1
|
Ferreiro MD, Gallegos MT. Distinctive features of the Gac-Rsm pathway in plant-associated Pseudomonas. Environ Microbiol 2021; 23:5670-5689. [PMID: 33939255 DOI: 10.1111/1462-2920.15558] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 02/04/2023]
Abstract
Productive plant-bacteria interactions, either beneficial or pathogenic, require that bacteria successfully sense, integrate and respond to continuously changing environmental and plant stimuli. They use complex signal transduction systems that control a vast array of genes and functions. The Gac-Rsm global regulatory pathway plays a key role in controlling fundamental aspects of the apparently different lifestyles of plant beneficial and phytopathogenic Pseudomonas as it coordinates adaptation and survival while either promoting plant health (biocontrol strains) or causing disease (pathogenic strains). Plant-interacting Pseudomonas stand out for possessing multiple Rsm proteins and Rsm RNAs, but the physiological significance of this redundancy is not yet clear. Strikingly, the components of the Gac-Rsm pathway and the controlled genes/pathways are similar, but the outcome of its regulation may be opposite. Therefore, identifying the target mRNAs bound by the Rsm proteins and their mode of action (repression or activation) is essential to explain the resulting phenotype. Some technical considerations to approach the study of this system are also given. Overall, several important features of the Gac-Rsm cascade are now understood in molecular detail, particularly in Pseudomonas protegens CHA0, but further questions remain to be solved in other plant-interacting Pseudomonas.
Collapse
Affiliation(s)
- María-Dolores Ferreiro
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - María-Trinidad Gallegos
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| |
Collapse
|
2
|
Latour X. The Evanescent GacS Signal. Microorganisms 2020; 8:microorganisms8111746. [PMID: 33172195 PMCID: PMC7695008 DOI: 10.3390/microorganisms8111746] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/18/2022] Open
Abstract
The GacS histidine kinase is the membrane sensor of the major upstream two-component system of the regulatory Gac/Rsm signal transduction pathway. This pathway governs the expression of a wide range of genes in pseudomonads and controls bacterial fitness and motility, tolerance to stress, biofilm formation, and virulence or plant protection. Despite the importance of these roles, the ligands binding to the sensor domain of GacS remain unknown, and their identification is an exciting challenge in this domain. At high population densities, the GacS signal triggers a switch from primary to secondary metabolism and a change in bacterial lifestyle. It has been suggested, based on these observations, that the GacS signal is a marker of the emergence of nutritional stress and competition. Biochemical investigations have yet to characterize the GacS signal fully. However, they portray this cue as a low-molecular weight, relatively simple and moderately apolar metabolite possibly resembling, but nevertheless different, from the aliphatic organic acids acting as quorum-sensing signaling molecules in other Proteobacteria. Significant progress in the development of metabolomic tools and new databases dedicated to Pseudomonas metabolism should help to unlock some of the last remaining secrets of GacS induction, making it possible to control the Gac/Rsm pathway.
Collapse
Affiliation(s)
- Xavier Latour
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), Normandy University (University of Rouen Normandy), 55 rue Saint-Germain, 27000 Evreux, France;
- Research Federation NORVEGE Fed4277, Normandy University, F-76821 Mont-Saint-Aignan, France
| |
Collapse
|
3
|
Agaras BC, Iriarte A, Valverde CF. Genomic insights into the broad antifungal activity, plant-probiotic properties, and their regulation, in Pseudomonas donghuensis strain SVBP6. PLoS One 2018. [PMID: 29538430 PMCID: PMC5851621 DOI: 10.1371/journal.pone.0194088] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Plant-growth promotion has been linked to the Pseudomonas genus since the beginning of this research field. In this work, we mined the genome of an Argentinean isolate of the recently described species P. donghuensis. Strain SVBP6, isolated from bulk soil of an agricultural plot, showed a broad antifungal activity and several other plant-probiotic activities. As this species has been recently described, and it seems like some plant-growth promoting (PGP) traits do not belong to the classical pseudomonads toolbox, we decide to explore the SVBP6 genome via an bioinformatic approach. Genome inspection confirmed our previous in vitro results about genes involved in several probiotic activities. Other genetic traits possibly involved in survival of SVBP6 in highly competitive environments, such as rhizospheres, were found. Tn5 mutagenesis revealed that the antifungal activity against the soil pathogen Macrophomina phaseolina was dependent on a functional gacS gene, from the regulatory cascade Gac-Rsm, but it was not due to volatile compounds. Altogether, our genomic analyses and in vitro tests allowed the phylogenetic assignment and provided the first insights into probiotic properties of the first P. donghuensis isolate from the Americas.
Collapse
Affiliation(s)
- Betina Cecilia Agaras
- Laboratorio de Bioquímica, Microbiología e Interacciones Biológicas en el Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrés Iriarte
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Claudio Fabián Valverde
- Laboratorio de Bioquímica, Microbiología e Interacciones Biológicas en el Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
4
|
Nealon NJ, Worcester CR, Ryan EP. Lactobacillus paracasei metabolism of rice bran reveals metabolome associated with Salmonella Typhimurium growth reduction. J Appl Microbiol 2017; 122:1639-1656. [PMID: 28371001 PMCID: PMC5518229 DOI: 10.1111/jam.13459] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 03/07/2017] [Accepted: 03/13/2017] [Indexed: 12/20/2022]
Abstract
AIMS This study aimed to determine the effect of a cell-free supernatant of Lactobacillus paracasei ATCC 27092 with and without rice bran extract (RBE) on Salmonella Typhimurium 14028s growth, and to identify a metabolite profile with antimicrobial functions. METHODS AND RESULTS Supernatant was collected from overnight cultures of L. paracasei incubated in the presence (LP+RBE) or absence (LP) of RBE and applied to S. Typhimurium. LP+RBE reduced 13·1% more S. Typhimurium growth than LP after 16 h (P < 0·05). Metabolite profiles of LP and LP+RBE were examined using nontargeted global metabolomics consisting of ultra-high-performance liquid chromatography coupled with tandem mass spectrometry. A comparison of LP and LP+RBE revealed 84 statistically significant metabolites (P < 0·05), where 20 were classified with antimicrobial functions. CONCLUSIONS LP+RBE reduced S. Typhimurium growth to a greater extent than LP, and the metabolite profile distinctions suggested that RBE favourably modulates the metabolism of L. paracasei. These findings warrant continued investigation of probiotic and RBE antimicrobial activities across microenvironments and matrices where S. Typhimurium exposure is problematic. SIGNIFICANCE AND IMPACT OF THE STUDY This study showed a novel metabolite profile of probiotic L. paracasei and prebiotic rice bran that increased antimicrobial activity against S. Typhimurium.
Collapse
Affiliation(s)
- N J Nealon
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - C R Worcester
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - E P Ryan
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
5
|
Cheng X, Cordovez V, Etalo DW, van der Voort M, Raaijmakers JM. Role of the GacS Sensor Kinase in the Regulation of Volatile Production by Plant Growth-Promoting Pseudomonas fluorescens SBW25. FRONTIERS IN PLANT SCIENCE 2016; 7:1706. [PMID: 27917180 PMCID: PMC5114270 DOI: 10.3389/fpls.2016.01706] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 10/31/2016] [Indexed: 05/25/2023]
Abstract
In plant-associated Pseudomonas species, the production of several secondary metabolites and exoenzymes is regulated by the GacS/GacA two-component regulatory system (the Gac-system). Here, we investigated if a mutation in the GacS sensor kinase affects the production of volatile organic compounds (VOCs) in P. fluorescens SBW25 (Pf.SBW25) and how this impacts on VOCs-mediated growth promotion and induced systemic resistance of Arabidopsis and tobacco. A total of 205 VOCs were detected by Gas Chromatography Mass Spectrometry for Pf. SBW25 and the gacS-mutant grown on two different media for 3 and 6 days. Discriminant function analysis followed by hierarchical clustering revealed 24 VOCs that were significantly different in their abundance between Pf.SBW25 and the gacS-mutant, which included three acyclic alkenes (3-nonene, 4-undecyne, 1-undecene). These alkenes were significantly reduced by the gacS mutation independently of the growth media and of the incubation time. For Arabidopsis, both Pf.SBW25 and the gacS-mutant enhanced, via VOCs, root and shoot biomass, induced systemic resistance against leaf infections by P. syringae and rhizosphere acidification to the same extent. For tobacco, however, VOCs-mediated effects on shoot and root growth were significantly different between Pf.SBW25 and the gacS-mutant. While Pf.SBW25 inhibited tobacco root growth, the gacS-mutant enhanced root biomass and lateral root formation relative to the non-treated control plants. Collectively these results indicate that the sensor kinase GacS is involved in the regulation of VOCs production in Pf.SBW25, affecting plant growth in a plant species-dependent manner.
Collapse
Affiliation(s)
- Xu Cheng
- Laboratory of Phytopathology, Wageningen UniversityWageningen, Netherlands
| | - Viviane Cordovez
- Department of Microbial Ecology, Netherlands Institute of EcologyWageningen, Netherlands
| | - Desalegn W. Etalo
- Department of Microbial Ecology, Netherlands Institute of EcologyWageningen, Netherlands
| | | | - Jos M. Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of EcologyWageningen, Netherlands
- Institute of Biology Leiden, Leiden UniversityLeiden, Netherlands
| |
Collapse
|
6
|
Liu Y, Rzeszutek E, van der Voort M, Wu CH, Thoen E, Skaar I, Bulone V, Dorrestein PC, Raaijmakers JM, de Bruijn I. Diversity of Aquatic Pseudomonas Species and Their Activity against the Fish Pathogenic Oomycete Saprolegnia. PLoS One 2015; 10:e0136241. [PMID: 26317985 PMCID: PMC4552890 DOI: 10.1371/journal.pone.0136241] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/30/2015] [Indexed: 12/20/2022] Open
Abstract
Emerging fungal and oomycete pathogens are increasingly threatening animals and plants globally. Amongst oomycetes, Saprolegnia species adversely affect wild and cultivated populations of amphibians and fish, leading to substantial reductions in biodiversity and food productivity. With the ban of several chemical control measures, new sustainable methods are needed to mitigate Saprolegnia infections in aquaculture. Here, PhyloChip-based community analyses showed that the Pseudomonadales, particularly Pseudomonas species, represent one of the largest bacterial orders associated with salmon eggs from a commercial hatchery. Among the Pseudomonas species isolated from salmon eggs, significantly more biosurfactant producers were retrieved from healthy salmon eggs than from Saprolegnia-infected eggs. Subsequent in vivo activity bioassays showed that Pseudomonas isolate H6 significantly reduced salmon egg mortality caused by Saprolegnia diclina. Live colony mass spectrometry showed that strain H6 produces a viscosin-like lipopeptide surfactant. This biosurfactant inhibited growth of Saprolegnia in vitro, but no significant protection of salmon eggs against Saprolegniosis was observed. These results indicate that live inocula of aquatic Pseudomonas strains, instead of their bioactive compound, can provide new (micro)biological and sustainable means to mitigate oomycete diseases in aquaculture.
Collapse
Affiliation(s)
- Yiying Liu
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Elzbieta Rzeszutek
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden
| | - Menno van der Voort
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Cheng-Hsuan Wu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- Department of Chemistry, Boston University, Boston, United States of America
| | - Even Thoen
- Norwegian Veterinary Institute, Oslo, Norway
- Norwegian University of Life Sciences, Oslo, Norway
| | - Ida Skaar
- Norwegian Veterinary Institute, Oslo, Norway
| | - Vincent Bulone
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden
| | - Pieter C. Dorrestein
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
- Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
| | - Jos M. Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Irene de Bruijn
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|