1
|
Batianis C, van Rosmalen RP, Major M, van Ee C, Kasiotakis A, Weusthuis RA, Martins Dos Santos VAP. A tunable metabolic valve for precise growth control and increased product formation in Pseudomonas putida. Metab Eng 2023; 75:47-57. [PMID: 36244546 DOI: 10.1016/j.ymben.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022]
Abstract
Metabolic engineering of microorganisms aims to design strains capable of producing valuable compounds under relevant industrial conditions and in an economically competitive manner. From this perspective, and beyond the need for a catalyst, biomass is essentially a cost-intensive, abundant by-product of a microbial conversion. Yet, few broadly applicable strategies focus on the optimal balance between product and biomass formation. Here, we present a genetic control module that can be used to precisely modulate growth of the industrial bacterial chassis Pseudomonas putida KT2440. The strategy is based on the controllable expression of the key metabolic enzyme complex pyruvate dehydrogenase (PDH) which functions as a metabolic valve. By tuning the PDH activity, we accurately controlled biomass formation, resulting in six distinct growth rates with parallel overproduction of excess pyruvate. We deployed this strategy to identify optimal growth patterns that improved the production yield of 2-ketoisovalerate and lycopene by 2.5- and 1.38-fold, respectively. This ability to dynamically steer fluxes to balance growth and production substantially enhances the potential of this remarkable microbial chassis for a wide range of industrial applications.
Collapse
Affiliation(s)
- Christos Batianis
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
| | - Rik P van Rosmalen
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
| | - Monika Major
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
| | - Cheyenne van Ee
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
| | - Alexandros Kasiotakis
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
| | - Ruud A Weusthuis
- Bioprocess Engineering, Wageningen University and Research, Wageningen, the Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands; Bioprocess Engineering, Wageningen University and Research, Wageningen, the Netherlands; LifeGlimmer GmbH, Berlin, Germany.
| |
Collapse
|
2
|
Integrated rational and evolutionary engineering of genome-reduced Pseudomonas putida strains promotes synthetic formate assimilation. Metab Eng 2022; 74:191-205. [DOI: 10.1016/j.ymben.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/05/2022] [Accepted: 10/23/2022] [Indexed: 11/07/2022]
|
3
|
Pascual-García A, Schwartzman J, Enke TN, Iffland-Stettner A, Cordero OX, Bonhoeffer S. Turnover in Life-Strategies Recapitulates Marine Microbial Succession Colonizing Model Particles. Front Microbiol 2022; 13:812116. [PMID: 35814698 PMCID: PMC9260654 DOI: 10.3389/fmicb.2022.812116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/29/2022] [Indexed: 12/02/2022] Open
Abstract
Particulate organic matter (POM) in the ocean sustains diverse communities of bacteria that mediate the remineralization of organic complex matter. However, the variability of these particles and of the environmental conditions surrounding them present a challenge to the study of the ecological processes shaping particle-associated communities and their function. In this work, we utilize data from experiments in which coastal water communities are grown on synthetic particles to ask which are the most important ecological drivers of their assembly and associated traits. Combining 16S rRNA amplicon sequencing with shotgun metagenomics, together with an analysis of the full genomes of a subset of isolated strains, we were able to identify two-to-three distinct community classes, corresponding to early vs. late colonizers. We show that these classes are shaped by environmental selection (early colonizers) and facilitation (late colonizers) and find distinctive traits associated with each class. While early colonizers have a larger proportion of genes related to the uptake of nutrients, motility, and environmental sensing with few pathways enriched for metabolism, late colonizers devote a higher proportion of genes for metabolism, comprising a wide array of different pathways including the metabolism of carbohydrates, amino acids, and xenobiotics. Analysis of selected pathways suggests the existence of a trophic-chain topology connecting both classes for nitrogen metabolism, potential exchange of branched chain amino acids for late colonizers, and differences in bacterial doubling times throughout the succession. The interpretation of these traits suggests a distinction between early and late colonizers analogous to other classifications found in the literature, and we discuss connections with the classical distinction between r- and K-strategists.
Collapse
Affiliation(s)
- Alberto Pascual-García
- Institute of Integrative Biology, Eidgenössische Technische Hochschule (ETH)-Zürich, Zurich, Switzerland
- *Correspondence: Alberto Pascual-García
| | - Julia Schwartzman
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Tim N. Enke
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Institute of Biogeochemistry and Pollutant Dynamics, Eidgenössische Technische Hochschule (ETH)-Zürich, Zurich, Switzerland
| | - Arion Iffland-Stettner
- Institute of Integrative Biology, Eidgenössische Technische Hochschule (ETH)-Zürich, Zurich, Switzerland
| | - Otto X. Cordero
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Sebastian Bonhoeffer
- Institute of Integrative Biology, Eidgenössische Technische Hochschule (ETH)-Zürich, Zurich, Switzerland
| |
Collapse
|
4
|
Liu H, Liu ZH, Zhang RK, Yuan JS, Li BZ, Yuan YJ. Bacterial conversion routes for lignin valorization. Biotechnol Adv 2022; 60:108000. [DOI: 10.1016/j.biotechadv.2022.108000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022]
|
5
|
Wirth NT, Nikel PI. Combinatorial pathway balancing provides biosynthetic access to 2-fluoro- cis, cis-muconate in engineered Pseudomonas putida. CHEM CATALYSIS 2021; 1:1234-1259. [PMID: 34977847 PMCID: PMC8711041 DOI: 10.1016/j.checat.2021.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/15/2021] [Accepted: 08/31/2021] [Indexed: 12/18/2022]
Abstract
The wealth of bio-based building blocks produced by engineered microorganisms seldom include halogen atoms. Muconate is a platform chemical with a number of industrial applications that could be broadened by introducing fluorine atoms to tune its physicochemical properties. The soil bacterium Pseudomonas putida naturally assimilates benzoate via the ortho-cleavage pathway with cis,cis-muconate as intermediate. Here, we harnessed the native enzymatic machinery (encoded within the ben and cat gene clusters) to provide catalytic access to 2-fluoro-cis,cis-muconate (2-FMA) from fluorinated benzoates. The reactions in this pathway are highly imbalanced, leading to accumulation of toxic intermediates and limited substrate conversion. By disentangling regulatory patterns of ben and cat in response to fluorinated effectors, metabolic activities were adjusted to favor 2-FMA biosynthesis. After implementing this combinatorial approach, engineered P. putida converted 3-fluorobenzoate to 2-FMA at the maximum theoretical yield. Hence, this study illustrates how synthetic biology can expand the diversity of nature's biochemical catalysis.
Collapse
Affiliation(s)
- Nicolas T Wirth
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
6
|
Manglass L, Wintenberg M, Blenner M, Martinez N. Pu-239 Accumulation in E. Coli and P. Putida Grown in Liquid Cultures. HEALTH PHYSICS 2021; 121:484-493. [PMID: 34392252 DOI: 10.1097/hp.0000000000001455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
ABSTRACT Understanding of the behavior and effects of plutonium (Pu) in the environment is an important aspect of developing responsible and effective strategies for remediation and environmental stewardship. This work studies the sorption and uptake of 239Pu by common environmental bacteria, Escherichia coli DH10β and Pseudomonas putida KT-2440. Plutonium was directly incorporated into growth media prior to inoculation (0.12 kBq mL-1), and samples from the liquid cultures of E. coli and P. putida were analyzed over a 15-d growth period through liquid scintillation counting (LSC) of plutonium in cell pellets and cell culture media following centrifugation. To improve its solubility in the liquid cultures, Pu was complexed with citrate prior to inoculation. P. putida cultures were also grown without citrate to examine potential impact of P. putida's ability to use citrate as a food source. The accumulation of Pu in P. putida cells was found to increase both with and without citrate complexation for the first 5 d and then plateau until the end of the study period (15 d). A higher activity concentration of Pu was found in P. putida cells grown with citrate complexation than without. The activity concentration of plutonium in E. coli cells was greater than that in P. putida cells, which may be the result of a stronger complexing agent made by E. coli for the purpose of iron uptake. There are a variety of factors that influence Pu behavior in bacterial systems, and results confirm that even in a simple system, multiple mechanisms are at play.
Collapse
Affiliation(s)
| | - Molly Wintenberg
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC
| | - Mark Blenner
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC
| | - Nicole Martinez
- Center for Nuclear Environmental Engineering Sciences and Radioactive Waste Management (NEESRWM), Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC
| |
Collapse
|
7
|
Martin-Pascual M, Batianis C, Bruinsma L, Asin-Garcia E, Garcia-Morales L, Weusthuis RA, van Kranenburg R, Martins Dos Santos VAP. A navigation guide of synthetic biology tools for Pseudomonas putida. Biotechnol Adv 2021; 49:107732. [PMID: 33785373 DOI: 10.1016/j.biotechadv.2021.107732] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022]
Abstract
Pseudomonas putida is a microbial chassis of huge potential for industrial and environmental biotechnology, owing to its remarkable metabolic versatility and ability to sustain difficult redox reactions and operational stresses, among other attractive characteristics. A wealth of genetic and in silico tools have been developed to enable the unravelling of its physiology and improvement of its performance. However, the rise of this microbe as a promising platform for biotechnological applications has resulted in diversification of tools and methods rather than standardization and convergence. As a consequence, multiple tools for the same purpose have been generated, whilst most of them have not been embraced by the scientific community, which has led to compartmentalization and inefficient use of resources. Inspired by this and by the substantial increase in popularity of P. putida, we aim herein to bring together and assess all currently available (wet and dry) synthetic biology tools specific for this microbe, focusing on the last 5 years. We provide information on the principles, functionality, advantages and limitations, with special focus on their use in metabolic engineering. Additionally, we compare the tool portfolio for P. putida with those for other bacterial chassis and discuss potential future directions for tool development. Therefore, this review is intended as a reference guide for experts and new 'users' of this promising chassis.
Collapse
Affiliation(s)
- Maria Martin-Pascual
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Christos Batianis
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Lyon Bruinsma
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Enrique Asin-Garcia
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Luis Garcia-Morales
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Ruud A Weusthuis
- Bioprocess Engineering, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Richard van Kranenburg
- Corbion, Gorinchem 4206 AC, The Netherlands; Laboratory of Microbiology, Wageningen University & Research, Wageningen 6708 WE, the Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands; LifeGlimmer GmbH, Berlin 12163, Germany.
| |
Collapse
|
8
|
Cofactor Specificity of Glucose-6-Phosphate Dehydrogenase Isozymes in Pseudomonas putida Reveals a General Principle Underlying Glycolytic Strategies in Bacteria. mSystems 2021; 6:6/2/e00014-21. [PMID: 33727391 PMCID: PMC8546961 DOI: 10.1128/msystems.00014-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PDH) is widely distributed in nature and catalyzes the first committing step in the oxidative branch of the pentose phosphate (PP) pathway, feeding either the reductive PP or the Entner-Doudoroff pathway. Besides its role in central carbon metabolism, this dehydrogenase provides reduced cofactors, thereby affecting redox balance. Although G6PDH is typically considered to display specificity toward NADP+, some variants accept NAD+ similarly or even preferentially. Furthermore, the number of G6PDH isozymes encoded in bacterial genomes varies from none to more than four orthologues. On this background, we systematically analyzed the interplay of the three G6PDH isoforms of the soil bacterium Pseudomonas putida KT2440 from genomic, genetic, and biochemical perspectives. P. putida represents an ideal model to tackle this endeavor, as its genome harbors gene orthologues for most dehydrogenases in central carbon metabolism. We show that the three G6PDHs of strain KT2440 have different cofactor specificities and that the isoforms encoded by zwfA and zwfB carry most of the activity, acting as metabolic “gatekeepers” for carbon sources that enter at different nodes of the biochemical network. Moreover, we demonstrate how multiplication of G6PDH isoforms is a widespread strategy in bacteria, correlating with the presence of an incomplete Embden-Meyerhof-Parnas pathway. The abundance of G6PDH isoforms in these species goes hand in hand with low NADP+ affinity, at least in one isozyme. We propose that gene duplication and relaxation in cofactor specificity is an evolutionary strategy toward balancing the relative production of NADPH and NADH. IMPORTANCE Protein families have likely arisen during evolution by gene duplication and divergence followed by neofunctionalization. While this phenomenon is well documented for catabolic activities (typical of environmental bacteria that colonize highly polluted niches), the coexistence of multiple isozymes in central carbon catabolism remains relatively unexplored. We have adopted the metabolically versatile soil bacterium Pseudomonas putida KT2440 as a model to interrogate the physiological and evolutionary significance of coexisting glucose-6-phosphate dehydrogenase (G6PDH) isozymes. Our results show that each of the three G6PDHs in this bacterium display distinct biochemical properties, especially at the level of cofactor preference, impacting bacterial physiology in a carbon source-dependent fashion. Furthermore, the presence of multiple G6PDHs differing in NAD+ or NADP+ specificity in bacterial species strongly correlates with their predominant metabolic lifestyle. Our findings support the notion that multiplication of genes encoding cofactor-dependent dehydrogenases is a general evolutionary strategy toward achieving redox balance according to the growth conditions.
Collapse
|
9
|
Wada A, Prates ÉT, Hirano R, Werner AZ, Kamimura N, Jacobson DA, Beckham GT, Masai E. Characterization of aromatic acid/proton symporters in Pseudomonas putida KT2440 toward efficient microbial conversion of lignin-related aromatics. Metab Eng 2021; 64:167-179. [PMID: 33549838 DOI: 10.1016/j.ymben.2021.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/10/2020] [Accepted: 01/30/2021] [Indexed: 11/18/2022]
Abstract
Pseudomonas putida KT2440 (hereafter KT2440) is a well-studied platform bacterium for the production of industrially valuable chemicals from heterogeneous mixtures of aromatic compounds obtained from lignin depolymerization. KT2440 can grow on lignin-related monomers, such as ferulate (FA), 4-coumarate (4CA), vanillate (VA), 4-hydroxybenzoate (4HBA), and protocatechuate (PCA). Genes associated with their catabolism are known, but knowledge about the uptake systems remains limited. In this work, we studied the KT2440 transporters of lignin-related monomers and their substrate selectivity. Based on the inhibition by protonophores, we focused on five genes encoding aromatic acid/H+ symporter family transporters categorized into major facilitator superfamily that uses the proton motive force. The mutants of PP_1376 (pcaK) and PP_3349 (hcnK) exhibited significantly reduced growth on PCA/4HBA and FA/4CA, respectively, while no change was observed on VA for any of the five gene mutants. At pH 9.0, the conversion of these compounds by hcnK mutant (FA/4CA) and vanK mutant (VA) was dramatically reduced, revealing that these transporters are crucial for the uptake of the anionic substrates at high pH. Uptake assays using 14C-labeled substrates in Escherichia coli and biosensor-based assays confirmed that PcaK, HcnK, and VanK have ability to take up PCA, FA/4CA, and VA/PCA, respectively. Additionally, analyses of the predicted protein structures suggest that the size and hydropathic properties of the substrate-binding sites of these transporters determine their substrate preferences. Overall, this study reveals that at physiological pH, PcaK and HcnK have a major role in the uptake of PCA/4HBA and FA/4CA, respectively, and VanK is a VA/PCA transporter. This information can contribute to the engineering of strains for the efficient conversion of lignin-related monomers to value-added chemicals.
Collapse
Affiliation(s)
- Ayumu Wada
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Érica T Prates
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Ryo Hirano
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Allison Z Werner
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Naofumi Kamimura
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Daniel A Jacobson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Eiji Masai
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan.
| |
Collapse
|
10
|
Liu B, Hou W, Li K, Chen Q, Liu Y, Yue T. Specific gene SEN1393 contributes to higher survivability of Salmonella Enteritidis in egg white by regulating sulfate assimilation pathway. Int J Food Microbiol 2020; 337:108927. [PMID: 33152571 DOI: 10.1016/j.ijfoodmicro.2020.108927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 11/16/2022]
Abstract
Salmonella enterica serovar Enteritidis (S. Enteritidis) presents an excellent capacity to survive in egg white, which is a hostile environment for bacterial growth. To reveal its survival mechanism, this study focuses on the specific gene SEN1393, which has been found to exist only in the genomic sequence of S. Enteritidis. The survival capacity of the deletion mutant strain ΔSEN1393 was proven to be significantly reduced after incubation in egg white. RNA sequencing and RT-qPCR results demonstrate that the expression levels of 19 genes were up-regulated, while the expression levels of 9 genes were down-regulated in egg white. These genes were classified into 6 groups based on their functional categories, namely the sulfate assimilation pathway, arginine biosynthesis, the tricarboxylic acid cycle, the fimbrial protein, the transport and chelation of metal ion, and others (sctT, rhs, and pspG). The strain ΔSEN1393 was deduced to damage FeS cluster enzymes and increase the sulfate and iron requirements, and to reduce bacterial motility and copper homeostasis. Via InterProScan analysis, the gene SEN1393 was speculated to encode a TerB-like and/or DjlA-like protein, and therefore, together with cysJ, possibly reduced the oxidative toxicities resulting from oxyanions such as tellurite, and/or improved CysPUWA conformation to restrain the uptake of the toxic oxyanions. In summary, the gene SEN1393 enabled the higher survival of S. Enteritidis in egg white as compared to other pathogens by regulating the sulfate assimilation pathway.
Collapse
Affiliation(s)
- Bin Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China; Laboratory of Quality and Safety Risk Assessment for Agro-Products, Ministry of Agriculture, Yangling, China; National Engineering Research Center of Agriculture Integration Test, Yangling, China.
| | - Wanwan Hou
- College of Food Science and Engineering, Northwest A&F University, Yangling, China; Laboratory of Quality and Safety Risk Assessment for Agro-Products, Ministry of Agriculture, Yangling, China; National Engineering Research Center of Agriculture Integration Test, Yangling, China
| | - Ke Li
- Zhejiang Academy of Science & Technology for Inspection & Quarantine, Hangzhou, China
| | - Qing Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, China; Laboratory of Quality and Safety Risk Assessment for Agro-Products, Ministry of Agriculture, Yangling, China; National Engineering Research Center of Agriculture Integration Test, Yangling, China
| | - Yaxin Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China; Laboratory of Quality and Safety Risk Assessment for Agro-Products, Ministry of Agriculture, Yangling, China; National Engineering Research Center of Agriculture Integration Test, Yangling, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, China; Laboratory of Quality and Safety Risk Assessment for Agro-Products, Ministry of Agriculture, Yangling, China; National Engineering Research Center of Agriculture Integration Test, Yangling, China
| |
Collapse
|
11
|
Weimer A, Kohlstedt M, Volke DC, Nikel PI, Wittmann C. Industrial biotechnology of Pseudomonas putida: advances and prospects. Appl Microbiol Biotechnol 2020; 104:7745-7766. [PMID: 32789744 PMCID: PMC7447670 DOI: 10.1007/s00253-020-10811-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/23/2020] [Accepted: 08/02/2020] [Indexed: 11/17/2022]
Abstract
Pseudomonas putida is a Gram-negative, rod-shaped bacterium that can be encountered in diverse ecological habitats. This ubiquity is traced to its remarkably versatile metabolism, adapted to withstand physicochemical stress, and the capacity to thrive in harsh environments. Owing to these characteristics, there is a growing interest in this microbe for industrial use, and the corresponding research has made rapid progress in recent years. Hereby, strong drivers are the exploitation of cheap renewable feedstocks and waste streams to produce value-added chemicals and the steady progress in genetic strain engineering and systems biology understanding of this bacterium. Here, we summarize the recent advances and prospects in genetic engineering, systems and synthetic biology, and applications of P. putida as a cell factory. KEY POINTS: • Pseudomonas putida advances to a global industrial cell factory. • Novel tools enable system-wide understanding and streamlined genomic engineering. • Applications of P. putida range from bioeconomy chemicals to biosynthetic drugs.
Collapse
Affiliation(s)
- Anna Weimer
- Institute of Systems Biotechnology, Saarland University, Campus A1.5, 66123, Saarbrücken, Germany
| | - Michael Kohlstedt
- Institute of Systems Biotechnology, Saarland University, Campus A1.5, 66123, Saarbrücken, Germany
| | - Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Campus A1.5, 66123, Saarbrücken, Germany.
| |
Collapse
|