: 12/20/2022] Open
Abstract
Phospholipids (PL) are converted into lipid biomarkers by the action of phospholipases and reactive oxygen species (ROS), which are activated or released under certain physiological and pathophysiological conditions. Therefore, the in vivo concentration of such lipid biomarkers [e.g., lysophospholipids (LPLs)] is altered in humans and animals under different conditions such as inflammation, stress, medication, and nutrition. LPLs are particularly interesting because they are known to possess pro- and anti-inflammatory properties and may be generated by two different pathways: either by the influence of phospholipase A2 or by different reactive oxygen species that are generated in significant amounts under inflammatory conditions. Both lead to the cleavage of unsaturated acyl residues. This review provides a short summary of the mechanisms by which lipid biomarkers are generated under in vitro and in vivo conditions. The focus will be on lysophosphatidylcholine (LPC) because usually, this is the LPL species which occurs in the highest concentration and is, thus, easily detectable by chromatographic and spectroscopic methods. Finally, the effects of lipid biomarkers as signaling molecules and their roles in different human and animal pathologies such as infertility, cancer, atherosclerosis, and aging will be shortly discussed.
Collapse
Affiliation(s)
- Kathrin M Engel
- Faculty of Medicine, Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Jürgen Schiller
- Faculty of Medicine, Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Christina E Galuska
- Core Facility Metabolomics, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Beate Fuchs
- Core Facility Metabolomics, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
10
|
Zhao Y, Hasse S, Bourgoin SG. Phosphatidylserine-specific phospholipase A1: A friend or the devil in disguise. Prog Lipid Res 2021; 83:101112. [PMID: 34166709 DOI: 10.1016/j.plipres.2021.101112] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023]
Abstract
Various human tissues and cells express phospholipase A1 member A (PLA1A), including the liver, lung, prostate gland, and immune cells. The enzyme belongs to the pancreatic lipase family. PLA1A specifically hydrolyzes sn-1 fatty acid of phosphatidylserine (PS) or 1-acyl-lysophosphatidylserine (1-acyl-lysoPS). PS externalized by activated cells or apoptotic cells or extracellular vesicles is a potential source of substrate for the production of unsaturated lysoPS species by PLA1A. Maturation and functions of many immune cells, such as T cells, dendritic cells, macrophages, and mast cells, can be regulated by PLA1A and lysoPS. Several lysoPS receptors, including GPR34, GPR174 and P2Y10, have been identified. High serum levels and high PLA1A expression are associated with autoimmune disorders such as Graves' disease and systemic lupus erythematosus. Increased expression of PLA1A is associated with metastatic melanomas. PLA1A may contribute to cardiometabolic disorders through mediating cholesterol transportation and producing lysoPS. Furthermore, PLA1A is necessary for hepatitis C virus assembly and can play a role in the antivirus innate immune response. This review summarizes recent findings on PLA1A expression, lysoPS and lysoPS receptors in autoimmune disorders, cancers, cardiometabolic disorders, antivirus immune responses, as well as regulations of immune cells.
Collapse
Affiliation(s)
- Yang Zhao
- Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Département de microbiologie-infectiologie et d'immunologie, Université Laval, Québec, G1V 4G2, Canada
| | - Stephan Hasse
- Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Département de microbiologie-infectiologie et d'immunologie, Université Laval, Québec, G1V 4G2, Canada
| | - Sylvain G Bourgoin
- Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Département de microbiologie-infectiologie et d'immunologie, Université Laval, Québec, G1V 4G2, Canada.
| |
Collapse
|
11
|
Gao L, Li X, Wang H, Liao Y, Zhou Y, Wang K, Hu J, Cheng M, Zeng Z, Wang T, Wen F. Autotaxin levels in serum and bronchoalveolar lavage fluid are associated with inflammatory and fibrotic biomarkers and the clinical outcome in patients with acute respiratory distress syndrome. J Intensive Care 2021; 9:44. [PMID: 34130757 PMCID: PMC8207767 DOI: 10.1186/s40560-021-00559-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/07/2021] [Indexed: 02/08/2023] Open
Abstract
Background Autotaxin (ATX) is a secreted glycoprotein that is widely present in extracellular biological fluids and has been implicated in many inflammatory and fibrotic diseases. However, the clinical impact of the release of ATX in patients with acute respiratory distress syndrome (ARDS) remains unclear. Methods Serum and bronchoalveolar lavage fluid (BALF) levels of ATX, interleukin (IL)-6, IL-8, tumor necrosis factor (TNF)-α, matrix metalloproteinase (MMP)-7, fibronectin, oncostatin M (OSM), and SPARC (secreted protein acidic and rich in cysteine) were collected from 52 patients with ARDS within 24 h of diagnosis. All cytokines were measured by Magnetic Luminex Assay. BALF albumin (BA) and serum albumin (SA) were measured by enzyme-linked immunosorbent assay. Results Serum ATX, MMP-7, and BALF IL-8 levels were significantly higher in patients who did not survive than in those who survived up to 28 days after diagnosis of ARDS (P < 0.05). BALF and serum ATX levels were correlated with IL-6, IL-8, and MMP-7 levels in BALF and serum, respectively. In addition, BALF ATX was positively correlated with BALF TNF-α, fibronectin, OSM, and SPARC as well as the BA/SA ratio, while serum ATX was correlated with severity of illness based on the SOFA score and PaO2/FIO2 ratio. Furthermore, serum ATX was better able to predict 28-day ARDS-related mortality (area under the curve 0.744, P < 0.01) than the SOFA score, APACHE II score, or PaO2/FIO2 ratio. Serum ATX independently predicted mortality in a univariate Cox regression model (P < 0.0001). Conclusion The serum ATX level is a potential prognostic biomarker in patients with ARDS. BALF ATX is associated with pulmonary biomarkers of inflammation and fibrosis, suggesting a role of ATX in the pathogenesis of ARDS. Supplementary Information The online version contains supplementary material available at 10.1186/s40560-021-00559-3.
Collapse
Affiliation(s)
- Lijuan Gao
- Division of Pulmonary Disease, State Key Laboratory of Biotherapy of China, and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Guoxuexiang 37, Chengdu, 610041, Sichuan, China
| | - Xiaoou Li
- Division of Pulmonary Disease, State Key Laboratory of Biotherapy of China, and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Guoxuexiang 37, Chengdu, 610041, Sichuan, China
| | - Hao Wang
- Division of Pulmonary Disease, State Key Laboratory of Biotherapy of China, and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Guoxuexiang 37, Chengdu, 610041, Sichuan, China
| | - Yue Liao
- Division of Pulmonary Disease, State Key Laboratory of Biotherapy of China, and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Guoxuexiang 37, Chengdu, 610041, Sichuan, China
| | - Yongfang Zhou
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Guoxuexiang 37, Chengdu, 610041, Sichuan, China
| | - Ke Wang
- Division of Pulmonary Disease, State Key Laboratory of Biotherapy of China, and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Guoxuexiang 37, Chengdu, 610041, Sichuan, China
| | - Jun Hu
- Division of Pulmonary Disease, State Key Laboratory of Biotherapy of China, and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Guoxuexiang 37, Chengdu, 610041, Sichuan, China
| | - Mengxin Cheng
- Division of Pulmonary Disease, State Key Laboratory of Biotherapy of China, and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Guoxuexiang 37, Chengdu, 610041, Sichuan, China
| | - Zijian Zeng
- Division of Pulmonary Disease, State Key Laboratory of Biotherapy of China, and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Guoxuexiang 37, Chengdu, 610041, Sichuan, China
| | - Tao Wang
- Division of Pulmonary Disease, State Key Laboratory of Biotherapy of China, and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Guoxuexiang 37, Chengdu, 610041, Sichuan, China.
| | - Fuqiang Wen
- Division of Pulmonary Disease, State Key Laboratory of Biotherapy of China, and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Guoxuexiang 37, Chengdu, 610041, Sichuan, China.
| |
Collapse
|