1
|
Fu Q, Han M, Dai X, Lu R, Deng E, Shen X, Ou F, Pu Y, Xie X, Liu K, Gan Y, Li D. Therapeutic effect of three-dimensional hanging drop cultured human umbilical cord mesenchymal stem cells on osteoarthritis in rabbits. Stem Cell Res Ther 2024; 15:311. [PMID: 39294780 PMCID: PMC11411824 DOI: 10.1186/s13287-024-03905-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have shown a positive effect on Osteoarthritis (OA), but the efficacy is still not significant in clinical. Conventional two-dimensional (2D) monolayer culture method is prone to cause MSCs undergoing replication senescence, which may affect the functions of MSCs. Three-dimensional (3D) culture strategy can sustain cell proliferative capacity and multi-differentiation potential. This study aimed to investigate the therapeutic potential of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) cultured by 3D hanging drop method on OA. METHODS hUC-MSCs were isolated from umbilical cord and cultured by 3D hanging drop method for 48 h. Scanning electron microscopy (SEM) was used to observe gross morphology 2D and 3D hUC-MSCs. Transcriptome comparison of gene expression differences between 2D and 3D hUC-MSCs. GO enrichment analysis, KEGG pathway enrichment analysis and GSEA enrichment analysis were used to analyze the impact of 3D hanging drop culture on the biological functions of hUC-MSCs. Female New Zealand rabbits (n = 12) were divided into 4 groups: Normal group, Model group, 2D hUC-MSCs treatment group and 3D hUC-MSCs treatment group. After 8 weeks, the gross and histological appearance of the cartilage was evaluated by safranin O-fast green staining and Mankin scoring system. The expression of type I collagen and type II collagen was detected by immunohistochemistry. The levels of IL-6, IL-7, TNFα, TGFβ1 and IL-10 in the knee joint fluid were tested by ELISA. RESULTS 3D hanging drop culture changed cell morphology but did not affect phenotype. The MSCs transcriptome profiles showed that 3D hanging drop culture method enhanced cell-cell contact, improved cell responsiveness to external stimuli and immunomodulatory function. The animal experiment results showed that hUC-MSCs could promote cartilage regeneration compared with Model group. 3D hUC-MSCs treatment group had a higher histological score and significantly increased type II collagen secretion. In addition, 3D hUC-MSCs treatment group increased the expression of anti-inflammatory factors TGFβ1 and IL-10. CONCLUSION The above experimental results illustrated that 3D hanging drop culture method could enhance the therapeutic effect of hUC-MSCs, and showed a good clinical application prospect in the treatment of OA.
Collapse
Affiliation(s)
- Qiang Fu
- Chongqing Perfect Cell Biotechnology Co. LTD, Chongqing, 400700, P.R. China
| | - Mei Han
- Chongqing Perfect Cell Biotechnology Co. LTD, Chongqing, 400700, P.R. China
| | - Xiaoyu Dai
- Chongqing Perfect Cell Biotechnology Co. LTD, Chongqing, 400700, P.R. China
| | - Ruian Lu
- Chongqing Perfect Cell Biotechnology Co. LTD, Chongqing, 400700, P.R. China
| | - Enjie Deng
- Chongqing Perfect Cell Biotechnology Co. LTD, Chongqing, 400700, P.R. China
| | - Xuemei Shen
- Chongqing Perfect Cell Biotechnology Co. LTD, Chongqing, 400700, P.R. China
| | - Feng Ou
- Chongqing Perfect Cell Biotechnology Co. LTD, Chongqing, 400700, P.R. China
| | - Yongguang Pu
- Chongqing Perfect Cell Biotechnology Co. LTD, Chongqing, 400700, P.R. China
| | - Xueqin Xie
- Chongqing Perfect Cell Biotechnology Co. LTD, Chongqing, 400700, P.R. China
| | - Kang Liu
- Chongqing Perfect Cell Biotechnology Co. LTD, Chongqing, 400700, P.R. China
| | - Yuanshan Gan
- Chongqing Perfect Cell Biotechnology Co. LTD, Chongqing, 400700, P.R. China
| | - Dong Li
- Stem Cell and Regenerative Medicine Research Center, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, P.R. China.
| |
Collapse
|
2
|
D'Souza RS, Her YF, Hussain N, Karri J, Schatman ME, Calodney AK, Lam C, Buchheit T, Boettcher BJ, Chang Chien GC, Pritzlaff SG, Centeno C, Shapiro SA, Klasova J, Grider JS, Hubbard R, Ege E, Johnson S, Epstein MH, Kubrova E, Ramadan ME, Moreira AM, Vardhan S, Eshraghi Y, Javed S, Abdullah NM, Christo PJ, Diwan S, Hassett LC, Sayed D, Deer TR. Evidence-Based Clinical Practice Guidelines on Regenerative Medicine Treatment for Chronic Pain: A Consensus Report from a Multispecialty Working Group. J Pain Res 2024; 17:2951-3001. [PMID: 39282657 PMCID: PMC11402349 DOI: 10.2147/jpr.s480559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Purpose Injectable biologics have not only been described and developed to treat dermal wounds, cardiovascular disease, and cancer, but have also been reported to treat chronic pain conditions. Despite emerging evidence supporting regenerative medicine therapy for pain, many aspects remain controversial. Methods The American Society of Pain and Neuroscience (ASPN) identified the educational need for an evidence-based guideline on regenerative medicine therapy for chronic pain. The executive board nominated experts spanning multiple specialties including anesthesiology, physical medicine and rehabilitation, and sports medicine based on expertise, publications, research, and clinical practice. A steering committee selected preliminary questions, which were reviewed and refined. Evidence was appraised using the United States Preventive Services Task Force (USPSTF) criteria for evidence level and degree of recommendation. Using a modified Delphi approach, consensus points were distributed to all collaborators and each collaborator voted on each point. If collaborators provided a decision of "disagree" or "abstain", they were invited to provide a rationale in a non-blinded fashion to the committee chair, who incorporated the respective comments and distributed revised versions to the committee until consensus was achieved. Results Sixteen questions were selected for guideline development. Questions that were addressed included type of injectable biologics and mechanism, evidence in treating chronic pain indications (eg, tendinopathy, muscular pathology, osteoarthritis, intervertebral disc disease, neuropathic pain), role in surgical augmentation, dosing, comparative efficacy between injectable biologics, peri-procedural practices to optimize therapeutic response and quality of injectate, federal regulations, and complications with mitigating strategies. Conclusion In well-selected individuals with certain chronic pain indications, use of injectable biologics may provide superior analgesia, functionality, and/or quality of life compared to conventional medical management or placebo. Future high-quality randomized clinical trials are warranted with implementation of minimum reporting standards, standardization of preparation protocols, investigation of dose-response associations, and comparative analysis between different injectable biologics.
Collapse
Affiliation(s)
- Ryan S D'Souza
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yeng F Her
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Nasir Hussain
- Department of Anesthesiology, The Ohio State Wexner Medical Center, Columbus, OH, USA
| | - Jay Karri
- Departments of Orthopedic Surgery and Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michael E Schatman
- Department of Anesthesiology, Perioperative Care, & Pain Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Christopher Lam
- Department of Anesthesiology and Pain Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Thomas Buchheit
- Department of Anesthesiology, Duke University, Durham, NC, USA
| | - Brennan J Boettcher
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | | | - Scott G Pritzlaff
- Department of Anesthesiology and Pain Medicine, University of California, Davis, Sacramento, CA, USA
| | | | - Shane A Shapiro
- Department of Orthopedic Surgery, Mayo Clinic, Jacksonville, FL, USA
| | - Johana Klasova
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jay S Grider
- Department of Anesthesiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Ryan Hubbard
- Department of Sports Medicine, Anderson Orthopedic Clinic, Arlington, VA, USA
| | - Eliana Ege
- Department of Physical Medicine & Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Shelby Johnson
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Max H Epstein
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA, USA
| | - Eva Kubrova
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Mohamed Ehab Ramadan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Alexandra Michelle Moreira
- Department of Physical Medicine & Rehabilitation, University of Miami/Jackson Memorial Hospital, Miami, FL, USA
| | - Swarnima Vardhan
- Department of Internal Medicine, Yale New Haven Health - Bridgeport Hospital, Bridgeport, CT, USA
| | - Yashar Eshraghi
- Department of Anesthesiology & Critical Care Medicine, Ochsner Health System, New Orleans, LA, USA
| | - Saba Javed
- Department of Pain Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Newaj M Abdullah
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Paul J Christo
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Sudhir Diwan
- Department of Pain Medicine, Advanced Spine on Park Avenue, New York City, NY, USA
| | | | - Dawood Sayed
- Department of Anesthesiology and Pain Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Timothy R Deer
- Department of Anesthesiology and Pain Medicine, West Virginia University School of Medicine, Charleston, WV, USA
| |
Collapse
|
3
|
Lu YC, Ho TC, Huang CH, Yeh SI, Chen SL, Tsao YP. PEDF peptide plus hyaluronic acid stimulates cartilage regeneration in osteoarthritis via STAT3-mediated chondrogenesis. Bone Joint Res 2024; 13:137-148. [PMID: 38555936 PMCID: PMC10981997 DOI: 10.1302/2046-3758.134.bjr-2023-0179.r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/02/2024] Open
Abstract
Aims Pigment epithelium-derived factor (PEDF) is known to induce several types of tissue regeneration by activating tissue-specific stem cells. Here, we investigated the therapeutic potential of PEDF 29-mer peptide in the damaged articular cartilage (AC) in rat osteoarthritis (OA). Methods Mesenchymal stem/stromal cells (MSCs) were isolated from rat bone marrow (BM) and used to evaluate the impact of 29-mer on chondrogenic differentiation of BM-MSCs in culture. Knee OA was induced in rats by a single intra-articular injection of monosodium iodoacetate (MIA) in the right knees (set to day 0). The 29-mer dissolved in 5% hyaluronic acid (HA) was intra-articularly injected into right knees at day 8 and 12 after MIA injection. Subsequently, the therapeutic effect of the 29-mer/HA on OA was evaluated by the Osteoarthritis Research Society International (OARSI) histopathological scoring system and changes in hind paw weight distribution, respectively. The regeneration of chondrocytes in damaged AC was detected by dual-immunostaining of 5-bromo-2'-deoxyuridine (BrdU) and chondrogenic markers. Results The 29-mer promoted expansion and chondrogenic differentiation of BM-MSCs cultured in different defined media. MIA injection caused chondrocyte death throughout the AC, with cartilage degeneration thereafter. The 29-mer/HA treatment induced extensive chondrocyte regeneration in the damaged AC and suppressed MIA-induced synovitis, accompanied by the recovery of cartilage matrix. Pharmacological inhibitors of PEDF receptor (PEDFR) and signal transducer and activator of transcription 3 (STAT3) signalling substantially blocked the chondrogenic promoting activity of 29-mer on the cultured BM-MSCs and injured AC. Conclusion The 29-mer/HA formulation effectively induces chondrocyte regeneration and formation of cartilage matrix in the damaged AC.
Collapse
Affiliation(s)
- Yung-Chang Lu
- Department of Medical Research, Mackay Memorial Hospital, New Taipei City, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Tsung-Chuan Ho
- Department of Medical Research, Mackay Memorial Hospital, New Taipei City, Taiwan
| | - Chang-Hung Huang
- Department of Medical Research, Mackay Memorial Hospital, New Taipei City, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shu-I Yeh
- Department of Medical Research, Mackay Memorial Hospital, New Taipei City, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Show-Li Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yeou-Ping Tsao
- Department of Medical Research, Mackay Memorial Hospital, New Taipei City, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| |
Collapse
|
4
|
Campbell TM, Trudel G. Protecting the regenerative environment: selecting the optimal delivery vehicle for cartilage repair-a narrative review. Front Bioeng Biotechnol 2024; 12:1283752. [PMID: 38333081 PMCID: PMC10850577 DOI: 10.3389/fbioe.2024.1283752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Focal cartilage defects are common in youth and older adults, cause significant morbidity and constitute a major risk factor for developing osteoarthritis (OA). OA is the most common musculoskeletal (MSK) disease worldwide, resulting in pain, stiffness, loss of function, and is currently irreversible. Research into the optimal regenerative approach and methods in the setting of either focal cartilage defects and/or OA holds to the ideal of resolving both diseases. The two fundamentals required for cartilage regenerative treatment are 1) the biological element contributing to the regeneration (e.g., direct application of stem cells, or of an exogenous secretome), and 2) the vehicle by which the biological element is suspended and delivered. The vehicle provides support to the regenerative process by providing a protective environment, a structure that allows cell adherence and migration, and a source of growth and regenerative factors that can activate and sustain regeneration. Models of cartilage diseases include osteochondral defect (OCD) (which usually involve one focal lesion), or OA (which involves a more diffuse articular cartilage loss). Given the differing nature of these models, the optimal regenerative strategy to treat different cartilage diseases may not be universal. This could potentially impact the translatability of a successful approach in one condition to that of the other. An analogy would be the repair of a pothole (OCD) versus repaving the entire road (OA). In this narrative review, we explore the existing literature evaluating cartilage regeneration approaches for OCD and OA in animal then in human studies and the vehicles used for each of these two conditions. We then highlight strengths and challenges faced by the different approaches presented and discuss what might constitute the optimal cartilage regenerative delivery vehicle for clinical cartilage regeneration.
Collapse
Affiliation(s)
- T. Mark Campbell
- Elisabeth Bruyère Hospital, Ottawa, ON, Canada
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Guy Trudel
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- The Ottawa Hospital, Department of Medicine, Division of Physical Medicine and Rehabilitation, Ottawa, ON, Canada
| |
Collapse
|
5
|
Sadri B, Hassanzadeh M, Bagherifard A, Mohammadi J, Alikhani M, Moeinabadi-Bidgoli K, Madani H, Diaz-Solano D, Karimi S, Mehrazmay M, Mohammadpour M, Vosough M. Cartilage regeneration and inflammation modulation in knee osteoarthritis following injection of allogeneic adipose-derived mesenchymal stromal cells: a phase II, triple-blinded, placebo controlled, randomized trial. Stem Cell Res Ther 2023; 14:162. [PMID: 37316949 DOI: 10.1186/s13287-023-03359-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 04/28/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Intra-articular injection of mesenchymal stromal cells (MSCs) with immunomodulatory features and their paracrine secretion of regenerative factors proposed a noninvasive therapeutic modality for cartilage regeneration in knee osteoarthritis (KOA). METHODS Total number of 40 patients with KOA enrolled in two groups. Twenty patients received intra-articular injection of 100 × 106 allogeneic adipose-derived mesenchymal stromal cells (AD-MSCs), and 20 patients as control group received placebo (normal saline). Questionnaire-based measurements, certain serum biomarkers, and some cell surface markers were evaluated for 1 year. Magnetic resonance imaging (MRI) before and 1 year after injection was performed to measure possible changes in the articular cartilage. RESULTS Forty patients allocated including 4 men (10%) and 36 women (90%) with average age of 56.1 ± 7.2 years in control group and 52.8 ± 7.5 years in AD-MSCs group. Four patients (two patients from AD-MSCs group and two patients from the control group) excluded during the study. Clinical outcome measures showed improvement in AD-MSCs group. Hyaluronic acid and cartilage oligomeric matrix protein levels in blood serum decreased significantly in patients who received AD-MSCs (P < 0.05). Although IL-10 level significantly increased after 1 week (P < 0.05), the serum level of inflammatory markers dramatically decreased after 3 months (P < 0.001). Expressions of CD3, CD4, and CD8 have a decreasing trend during 6-month follow-up (P < 0.05), (P < 0.001), and (P < 0.001), respectively. However, the number of CD25+ cells increased remarkably in the treatment group 3 months after intervention (P < 0.005). MRI findings showed a slight increase in the thickness of tibial and femoral articular cartilages in AD-MSCs group. The changes were significant in the medial posterior and medial anterior areas of the tibia with P < 0.01 and P < 0.05, respectively. CONCLUSION Inter-articular injection of AD-MSCs in patients with KOA is safe. Laboratory data, MRI findings, and clinical examination of patients at different time points showed notable articular cartilage regeneration and significant improvement in the treatment group. TRIAL REGISTRATION Iranian registry of clinical trials (IRCT, https://en.irct.ir/trial/46 ), IRCT20080728001031N23. Registered 24 April 2018.
Collapse
Affiliation(s)
- Bahareh Sadri
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Hassanzadeh
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Bagherifard
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Javad Mohammadi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Mehdi Alikhani
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Kasra Moeinabadi-Bidgoli
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hoda Madani
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Dylana Diaz-Solano
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Unidad de Terapia Celular - Laboratorio de Patología Celular y Molecular, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, 1020-A, Caracas, Venezuela
| | - Shahedeh Karimi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | - Mehdi Mohammadpour
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
6
|
Warmink K, Rios JL, Varderidou-Minasian S, Torres-Torrillas M, van Valkengoed DR, Versteeg S, Eijkelkamp N, Weinans H, Korthagen NM, Lorenowicz MJ. Mesenchymal stem/stromal cells-derived extracellular vesicles as a potentially more beneficial therapeutic strategy than MSC-based treatment in a mild metabolic osteoarthritis model. Stem Cell Res Ther 2023; 14:137. [PMID: 37226203 DOI: 10.1186/s13287-023-03368-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/05/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Mesenchymal stromal/stem cells (MSCs) and MSC-derived extracellular vesicles (MSC-EVs) hold promise as a disease modifying treatment in osteoarthritis (OA). Obesity, and its associated inflammation, contribute to OA development and metabolic OA represents a specific and significant group of the OA patient population. Given their immunomodulatory properties, MSC and MSC-EVs are especially interesting for this group of patients as a therapeutic option. Here, we were the first to compare the therapeutic efficacy of MSCs and MSC-EVs in a mild OA model taking these metabolic aspects into consideration. METHODS Male Wistar-Han rats (Crl:WI(Han) (n = 36) were fed a high fat diet for 24 weeks, with unilateral induction of OA by groove surgery after 12 weeks. Eight days after surgery rats were randomized in three treatment groups receiving MSCs, MSC-EVs or vehicle injection. Pain-associated behavior, joint degeneration, and local and systemic inflammation were measured. RESULTS We demonstrated that despite not having a significant therapeutic effect, MSC-EV treatment results in lower cartilage degeneration, less pain behaviour, osteophytosis and joint inflammation, than MSC treatment. Suggesting that MSC-EVs could be a more promising therapeutic strategy than MSCs in this mild metabolic OA model. CONCLUSION In summary, we find that MSC treatment has negative effects on the joint in metabolic mild OA. This is an essential finding for the significant group of patients with metabolic OA phenotype, and might help to understand why clinical translation of MSC treatment shows varying therapeutic efficacy thus far. Our results also suggest that MSC-EV-based treatment might be a promising option for these patients, however MSC-EV therapeutic efficacy will need improvement.
Collapse
Affiliation(s)
- Kelly Warmink
- Regenerative Medicine Center, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Jaqueline L Rios
- Regenerative Medicine Center, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Suzy Varderidou-Minasian
- Regenerative Medicine Center, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Marta Torres-Torrillas
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain
- García Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain
| | - Devin R van Valkengoed
- Regenerative Medicine Center, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Sabine Versteeg
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, PO Box 85090, 3508 AB, Utrecht, The Netherlands
| | - Niels Eijkelkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, PO Box 85090, 3508 AB, Utrecht, The Netherlands
| | - Harrie Weinans
- Regenerative Medicine Center, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands
- Department of Biomechanical Engineering, TU Delft, Mekelweg 2, 2628 CD, Delft, The Netherlands
| | - Nicoline M Korthagen
- Regenerative Medicine Center, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Magdalena J Lorenowicz
- Regenerative Medicine Center, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands.
- Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands.
| |
Collapse
|
7
|
Rizzo MG, Best TM, Huard J, Philippon M, Hornicek F, Duan Z, Griswold AJ, Kaplan LD, Hare JM, Kouroupis D. Therapeutic Perspectives for Inflammation and Senescence in Osteoarthritis Using Mesenchymal Stem Cells, Mesenchymal Stem Cell-Derived Extracellular Vesicles and Senolytic Agents. Cells 2023; 12:1421. [PMID: 37408255 PMCID: PMC10217382 DOI: 10.3390/cells12101421] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/08/2023] [Accepted: 05/13/2023] [Indexed: 07/07/2023] Open
Abstract
Osteoarthritis (OA) is the most common cause of disability worldwide among the elderly. Alarmingly, the incidence of OA in individuals less than 40 years of age is rising, likely due to the increase in obesity and post-traumatic osteoarthritis (PTOA). In recent years, due to a better understanding of the underlying pathophysiology of OA, several potential therapeutic approaches targeting specific molecular pathways have been identified. In particular, the role of inflammation and the immune system has been increasingly recognized as important in a variety of musculoskeletal diseases, including OA. Similarly, higher levels of host cellular senescence, characterized by cessation of cell division and the secretion of a senescence-associated secretory phenotype (SASP) within the local tissue microenvironments, have also been linked to OA and its progression. New advances in the field, including stem cell therapies and senolytics, are emerging with the goal of slowing disease progression. Mesenchymal stem/stromal cells (MSCs) are a subset of multipotent adult stem cells that have demonstrated the potential to modulate unchecked inflammation, reverse fibrosis, attenuate pain, and potentially treat patients with OA. Numerous studies have demonstrated the potential of MSC extracellular vesicles (EVs) as cell-free treatments that comply with FDA regulations. EVs, including exosomes and microvesicles, are released by numerous cell types and are increasingly recognized as playing a critical role in cell-cell communication in age-related diseases, including OA. Treatment strategies for OA are being developed that target senescent cells and the paracrine and autocrine secretions of SASP. This article highlights the encouraging potential for MSC or MSC-derived products alone or in combination with senolytics to control patient symptoms and potentially mitigate the progression of OA. We will also explore the application of genomic principles to the study of OA and the potential for the discovery of OA phenotypes that can motivate more precise patient-driven treatments.
Collapse
Affiliation(s)
- Michael G. Rizzo
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, FL 33146, USA; (M.G.R.); (T.M.B.)
| | - Thomas M. Best
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, FL 33146, USA; (M.G.R.); (T.M.B.)
| | - Johnny Huard
- Center for Regenerative and Personalized Medicine (CRPM), Steadman Philippon Research Institute, Vail, CO 81657, USA (M.P.)
| | - Marc Philippon
- Center for Regenerative and Personalized Medicine (CRPM), Steadman Philippon Research Institute, Vail, CO 81657, USA (M.P.)
| | - Francis Hornicek
- Department of Orthopedics, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (F.H.); (Z.D.)
| | - Zhenfeng Duan
- Department of Orthopedics, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (F.H.); (Z.D.)
| | - Anthony J. Griswold
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Lee D. Kaplan
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, FL 33146, USA; (M.G.R.); (T.M.B.)
| | - Joshua M. Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | - Dimitrios Kouroupis
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, FL 33146, USA; (M.G.R.); (T.M.B.)
- Diabetes Research Institute, Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
8
|
Intraarticular Injections of Mesenchymal Stem Cells in Knee Osteoarthritis: A Review of Their Current Molecular Mechanisms of Action and Their Efficacy. Int J Mol Sci 2022; 23:ijms232314953. [PMID: 36499280 PMCID: PMC9740663 DOI: 10.3390/ijms232314953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/17/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
More than 10% of the world's population suffers from osteoarthritis (OA) of the knee, with a lifetime risk of 45%. Current treatments for knee OA pain are as follows: weight control; oral pharmacological treatment (non-steroidal anti-inflammatory drugs, paracetamol, opioids); mechanical aids (crutches, walkers, braces, orthotics); therapeutic physical exercise; and intraarticular injections of corticosteroids, hyaluronic acid, and platelet-rich plasma (PRP). The problem is that such treatments usually relieve joint pain for only a short period of time. With respect to intraarticular injections, corticosteroids relieve pain for several weeks, while hyaluronic acid and PRP relieve pain for several months. When the above treatments fail to control knee pain, total knee arthroplasty (TKA) is usually indicated; however, although a very effective surgical technique, it can be associated with medical and postoperative (surgery-related) complications. Therefore, it seems essential to look for safe and effective alternative treatments to TKA. Recently, there has been much research on intraarticular injections of mesenchymal stem cells (MSCs) for the management of OA of the knee joint. This article reviews the latest information on the molecular mechanisms of action of MSCs and their potential therapeutic benefit in clinical practice in patients with painful knee OA. Although most recent publications claim that intraarticular injections of MSCs relieve joint pain in the short term, their efficacy remains controversial given that the existing scientific information on MSCs is indecisive. Before recommending intraarticular MSCs injections routinely in patients with painful knee OA, more studies comparing MSCs with placebo are needed. Furthermore, a standard protocol for intraarticular injections of MSCs in knee OA is needed.
Collapse
|
9
|
Liu J, Gao J, Niu Q, Wu F, Wu Z, Zhang L. Bibliometric and visualization analysis of mesenchymal stem cells and rheumatoid arthritis (from 2012 to 2021). Front Immunol 2022; 13:1001598. [PMID: 36311707 PMCID: PMC9606664 DOI: 10.3389/fimmu.2022.1001598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic autoimmune disease that can lead to joint deformity and loss of function. Recent studies have shown great progress in the research of mesenchymal stem cells (MSCs) in RA. However, thus far, there have been no bibliometric or visualization analyses in this field. This bibliometric analysis provides a comprehensive overview of the general information and research hotspots of MSCs and RA. Methods Articles relevant to MSCs and RA, published between 2012 and 2021, were searched using the Web of Science Core Collection database. Irrelevant publications were excluded from the analysis. Bibliometric and visualization analyses were conducted using VOSviewer, CiteSpace, and Scimago Graphica. Results A total of 577 articles were analyzed. The annual number of publications increased from 2012 to 2017 and plateaued from 2017 to 2021. China and the USA had the largest number of publications. Collaboration among different organizations mainly occurs between institutes of the same country. Stem Cell Research and Therapy and Frontiers in Immunology were the most popular journals in this field. All the top 20 co-cited authors had a positive co-citation relationship. The top references indicate that MSCs can contribute to RA research and treatment mainly via immunomodulation. From 2012 to 2021, “collagen-induced arthritis,” “immunomodulation,” and “therapy” were some of the keywords associated with MSCs and RA, while “extracellular vesicles” showed a strong keyword burst from 2019 to 2021. Conclusion MSCs and RA have been widely studied in different countries and institutions and by different authors over the last ten years. China and the USA had the largest number of publications. Different types of journals provide admirable sources for researchers. Some keywords, including immunomodulation and extracellular vesicles, may be hot spots in the near future. There will be more basic research and clinical translation of MSCs and RA, and substantial new treatments for RA will soon be developed.
Collapse
Affiliation(s)
- Jiaxi Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Jinfang Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Qing Niu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Fengping Wu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Zewen Wu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- *Correspondence: Liyun Zhang,
| |
Collapse
|
10
|
Shokrani A, Shokrani H, Munir MT, Kucinska-Lipka J, Yazdi MK, Saeb MR. Monitoring osteoarthritis: A simple mathematical model. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
11
|
Marsh S, Constantin-Teodosiu T, Chapman V, Sottile V. In vitro Exposure to Inflammatory Mediators Affects the Differentiation of Mesenchymal Progenitors. Front Bioeng Biotechnol 2022; 10:908507. [PMID: 35813997 PMCID: PMC9257013 DOI: 10.3389/fbioe.2022.908507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/23/2022] [Indexed: 11/27/2022] Open
Abstract
The increasing prevalence of joint disease, and in particular osteoarthritis (OA), calls for novel treatment strategies to prevent disease progression in addition to existing approaches focusing mainly on the relief of pain symptoms. The inherent properties of mesenchymal stem cells (MSCs) make them an attractive candidate for novel tissue repair strategies, as these progenitors have the potential to differentiate into chondrocytes needed to replace degraded cartilage and can exert a modulating effect on the inflammatory environment of the diseased joint. However, the inflammatory environment of the joint may affect the ability of these cells to functionally integrate into the host tissue and exert beneficial effects, as hinted by a lack of success seen in clinical trials. Identification of factors and cell signalling pathways that influence MSC function is therefore critical for ensuring their success in the clinic, and here the effects of inflammatory mediators on bone marrow-derived MSCs were evaluated. Human MSCs were cultured in the presence of inflammatory mediators typically associated with OA pathology (IL-1β, IL-8, IL-10). While exposure to these factors did not produce marked effects on MSC proliferation, changes were observed when the mediators were added under differentiating conditions. Results collected over 21 days showed that exposure to IL-1β significantly affected the differentiation response of these cells exposed to chondrogenic and osteogenic conditions, with gene expression analysis indicating changes in MAPK, Wnt and TLR signalling pathways, alongside an increased expression of pro-inflammatory cytokines and cartilage degrading enzymes. These results highlight the value of MSCs as a preclinical model to study OA and provide a basis to define the impact of factors driving OA pathology on the therapeutic potential of MSCs for novel OA treatments.
Collapse
Affiliation(s)
- S. Marsh
- School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, United Kingdom
| | - T. Constantin-Teodosiu
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, United Kingdom
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - V. Chapman
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, United Kingdom
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - V. Sottile
- School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, United Kingdom
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- *Correspondence: V. Sottile,
| |
Collapse
|
12
|
Campbell TM, Dilworth FJ, Allan DS, Trudel G. The Hunt Is On! In Pursuit of the Ideal Stem Cell Population for Cartilage Regeneration. Front Bioeng Biotechnol 2022; 10:866148. [PMID: 35711627 PMCID: PMC9196866 DOI: 10.3389/fbioe.2022.866148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/27/2022] [Indexed: 01/15/2023] Open
Abstract
Cartilage injury and degeneration are hallmarks of osteoarthritis (OA), the most common joint disease. OA is a major contributor to pain, loss of function, and reduced quality of life. Over the last decade, considerable research efforts have focused on cell-based therapies, including several stem cell-derived approaches to reverse the cartilage alterations associated with OA. Although several tissue sources for deriving cell-based therapies have been identified, none of the resident stem cell populations have adequately fulfilled the promise of curing OA. Indeed, many cell products do not contain true stem cells. As well, issues with aggressive marketing efforts, combined with a lack of evidence regarding efficacy, lead the several national regulatory bodies to discontinue the use of stem cell therapy for OA until more robust evidence becomes available. A review of the evidence is timely to address the status of cell-based cartilage regeneration. The promise of stem cell therapy is not new and has been used successfully to treat non-arthritic diseases, such as hematopoietic and muscle disorders. These fields of regenerative therapy have the advantage of a considerable foundation of knowledge in the area of stem cell repair mechanisms, the role of the stem cell niche, and niche-supporting cells. This foundation is lacking in the field of cartilage repair. So, where should we look for the ideal stem cell to regenerate cartilage? It has recently been discovered that cartilage itself may contain a population of SC-like progenitors. Other potential tissues include stem cell-rich dental pulp and the adolescent growth plate, the latter of which contains chondrocyte progenitors essential for producing the cartilage scaffold needed for bone growth. In this article, we review the progress on stem cell therapies for arthritic disorders, focusing on the various stem cell populations previously used for cartilage regeneration, successful cases of stem cell therapies in muscle and hemopoietic disorders, some of the reasons why these other fields have been successful (i.e., "lessons learned" to be applied to OA stem cell therapy), and finally, novel potential sources of stem cells for regenerating damaged cartilage in vivo.
Collapse
Affiliation(s)
- T Mark Campbell
- Elisabeth Bruyère Hospital, Ottawa, ON, Canada
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - F Jeffrey Dilworth
- Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - David S Allan
- Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
| | - Guy Trudel
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
- Department of Biochemistry, Immunology and Microbiology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
13
|
Connection between Mesenchymal Stem Cells Therapy and Osteoclasts in Osteoarthritis. Int J Mol Sci 2022; 23:ijms23094693. [PMID: 35563083 PMCID: PMC9102843 DOI: 10.3390/ijms23094693] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022] Open
Abstract
The use of mesenchymal stem cells constitutes a promising therapeutic approach, as it has shown beneficial effects in different pathologies. Numerous in vitro, pre-clinical, and, to a lesser extent, clinical trials have been published for osteoarthritis. Osteoarthritis is a type of arthritis that affects diarthritic joints in which the most common and studied effect is cartilage degradation. Nowadays, it is known that osteoarthritis is a disease with a very powerful inflammatory component that affects the subchondral bone and the rest of the tissues that make up the joint. This inflammatory component may induce the differentiation of osteoclasts, the bone-resorbing cells. Subchondral bone degradation has been suggested as a key process in the pathogenesis of osteoarthritis. However, very few published studies directly focus on the activity of mesenchymal stem cells on osteoclasts, contrary to what happens with other cell types of the joint, such as chondrocytes, synoviocytes, and osteoblasts. In this review, we try to gather the published bibliography in relation to the effects of mesenchymal stem cells on osteoclastogenesis. Although we find promising results, we point out the need for further studies that can support mesenchymal stem cells as a therapeutic tool for osteoclasts and their consequences on the osteoarthritic joint.
Collapse
|