1
|
Byeon E, Jeong H, Lee YJ, Cho Y, Lee KW, Lee E, Jeong CB, Lee JS, Kang HM. Effects of microplastics and phenanthrene on gut microbiome and metabolome alterations in the marine medaka Oryzias melastigma. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132620. [PMID: 37757554 DOI: 10.1016/j.jhazmat.2023.132620] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/10/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Plastic pollution of the oceans is increasing, and toxic interactions between microplastics (MPs) and organic pollutants have become a major environmental concern. However, the combined effects of organic pollutants and MPs on microbiomes and metabolomes have not been studied extensively. In the present study, to evaluate whether MPs and phenanthrene (Phe) act synergistically in the guts of marine medaka (Oryzias melastigma), we performed toxicity assessments, 16 S rRNA gene sequencing, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses. Our investigations revealed increased toxicity induced by Phe, as well as disturbances in gut microbiota (known as dysbiosis) when MPs were present. Furthermore, combined exposure to Phe and MPs resulted in greater alterations to microbiota composition and metabolite profiles. Notably, MP exposure was distinctly associated with the abundance of Shewanella and Spongiibacteraceae, while Phe exposure was associated with the abundance of Marimicrobium. Among key microbiota, Marimicrobium and Roseibacillus were significantly correlated with metabolites responsible for coenzyme A and glycerophospholipid metabolism in medaka. These results suggest that interactions between Phe and MPs may have significant effects on the gut microbiota and metabolism of aquatic organisms and underscore the importance of acknowledging the interplay between MPs and contaminants in aquatic environments.
Collapse
Affiliation(s)
- Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Haksoo Jeong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Yeon-Ju Lee
- Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science and Technology, Busan 49111, South Korea; KIOST School, University of Science and Technology, Daejeon 34113, South Korea
| | - Yeonwoo Cho
- Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science and Technology, Busan 49111, South Korea; KIOST School, University of Science and Technology, Daejeon 34113, South Korea
| | - Kyun-Woo Lee
- Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science and Technology, Busan 49111, South Korea; KIOST School, University of Science and Technology, Daejeon 34113, South Korea
| | - Euihyeon Lee
- Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science and Technology, Busan 49111, South Korea; KIOST School, University of Science and Technology, Daejeon 34113, South Korea
| | - Chang-Bum Jeong
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hye-Min Kang
- Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science and Technology, Busan 49111, South Korea; KIOST School, University of Science and Technology, Daejeon 34113, South Korea.
| |
Collapse
|
2
|
Chen H, Ji C, Hu H, Hu S, Yue S, Zhao M. Bacterial community response to chronic heavy metal contamination in marine sediments of the East China Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119280. [PMID: 35500712 DOI: 10.1016/j.envpol.2022.119280] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Marine sediments act as a sink for various heavy metals, which may have profound impact on sedimentary microbiota. However, our knowledge about the collaborative response of bacterial community to chronic heavy metal contamination remains little. In this study, concentrations of seven heavy metals (As, Cd, Cr, Cu, Hg, Pb, and Zn) in sediments collected from the East China Sea were analyzed and Illumina Miseq 16 S rRNA sequencing was applied to characterize the structure of bacterial community. Microbiota inhabiting sediments in the East China Sea polluted with heavy metals showed different community composition from relatively pristine sites. The response of bacterial community to heavy metal stress was further interrogated with weighted correlation network analysis (WGCNA). WGCNA revealed ten bacterial modules exhibiting distinct co-occurrence patterns and among them, five modules were related to heavy metal pollution. Three of them were positively correlated with an increase in at least one heavy metal concentration, hubs (more influential bacterial taxa) of which were previously reported to be involved in the geochemical cycling of heavy metals or possess tolerance to heavy metals, while another two modules showed opposite patterns. Our research suggested that ecological functional transition might have occurred in East China Sea sediments by shifts of community composition with sensitive modules majorly involved in the meaningful global biogeochemical cycling of carbon, sulfur, and nitrogen replaced by more tolerant groups of bacteria due to long-term exposure to low-concentration heavy metals. Hubs may serve as indicators of perturbations of benthic bacterial community caused by heavy metal pollution and support monitoring remediation of polluted sites in marine environments.
Collapse
Affiliation(s)
- Haofeng Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chenyang Ji
- Zhejiang Provincial Key Laboratory of Pollution Exposure and Health Intervention Technology, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Hongmei Hu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China; Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan, 316021, China
| | - Shilei Hu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Siqing Yue
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
3
|
Tucker AE, Brown SP. Sampling a gradient of red snow algae bloom density reveals novel connections between microbial communities and environmental features. Sci Rep 2022; 12:10536. [PMID: 35732638 PMCID: PMC9217940 DOI: 10.1038/s41598-022-13914-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/30/2022] [Indexed: 12/03/2022] Open
Abstract
Snow algae blooms and associated microbial communities play large roles in snow ecosystem processes. Patterns and mechanisms underpinning snow algae bloom spatial distribution and associated microbial community assembly dynamics are poorly understood. Here we examine associations of microbial communities and environmental measures between/within snow algae blooms. Snows from the Cascade Mountains and the Rocky Mountains (USA) were collected from medial (M), peripheral (P), and adjacent (A) zones of red snow algae blooms. Medial snow shows increased levels of pollen, lower oxidation–reduction potential, decreased algal and increased bacterial richness, and increased levels of potassium when compared to A and P within the same bloom. Between the Cascade and Rocky Mountains, fungal communities are distinct but bacterial and algal communities show little differentiation. A weighted OTU co-expression analysis (WOCNA) explores OTU modules and their differential correlation with environmental features, suggesting certain subcommunities may be altered by ecological patterns. Individual OTU interaction networks (fungi and bacteria) show high levels of connectivity compared to networks based on the red snow alga Sanguina nivaloides, which underscores associative differences between algal dominated networks and other taxa.
Collapse
Affiliation(s)
- Avery E Tucker
- Department of Biological Sciences, The University of Memphis, Memphis, TN, 38152, USA. .,Center for Biodiversity Research, The University of Memphis, Memphis, TN, 38152, USA.
| | - Shawn P Brown
- Department of Biological Sciences, The University of Memphis, Memphis, TN, 38152, USA.,Center for Biodiversity Research, The University of Memphis, Memphis, TN, 38152, USA
| |
Collapse
|
4
|
Beman JM, Vargas SM, Wilson JM, Perez-Coronel E, Karolewski JS, Vazquez S, Yu A, Cairo AE, White ME, Koester I, Aluwihare LI, Wankel SD. Substantial oxygen consumption by aerobic nitrite oxidation in oceanic oxygen minimum zones. Nat Commun 2021; 12:7043. [PMID: 34857761 PMCID: PMC8639706 DOI: 10.1038/s41467-021-27381-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/15/2021] [Indexed: 01/04/2023] Open
Abstract
Oceanic oxygen minimum zones (OMZs) are globally significant sites of biogeochemical cycling where microorganisms deplete dissolved oxygen (DO) to concentrations <20 µM. Amid intense competition for DO in these metabolically challenging environments, aerobic nitrite oxidation may consume significant amounts of DO and help maintain low DO concentrations, but this remains unquantified. Using parallel measurements of oxygen consumption rates and 15N-nitrite oxidation rates applied to both water column profiles and oxygen manipulation experiments, we show that the contribution of nitrite oxidation to overall DO consumption systematically increases as DO declines below 2 µM. Nitrite oxidation can account for all DO consumption only under DO concentrations <393 nM found in and below the secondary chlorophyll maximum. These patterns are consistent across sampling stations and experiments, reflecting coupling between nitrate reduction and nitrite-oxidizing Nitrospina with high oxygen affinity (based on isotopic and omic data). Collectively our results demonstrate that nitrite oxidation plays a pivotal role in the maintenance and biogeochemical dynamics of OMZs.
Collapse
Affiliation(s)
- J. M. Beman
- grid.266096.d0000 0001 0049 1282Life and Environmental Sciences, University of California, Merced, Merced, CA USA
| | - S. M. Vargas
- grid.266096.d0000 0001 0049 1282Life and Environmental Sciences, University of California, Merced, Merced, CA USA
| | - J. M. Wilson
- grid.266096.d0000 0001 0049 1282Life and Environmental Sciences, University of California, Merced, Merced, CA USA ,grid.266100.30000 0001 2107 4242Scripps Institution of Oceanography, University of California, San Diego, CA USA
| | - E. Perez-Coronel
- grid.266096.d0000 0001 0049 1282Life and Environmental Sciences, University of California, Merced, Merced, CA USA
| | - J. S. Karolewski
- grid.56466.370000 0004 0504 7510Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA USA
| | - S. Vazquez
- grid.266096.d0000 0001 0049 1282Life and Environmental Sciences, University of California, Merced, Merced, CA USA
| | - A. Yu
- grid.266096.d0000 0001 0049 1282Life and Environmental Sciences, University of California, Merced, Merced, CA USA
| | - A. E. Cairo
- grid.266096.d0000 0001 0049 1282Life and Environmental Sciences, University of California, Merced, Merced, CA USA
| | - M. E. White
- grid.266100.30000 0001 2107 4242Scripps Institution of Oceanography, University of California, San Diego, CA USA
| | - I. Koester
- grid.266100.30000 0001 2107 4242Scripps Institution of Oceanography, University of California, San Diego, CA USA
| | - L. I. Aluwihare
- grid.266100.30000 0001 2107 4242Scripps Institution of Oceanography, University of California, San Diego, CA USA
| | - S. D. Wankel
- grid.56466.370000 0004 0504 7510Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA USA
| |
Collapse
|
5
|
Wilson JM, Chamberlain EJ, Erazo N, Carter ML, Bowman JS. Recurrent microbial community types driven by nearshore and seasonal processes in coastal Southern California. Environ Microbiol 2021; 23:3225-3239. [PMID: 33928761 DOI: 10.1111/1462-2920.15548] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/26/2021] [Indexed: 01/04/2023]
Abstract
A multitude of concurrent biological and physical processes contribute to microbial community turnover, especially in highly dynamic coastal environments. Characterizing what factors contribute most to shifts in microbial community structure and the specific organisms that correlate with changes in the products of photosynthesis improves our understanding of nearshore microbial ecosystem functions. We conducted high frequency sampling in nearshore Southern California in order to capture sub-weekly microbial community dynamics. Microbial communities were characterized by flow cytometry and 16S rRNA gene sequencing, and placed in the context of physicochemical parameters. Within our time-series, season and nutrient availability corresponded to changes in dominant microbial community members. Concurrent aseasonal drivers with overlapping scales of variability were also apparent when we used network analysis to assess the microbial community as subsets of the whole. Our analyses revealed the microbial community as a mosaic, with overlapping groups of taxa that varied on different timescales and correlated with unique abiotic and biotic factors. Specifically, a subnetwork associated with chlorophyll a exhibited rapid turnover, indicating that ecologically important subsets of the microbial community can change on timescales different than and in response to factors other than those that govern turnover of most members of the assemblage.
Collapse
Affiliation(s)
- Jesse M Wilson
- Scripps Institution of Oceanography, UCSD, La Jolla, CA, USA
| | | | - Natalia Erazo
- Scripps Institution of Oceanography, UCSD, La Jolla, CA, USA
| | | | - Jeff S Bowman
- Scripps Institution of Oceanography, UCSD, La Jolla, CA, USA.,Center for Microbiome Innovation, UCSD, La Jolla, CA, USA.,Center for Marine Biodiversity and Conservation, UCSD, La Jolla, CA, USA
| |
Collapse
|
6
|
Lee KH, Guo J, Song Y, Ariff A, O’Sullivan M, Hales B, Mullins BJ, Zhang G. Dysfunctional Gut Microbiome Networks in Childhood IgE-Mediated Food Allergy. Int J Mol Sci 2021; 22:ijms22042079. [PMID: 33669849 PMCID: PMC7923212 DOI: 10.3390/ijms22042079] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/07/2021] [Accepted: 02/15/2021] [Indexed: 12/31/2022] Open
Abstract
The development of food allergy has been reported to be related with the changes in the gut microbiome, however the specific microbe associated with the pathogenesis of food allergy remains elusive. This study aimed to comprehensively characterize the gut microbiome and identify individual or group gut microbes relating to food-allergy using 16S rRNA gene sequencing with network analysis. Faecal samples were collected from children with IgE-mediated food allergies (n = 33) and without food allergy (n = 27). Gut microbiome was profiled by 16S rRNA gene sequencing. OTUs obtained from 16S rRNA gene sequencing were then used to construct a co-abundance network using Weighted Gene Co-expression Network Analysis (WGCNA) and mapped onto Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. We identified a co-abundance network module to be positively correlated with IgE-mediated food allergy and this module was characterized by a hub taxon, namely Ruminococcaceae UCG-002 (phylum Firmicutes). Functional pathway analysis of all the gut microbiome showed enrichment of methane metabolism and glycerolipid metabolism in the gut microbiome of food-allergic children and enrichment of ubiquinone and other terpenoid-quinone biosynthesis in the gut microbiome of non-food allergic children. We concluded that Ruminococcaceae UCG-002 may play determinant roles in gut microbial community structure and function leading to the development of IgE-mediated food allergy.
Collapse
Affiliation(s)
- Khui Hung Lee
- School of Public Health, Curtin University of Technology, Bentley, WA 6102, Australia; (K.H.L.); (J.G.)
| | - Jing Guo
- School of Public Health, Curtin University of Technology, Bentley, WA 6102, Australia; (K.H.L.); (J.G.)
| | - Yong Song
- The Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool St, Hobart, TAS 7000, Australia;
| | - Amir Ariff
- School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2052, Australia;
| | - Michael O’Sullivan
- Department of Immunology, Perth Children’s Hospital, Nedlands, WA 6009, Australia
| | - Belinda Hales
- Telethon Kids Institute, University of Western Australia, West Perth, WA 6872, Australia;
| | - Benjamin J. Mullins
- School of Public Health, Curtin University of Technology, Bentley, WA 6102, Australia; (K.H.L.); (J.G.)
- Correspondence: (B.J.M.); (G.Z.); Tel.: +61-9266-7029 (B.J.M.); +61-8-9266-3226 (G.Z.)
| | - Guicheng Zhang
- School of Public Health, Curtin University of Technology, Bentley, WA 6102, Australia; (K.H.L.); (J.G.)
- Curtin Health Innovation Research Institute, Curtin University, Kent St, Bentley, WA 6102, Australia
- Infection and Immunity, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6000, Australia
- Correspondence: (B.J.M.); (G.Z.); Tel.: +61-9266-7029 (B.J.M.); +61-8-9266-3226 (G.Z.)
| |
Collapse
|
7
|
Biogeochemical Responses and Seasonal Dynamics of the Benthic Boundary Layer Microbial Communities during the El Niño 2015 in an Eastern Boundary Upwelling System. WATER 2021. [DOI: 10.3390/w13020180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Eastern South Pacific coastal zone is characterized by seasonal and interannual variability, driven by upwelling and El Niño Southern Oscillation (ENSO), respectively. These oceanographical conditions influence microbial communities and their contribution to nutrient and greenhouse gases recycling, especially in bottom waters due to oxygenation. This article addresses the seasonal hydrographic and biogeochemical conditions in the water and sediments during El Niño 2015. Bottom water active microbial communities, including nitrifiers, were studied using amplicon sequencing of 16S rRNA (cDNA) and RT-qPCR, respectively. The results of the hydrographic analysis showed changes in the water column associated with the predominance of sub-Antarctic Waters characterized by warmed and low nutrients in the surface and more oxygenated conditions at the bottom in comparison with El Niño 2014. The organic matter quantity and quality decreased during fall and winter. The bottom water active microbial assemblages were dominated by archaea (Ca. Poseidoniales) and putative ammonia oxidizing archaea. Active bacteria affiliated to SAR11, Marinimicrobia and Nitrospina, and oxygen deficient realms (Desulfobacterales, SUP05 clade and anammox) suffered variations, possibly associated with oxygen and redox conditions in the benthic boundary layer. Nitrifying functional groups contributed significantly more during late fall and winter which was consistent with higher bottom water oxygenation. Relationships between apparent oxygen utilization nitrate and nitrous oxide in the water support the contribution of nitrification to this greenhouse gas distribution in the water. In general, our study suggests that seasonal oceanographic variability during an El Niño year influences the microbial community and thus remineralization potential, which supports the need to carry out longer time series to identify the relevance of seasonality under ENSO in Eastern Boundary Upwelling Systems (EBUS) areas.
Collapse
|
8
|
Beman JM, Vargas SM, Vazquez S, Wilson JM, Yu A, Cairo A, Perez-Coronel E. Biogeochemistry and hydrography shape microbial community assembly and activity in the eastern tropical North Pacific Ocean oxygen minimum zone. Environ Microbiol 2020; 23:2765-2781. [PMID: 32869485 DOI: 10.1111/1462-2920.15215] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 11/29/2022]
Abstract
Oceanic oxygen minimum zones (OMZs) play a pivotal role in biogeochemical cycles due to extensive microbial activity. How OMZ microbial communities assemble and respond to environmental variation is therefore essential to understanding OMZ functioning and ocean biogeochemistry. Sampling along depth profiles at five stations in the eastern tropical North Pacific Ocean (ETNP), we captured systematic variations in dissolved oxygen (DO) and associated variables (nitrite, chlorophyll, and ammonium) with depth and between stations. We quantitatively analysed relationships between oceanographic gradients and microbial community assembly and activity based on paired 16S rDNA and 16S rRNA sequencing. Overall microbial community composition and diversity were strongly related to regional variations in density, DO, and other variables (regression and redundancy analysis r2 = 0.68-0.82), displaying predictable patterns with depth and between stations. Although similar factors influenced the active community, diversity was substantially lower within the OMZ. We also identified multiple active microbiological networks that tracked specific gradients or features - particularly subsurface ammonium and nitrite maxima. Our findings indicate that overall microbial community assembly is consistently shaped by hydrography and biogeochemistry, while active segments of the community form discrete networks inhabiting distinct portions of the water column, and that both are tightly tuned to environmental conditions in the ETNP.
Collapse
Affiliation(s)
- J Michael Beman
- Life and Environmental Sciences, University of California, Merced, CA, USA
| | - Sonia Marie Vargas
- Life and Environmental Sciences, University of California, Merced, CA, USA
| | - Samantha Vazquez
- Life and Environmental Sciences, University of California, Merced, CA, USA
| | - Jesse Mac Wilson
- Life and Environmental Sciences, University of California, Merced, CA, USA.,Scripps Institution of Oceanography, University of California, San Diego, CA, USA
| | - Angela Yu
- Life and Environmental Sciences, University of California, Merced, CA, USA
| | - Ariadna Cairo
- Life and Environmental Sciences, University of California, Merced, CA, USA
| | | |
Collapse
|
9
|
Rapacciuolo G, Beman JM, Schiebelhut LM, Dawson MN. Microbes and macro-invertebrates show parallel β-diversity but contrasting α-diversity patterns in a marine natural experiment. Proc Biol Sci 2019; 286:20190999. [PMID: 31594510 DOI: 10.1098/rspb.2019.0999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Documenting ecological patterns across spatially, temporally and taxonomically diverse ecological communities is necessary for a general understanding of the processes shaping biodiversity. A major gap in our understanding remains the comparison of diversity patterns across a broad spectrum of evolutionarily and functionally diverse organisms, particularly in the marine realm. Here, we aim to narrow this gap by comparing the diversity patterns of free-living microbes and macro-invertebrates across a natural experiment provided by the marine lakes of Palau: geographically discrete and environmentally heterogeneous bodies of seawater with comparable geological and climatic history, and a similar regional species pool. We find contrasting patterns of α-diversity but remarkably similar patterns of β-diversity between microbial and macro-invertebrate communities among lakes. Pairwise dissimilarities in community composition among lakes are positively correlated between microbes and macro-invertebrates, and influenced to a similar degree by marked gradients in oxygen concentration and salinity. Our findings indicate that a shared spatio-temporal and environmental context may result in parallel patterns of β-diversity in microbes and macro-invertebrates, in spite of key trait differences between these organisms. This raises the possibility that parallel processes also influence transitions among regional biota across the tree of life, at least in the marine realm.
Collapse
Affiliation(s)
- Giovanni Rapacciuolo
- Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, CA, USA.,Life and Environmental Sciences, University of California Merced, Merced, CA, USA
| | - J Michael Beman
- Life and Environmental Sciences, University of California Merced, Merced, CA, USA
| | - Lauren M Schiebelhut
- Life and Environmental Sciences, University of California Merced, Merced, CA, USA
| | - Michael N Dawson
- Life and Environmental Sciences, University of California Merced, Merced, CA, USA
| |
Collapse
|
10
|
Pfister CA, Altabet MA, Weigel BL. Kelp beds and their local effects on seawater chemistry, productivity, and microbial communities. Ecology 2019; 100:e02798. [PMID: 31233610 DOI: 10.1002/ecy.2798] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/11/2019] [Accepted: 05/28/2019] [Indexed: 11/10/2022]
Abstract
Kelp forests are known as key habitats for species diversity and macroalgal productivity; however, we know little about how these biogenic habitats interact with seawater chemistry and phototroph productivity in the water column. We examined kelp forest functions at three locales along the Olympic Peninsula of Washington state by quantifying carbonate chemistry, nutrient concentrations, phytoplankton productivity, and seawater microbial communities inside and outside of kelp beds dominated by the canopy kelp species Nereocystis luetkeana and Macrocystis pyrifera. Kelp beds locally increased the pH, oxygen, and aragonite saturation state of the seawater, but lowered seawater inorganic carbon content and total alkalinity. Although kelp beds depleted nitrate and phosphorus concentrations, ammonium and dissolved organic carbon (DOC) concentrations were enhanced. Kelp beds also decreased chlorophyll concentrations and carbon fixed by phytoplankton, although kelp carbon fixation more than compensated for any difference in phytoplankton production. Kelp beds entrained distinct microbial communities, with higher taxonomic and phylogenetic diversity compared to seawater outside of the kelp bed. Kelp forests thus had significant effects on seawater chemistry, productivity and the microbial assemblages in their proximity. Thereby, the diversity of pathways for carbon and nitrogen cycling was also enhanced. Overall, these observations suggest that the contribution of kelp forests to nearshore carbon and nitrogen cycling is greater than previously documented.
Collapse
Affiliation(s)
- Catherine A Pfister
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, 60637, USA
- Committee on Evolutionary Biology, University of Chicago, Chicago, Illinois, 60637, USA
| | - Mark A Altabet
- School of Marine Sciences, University of Massachusetts, Dartmouth, Massachusetts, 02744, USA
| | - Brooke L Weigel
- Committee on Evolutionary Biology, University of Chicago, Chicago, Illinois, 60637, USA
| |
Collapse
|