1
|
Deng Y, Li CJ, Zhang J, Liu WH, Yu LY, Zhang YQ. Extensive genomic study characterizing three Paracoccaceae populations and revealing Pseudogemmobacter lacusdianii sp. nov. and Paracoccus broussonetiae sp. nov. Microbiol Spectr 2024; 12:e0108824. [PMID: 39329474 PMCID: PMC11537045 DOI: 10.1128/spectrum.01088-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/18/2024] [Indexed: 09/28/2024] Open
Abstract
Bacteria within the family Paracoccaceae show promising potential for applications in various fields, garnering significant research attention. Three Gram stain-negative bacteria, strains CPCC 101601T, CPCC 101403T, and CPCC 100767, were isolated from diverse environments: freshwater, rhizosphere soil of Broussonetia papyrifera, and the phycosphere, respectively. Analysis of their 16S rRNA gene sequences, compared with those in the GenBank database, indicated that they belong to the family Paracoccaceae, with nucleotide similarities of 92.5%-99.9% to all of the Paracoccaceae members with valid taxonomic names. Phylogenetic studies based on 16S rRNA gene and whole-genome sequences identified CPCC 101601T as a member of the genus Pseudogemmobacter, CPCC 101403T belonging to the genus Paracoccus, and CPCC 100767 as part of the genus Gemmobacter. Notably, genomic analysis using average nucleotide identity (ANI; <95%) and digital DNA-DNA hybridization (dDDH; <70%) with their closely related strains suggested that CPCC 101601T and CPCC 101403T represent new species within their respective genera. Conversely, CPCC 100767 exhibited high ANI (98.5%) and dDDH (87.4%) values with Gemmobacter fulvus con5T, indicating it belongs to this already recognized species. The in-depth genomic analysis revealed that strains CPCC 101601T, CPCC 101403T, and CPCC 100767 harbor key genes related to the pathways for denitrifying, MA utilization, and polyhydroxyalkanoate biosynthesis. Moreover, genotyping and phenotyping analysis confirmed that strain CPCC 100767 has the ability to convert atmospheric nitrogen into ammonia and produce 5-aminolevulinic acid, whereas CPCC 101601T can only perform the former bioprocess.IMPORTANCEBased on polyphasic taxonomic study, two new species, Pseudogemmobacter lacusdianii and Paracoccus broussonetiae, affiliated with the family Paracoccaceae were identified. This expands our understanding of the family Paracoccaceae and provides new microbial materials for further studies. Modern genomic techniques such as average nucleotide identity and digital DNA-DNA hybridization were utilized to determine species affiliations. These methods offer more precise results than traditional classification mainly based on 16S rRNA gene analysis. Beyond classification of these strains, the research delved into their genomes and discovered key genes related to denitrification, MA utilization, and polyhydroxyalkanoate biosynthesis. The identification of these genes provides a molecular basis for understanding the environmental roles of these strains. Particularly, strain CPCC 100767 demonstrated the ability to convert atmospheric nitrogen into ammonia and produce 5-aminolevulinic acid. These bioprocess capabilities are of significant practical value, such as in agricultural production for use as biofertilizers or biostimulants.
Collapse
Affiliation(s)
- Yang Deng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Cong-Jian Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jing Zhang
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Wei-Hong Liu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, China
| | - Li-Yan Yu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yu-Qin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Cubillos CF, Aguilar P, Moreira D, Bertolino P, Iniesto M, Dorador C, López-García P. Exploring the prokaryote-eukaryote interplay in microbial mats from an Andean athalassohaline wetland. Microbiol Spectr 2024; 12:e0007224. [PMID: 38456669 PMCID: PMC10986560 DOI: 10.1128/spectrum.00072-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/28/2024] [Indexed: 03/09/2024] Open
Abstract
Microbial community assembly results from the interaction between biotic and abiotic factors. However, environmental selection is thought to predominantly shape communities in extreme ecosystems. Salar de Huasco, situated in the high-altitude Andean Altiplano, represents a poly-extreme ecosystem displaying spatial gradients of physicochemical conditions. To disentangle the influence of abiotic and biotic factors, we studied prokaryotic and eukaryotic communities from microbial mats and underlying sediments across contrasting areas of this athalassohaline ecosystem. The prokaryotic communities were primarily composed of bacteria, notably including a significant proportion of photosynthetic organisms like Cyanobacteria and anoxygenic photosynthetic members of Alpha- and Gammaproteobacteria and Chloroflexi. Additionally, Bacteroidetes, Verrucomicrobia, and Deltaproteobacteria were abundantly represented. Among eukaryotes, photosynthetic organisms (Ochrophyta and Archaeplastida) were predominant, alongside relatively abundant ciliates, cercozoans, and flagellated fungi. Salinity emerged as a key driver for the assembly of prokaryotic communities. Collectively, abiotic factors influenced both prokaryotic and eukaryotic communities, particularly those of algae. However, prokaryotic communities strongly correlated with photosynthetic eukaryotes, suggesting a pivotal role of biotic interactions in shaping these communities. Co-occurrence networks suggested potential interactions between different organisms, such as diatoms with specific photosynthetic and heterotrophic bacteria or with protist predators, indicating influences beyond environmental selection. While some associations may be explained by environmental preferences, the robust biotic correlations, alongside insights from other ecosystems and experimental studies, suggest that symbiotic and trophic interactions significantly shape microbial mat and sediment microbial communities in this athalassohaline ecosystem.IMPORTANCEHow biotic and abiotic factors influence microbial community assembly is still poorly defined. Here, we explore their influence on prokaryotic and eukaryotic community assembly within microbial mats and sediments of an Andean high-altitude polyextreme wetland system. We show that, in addition to abiotic elements, mutual interactions exist between prokaryotic and eukaryotic communities. Notably, photosynthetic eukaryotes exhibit a strong correlation with prokaryotic communities, specifically diatoms with certain bacteria and other protists. Our findings underscore the significance of biotic interactions in community assembly and emphasize the necessity of considering the complete microbial community.
Collapse
Affiliation(s)
- Carolina F. Cubillos
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Pablo Aguilar
- Laboratorio de Complejidad Microbiana, Instituto Antofagasta and Centro de Bioingeniería y Biotecnología (CeBiB), Universidad de Antofagasta, Antofagasta, Chile
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
- Millennium Nucleus of Austral Invasive Salmonids - INVASAL, Concepción, Chile
| | - David Moreira
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Paola Bertolino
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Miguel Iniesto
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Cristina Dorador
- Laboratorio de Complejidad Microbiana, Instituto Antofagasta and Centro de Bioingeniería y Biotecnología (CeBiB), Universidad de Antofagasta, Antofagasta, Chile
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | | |
Collapse
|
3
|
Bakenhus I, Jongsma R, Michler-Kozma D, Hölscher L, Gabel F, Holert J, Philipp B. A domesticated photoautotrophic microbial community as a biofilm model system for analyzing the influence of plastic surfaces on invertebrate grazers in limnic environments. Front Microbiol 2023; 14:1238913. [PMID: 38033587 PMCID: PMC10687189 DOI: 10.3389/fmicb.2023.1238913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023] Open
Abstract
The environmental fate of plastic particles in water bodies is influenced by microbial biofilm formation. Invertebrate grazers may be affected when foraging biofilms on plastics compared to biofilms on natural substrata but the mechanistic basis for these effects is unknown. For analyzing these effects in ecotoxicological assays stable and reproducible biofilm communities are required that are related to the environmental site of interest. Here, a defined biofilm community was established and used to perform grazing experiments with a freshwater snail. For this, snippets of different plastic materials were incubated in the photic zone of three different freshwater sites. Amplicon sequencing of biofilms formed on these snippets showed that the site of incubation and not the plastic material dominated the microbial community composition. From these biofilms, individual microbial strains as well as photoautotrophic consortia were isolated; these consortia consisted of heterotrophic bacteria that were apparently nourished by microalga. While biofilms formed by defined dual cultures of a microalga and an Alphaproteobacterium were not accepted by the snail P. fontinalis, a photoautotrophic consortium (Co_3) sustained growth and metabolism of this grazer. Amplicon sequencing revealed that consortium Co_3, which could be stably maintained on solid medium under photoautotrophic conditions, reproducibly formed biofilms of a defined composition on three different plastic materials and on glass surfaces. In conclusion, our study shows that the generation of domesticated photoautotrophic microbial communities is a valid novel approach for establishing laboratory ecotoxicological assays with higher environmental relevance than those based on defined microbiota.
Collapse
Affiliation(s)
- Insa Bakenhus
- Institute for Molecular Microbiology and Biotechnology, Universität Münster, Münster, Germany
| | - Rense Jongsma
- Institute for Molecular Microbiology and Biotechnology, Universität Münster, Münster, Germany
| | | | - Lea Hölscher
- Institute for Molecular Microbiology and Biotechnology, Universität Münster, Münster, Germany
| | - Friederike Gabel
- Institute for Landscape Ecology, Universität Münster, Münster, Germany
| | - Johannes Holert
- Institute for Molecular Microbiology and Biotechnology, Universität Münster, Münster, Germany
| | - Bodo Philipp
- Institute for Molecular Microbiology and Biotechnology, Universität Münster, Münster, Germany
- Fraunhofer-Institut für Molekulare und Angewandte Ökologie IME, Umweltmikrobiologie, Schmallenberg, Germany
| |
Collapse
|
4
|
Wang J, Xie Y, Zhang G, Pan L. Microbial community structure and diversity in fish-flower (mint) symbiosis. AMB Express 2023; 13:46. [PMID: 37166527 PMCID: PMC10175524 DOI: 10.1186/s13568-023-01549-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/21/2023] [Indexed: 05/12/2023] Open
Abstract
The fish-flower symbiosis model is an eco-friendly sustainable farming technology combining plants, fish and microorganisms in a recirculating aquaculture system. However, there are few studies on the structure and diversity of microbial communities in fish intestines, culture water and plant roots during fish-flower symbiosis. Here, we cultured carp (Cyprinus carpio), crucian carp (Carassius auratus) and grass carp (Ctenopharyngodon idella) with mint (Mentha spicala L.) and extracted total genomic DNA from intestinal microorganisms, culture-water microorganisms and root microorganisms for each fish species for high-throughput sequencing of 16S rRNA genes. Analysis of microbial community structure and diversity revealed changes in abundance of microbial genera in the intestines and culture water of each fish species, including changes in the dominant taxa. Pirellula, Truepera, Aquincola, Cetobacterium and Luteolibacter were widespread in the fish intestine, culture water and mint root system. This study revealed the effects of mint feeding on the structure and diversity of microbial communities of fish, water bodies and the mint root system during fish-flower symbiosis, providing a theoretical reference for the promotion and application of fish-flower (mint) symbiosis technology and healthy fish culture technology.
Collapse
Affiliation(s)
- Jianglong Wang
- School of Food & Wine, Ningxia University, Yinchuan, China.
| | - Yufen Xie
- School of Food & Wine, Ningxia University, Yinchuan, China
| | - Guangdi Zhang
- School of Food & Wine, Ningxia University, Yinchuan, China.
| | - Lin Pan
- School of Food & Wine, Ningxia University, Yinchuan, China
| |
Collapse
|
5
|
Genomic Insights into Denitrifying Methane-Oxidizing Bacteria Gemmobacter fulva sp. Nov., Isolated from an Anabaena Culture. Microorganisms 2021; 9:microorganisms9122423. [PMID: 34946025 PMCID: PMC8709402 DOI: 10.3390/microorganisms9122423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
The genus Gemmobacter grows phototrophically, aerobically, or anaerobically, and utilizes methylated amine. Here, we present two high-quality complete genomes of the strains con4 and con5T isolated from a culture of Anabaena. The strains possess sMMO (soluble methane monooxygenase)-oxidizing alkanes to carbon dioxide. Functional genes for methane-oxidation (prmAC, mimBD, adh, gfa, fdh) were identified. The genome of strain con5T contains nirB, nirK, nirQ, norB, norC, and norG genes involved in dissimilatory nitrate reduction. The presence of nitrite reductase gene (nirK) and the nitric-oxide reductase gene (norB) indicates that it could potentially use nitrite as an electron acceptor in anoxic environments. Taxonomic investigations were also performed on two strains through polyphasic methods, proposing two isolates as a novel species of the genus Gemmobacter. The findings obtained through the whole genome analyses provide genome-based evidence of complete oxidation of methane to carbon dioxide. This study provides a genetic blueprint of Gemmobacter fulva con5T and its biochemical characteristics, which help us to understand the evolutionary biology of the genus Gemmobacter.
Collapse
|
6
|
Alessa O, Ogura Y, Fujitani Y, Takami H, Hayashi T, Sahin N, Tani A. Comprehensive Comparative Genomics and Phenotyping of Methylobacterium Species. Front Microbiol 2021; 12:740610. [PMID: 34737731 PMCID: PMC8561711 DOI: 10.3389/fmicb.2021.740610] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/06/2021] [Indexed: 01/06/2023] Open
Abstract
The pink-pigmented facultative methylotrophs (PPFMs), a major bacterial group found in the plant phyllosphere, comprise two genera: Methylobacterium and Methylorubrum. They have been separated into three major clades: A, B (Methylorubrum), and C. Within these genera, however, some species lack either pigmentation or methylotrophy, which raises the question of what actually defines the PPFMs. The present study employed a comprehensive comparative genomics approach to reveal the phylogenetic relationship among the PPFMs and to explain the genotypic differences that confer their different phenotypes. We newly sequenced the genomes of 29 relevant-type strains to complete a dataset for almost all validly published species in the genera. Through comparative analysis, we revealed that methylotrophy, nitrate utilization, and anoxygenic photosynthesis are hallmarks differentiating the PPFMs from the other Methylobacteriaceae. The Methylobacterium species in clade A, including the type species Methylobacterium organophilum, were phylogenetically classified into six subclades, each possessing relatively high genomic homology and shared phenotypic characteristics. One of these subclades is phylogenetically close to Methylorubrum species; this finding led us to reunite the two genera into a single genus Methylobacterium. Clade C, meanwhile, is composed of phylogenetically distinct species that share relatively higher percent G+C content and larger genome sizes, including larger numbers of secondary metabolite clusters. Most species of clade C and some of clade A have the glutathione-dependent pathway for formaldehyde oxidation in addition to the H4MPT pathway. Some species cannot utilize methanol due to their lack of MxaF-type methanol dehydrogenase (MDH), but most harbor an XoxF-type MDH that enables growth on methanol in the presence of lanthanum. The genomes of PPFMs encode between two and seven (average 3.7) genes for pyrroloquinoline quinone-dependent alcohol dehydrogenases, and their phylogeny is distinctly correlated with their genomic phylogeny. All PPFMs were capable of synthesizing auxin and did not induce any immune response in rice cells. Other phenotypes including sugar utilization, antibiotic resistance, and antifungal activity correlated with their phylogenetic relationship. This study provides the first inclusive genotypic insight into the phylogeny and phenotypes of PPFMs.
Collapse
Affiliation(s)
- Ola Alessa
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Yoshitoshi Ogura
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Yoshiko Fujitani
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Hideto Takami
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nurettin Sahin
- Egitim Fakultesi, Mugla Sitki Kocman University, Mugla, Turkey
| | - Akio Tani
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| |
Collapse
|
7
|
Ruen-Pham K, Graham LE, Satjarak A. Spatial Variation of Cladophora Epiphytes in the Nan River, Thailand. PLANTS (BASEL, SWITZERLAND) 2021; 10:2266. [PMID: 34834629 PMCID: PMC8622721 DOI: 10.3390/plants10112266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022]
Abstract
Cladophora is an algal genus known to be ecologically important. It provides habitats for microorganisms known to provide ecological services such as biosynthesis of cobalamin (vitamin B12) and nutrient cycling. Most knowledge of microbiomes was obtained from studies of lacustrine Cladophora species. However, whether lotic freshwater Cladophora microbiomes are as complex as the lentic ones or provide similar ecological services is not known. To illuminate these issues, we used amplicons of 16S rDNA, 18S rDNA, and ITS to investigate the taxonomy and diversity of the microorganisms associated with replicate Cladophora samples from three sites along the Nan River, Thailand. Results showed that the diversity of prokaryotic and eukaryotic members of Cladophora microbiomes collected from different sampling sites was statistically different. Fifty percent of the identifiable taxa were shared across sampling sites: these included organisms belonging to different trophic levels, decomposers, and heterotrophic bacteria. These heterogeneous assemblages of bacteria, by functional inference, have the potential to perform various ecological functions, i.e., cellulose degradation, cobalamin biosynthesis, fermentative hydrogen production, ammonium oxidation, amino acid fermentation, dissimilatory reduction of nitrate to ammonium, nitrite reduction, nitrate reduction, sulfur reduction, polyphosphate accumulation, denitrifying phosphorus-accumulation, and degradation of aromatic compounds. Results suggested that river populations of Cladophora provide ecologically important habitat for microorganisms that are key to nutrient cycling in lotic ecosystems.
Collapse
Affiliation(s)
- Karnjana Ruen-Pham
- Plants of Thailand Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Linda E. Graham
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA;
| | - Anchittha Satjarak
- Plants of Thailand Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| |
Collapse
|
8
|
Karthikeyan OP, Smith TJ, Dandare SU, Parwin KS, Singh H, Loh HX, Cunningham MR, Williams PN, Nichol T, Subramanian A, Ramasamy K, Kumaresan D. Metal(loid) speciation and transformation by aerobic methanotrophs. MICROBIOME 2021; 9:156. [PMID: 34229757 PMCID: PMC8262016 DOI: 10.1186/s40168-021-01112-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/09/2021] [Indexed: 05/06/2023]
Abstract
Manufacturing and resource industries are the key drivers for economic growth with a huge environmental cost (e.g. discharge of industrial effluents and post-mining substrates). Pollutants from waste streams, either organic or inorganic (e.g. heavy metals), are prone to interact with their physical environment that not only affects the ecosystem health but also the livelihood of local communities. Unlike organic pollutants, heavy metals or trace metals (e.g. chromium, mercury) are non-biodegradable, bioaccumulate through food-web interactions and are likely to have a long-term impact on ecosystem health. Microorganisms provide varied ecosystem services including climate regulation, purification of groundwater, rehabilitation of contaminated sites by detoxifying pollutants. Recent studies have highlighted the potential of methanotrophs, a group of bacteria that can use methane as a sole carbon and energy source, to transform toxic metal (loids) such as chromium, mercury and selenium. In this review, we synthesise recent advances in the role of essential metals (e.g. copper) for methanotroph activity, uptake mechanisms alongside their potential to transform toxic heavy metal (loids). Case studies are presented on chromium, selenium and mercury pollution from the tanneries, coal burning and artisanal gold mining, respectively, which are particular problems in the developing economy that we propose may be suitable for remediation by methanotrophs. Video Abstract.
Collapse
Affiliation(s)
- Obulisamy Parthiba Karthikeyan
- School of Biological Sciences & Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, UK
- Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI USA
- Department of Engineering Technology, College of Technology, University of Houston, Houston, TX USA
| | - Thomas J. Smith
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Shamsudeen Umar Dandare
- School of Biological Sciences & Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, UK
| | - Kamaludeen Sara Parwin
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, India
| | - Heetasmin Singh
- Department of Chemistry, University of Guyana, Georgetown, Guyana
| | - Hui Xin Loh
- School of Biological Sciences & Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, UK
| | - Mark R Cunningham
- School of Biological Sciences & Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, UK
| | - Paul Nicholas Williams
- School of Biological Sciences & Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, UK
| | - Tim Nichol
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | | | | | - Deepak Kumaresan
- School of Biological Sciences & Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, UK
| |
Collapse
|