1
|
Turco S, Drais MI, Rossini L, Di Sora N, Brugneti F, Speranza S, Contarini M, Mazzaglia A. Genomic and Pathogenic Characterization of Akanthomyces muscarius Isolated from Living Mite Infesting Hazelnut Big Buds. Genes (Basel) 2024; 15:993. [PMID: 39202354 PMCID: PMC11354060 DOI: 10.3390/genes15080993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
The capability of entomopathogenic fungi to live as plant endophytes is well established. However, their presence in undiscovered environmental niches represents the beginning of a new challenging research journey. Recently, Akanthomyces muscarius (Ascomycota, Cordycipitaceae) (Petch) Spatafora, Kepler & B. Shrestha was isolated from hazelnut buds infested by the big bud mite pest Phytoptus avellanae Nalepa, which makes the buds swollen, reddish, and unable to further develop. Gall formation is known to be regulated by a consortium of microbes and mites, and to better understand the possible role of A. muscarius within the infested gall, its whole genome sequence was obtained using a hybrid approach of Illumina and Nanopore reads. The functional and comparative genomics analysis provided within this study may help answer questions related to the ecology and the entomopathogenicity of this fungus.
Collapse
Affiliation(s)
- Silvia Turco
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, 01100 Viterbo, Italy; (M.I.D.); (N.D.S.); (F.B.); (S.S.); (M.C.); (A.M.)
| | - Mounira Inas Drais
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, 01100 Viterbo, Italy; (M.I.D.); (N.D.S.); (F.B.); (S.S.); (M.C.); (A.M.)
| | - Luca Rossini
- Service d’Automatique et d’Analyse des Systèmes, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Nicolò Di Sora
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, 01100 Viterbo, Italy; (M.I.D.); (N.D.S.); (F.B.); (S.S.); (M.C.); (A.M.)
| | - Federico Brugneti
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, 01100 Viterbo, Italy; (M.I.D.); (N.D.S.); (F.B.); (S.S.); (M.C.); (A.M.)
| | - Stefano Speranza
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, 01100 Viterbo, Italy; (M.I.D.); (N.D.S.); (F.B.); (S.S.); (M.C.); (A.M.)
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE, CONICET-UNLP), La Plata B1900, Argentina
| | - Mario Contarini
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, 01100 Viterbo, Italy; (M.I.D.); (N.D.S.); (F.B.); (S.S.); (M.C.); (A.M.)
| | - Angelo Mazzaglia
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, 01100 Viterbo, Italy; (M.I.D.); (N.D.S.); (F.B.); (S.S.); (M.C.); (A.M.)
| |
Collapse
|
2
|
Francesconi S, Tagliavento V, Ciarroni S, Sestili F, Balestra GM. Chitosan- and gallic acid-based (NPF) displayed antibacterial activity against three Pseudomonas spp. plant pathogens and boosted systemic acquired resistance in kiwifruit and olive plants. PEST MANAGEMENT SCIENCE 2024; 80:1300-1313. [PMID: 37903719 DOI: 10.1002/ps.7861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/16/2023] [Accepted: 10/31/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUD Pseudomonas syringae pv. actinidiae (Psa), P. syringae pv. tomato (Pst) and P. savastanoi pv. savastanoi (Psav) are bacterial plant pathogens with worldwide impact that are mainly managed by the preventive application of cupric salts. These are dangerous for ecosystems and have favoured the selection of resistant strains, so they are candidates to be replaced in the next few years. Thus, there is an urgent need to find efficient and bio-based solutions to mitigate these bacterial plant diseases. Nanotechnology could represent an innovative way to control plant diseases, providing alternative solutions to the agrochemicals traditionally employed, thanks to the formulation of the so-called third-generation and nanotechnology-based agrochemicals. RESULTS In this work, a novel nanostructured formulation (NPF) composed of cellulose nanocrystals (CNC) as carrier, high amylose starch (HAS) as excipient, and chitosan (CH) and gallic acid (GA) as antimicrobials, was tested at 2% in vitro and in vivo with respect to the three different Pseudomonas plant pathogens. In vitro agar assays demonstrated that the NPF inhibited ≤80% Psa, Pst and Psav. Moreover, the NPF did not decrease biofilm synthesis and it did not influence bacterial cells flocculation and adhesion. On plants, the NPF displayed complete biocompatibility and boosted the transcript levels of the major systemic acquired resistance responsive genes in kiwifruit and olive plants. CONCLUSION This works provides novel and valuable information regarding the several modes-of-action of the novel NPF, which could potentially be useful to mitigate Psa, Pst and Psav infections even in organic agriculture. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Sara Francesconi
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | | | | | - Francesco Sestili
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Giorgio M Balestra
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| |
Collapse
|
3
|
Cardoni M, Mercado-Blanco J. Confronting stresses affecting olive cultivation from the holobiont perspective. FRONTIERS IN PLANT SCIENCE 2023; 14:1261754. [PMID: 38023867 PMCID: PMC10661416 DOI: 10.3389/fpls.2023.1261754] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
The holobiont concept has revolutionized our understanding of plant-associated microbiomes and their significance for the development, fitness, growth and resilience of their host plants. The olive tree holds an iconic status within the Mediterranean Basin. Innovative changes introduced in olive cropping systems, driven by the increasing demand of its derived products, are not only modifying the traditional landscape of this relevant commodity but may also imply that either traditional or emerging stresses can affect it in ways yet to be thoroughly investigated. Incomplete information is currently available about the impact of abiotic and biotic pressures on the olive holobiont, what includes the specific features of its associated microbiome in relation to the host's structural, chemical, genetic and physiological traits. This comprehensive review consolidates the existing knowledge about stress factors affecting olive cultivation and compiles the information available of the microbiota associated with different olive tissues and organs. We aim to offer, based on the existing evidence, an insightful perspective of diverse stressing factors that may disturb the structure, composition and network interactions of the olive-associated microbial communities, underscoring the importance to adopt a more holistic methodology. The identification of knowledge gaps emphasizes the need for multilevel research approaches and to consider the holobiont conceptual framework in future investigations. By doing so, more powerful tools to promote olive's health, productivity and resilience can be envisaged. These tools may assist in the designing of more sustainable agronomic practices and novel breeding strategies to effectively face evolving environmental challenges and the growing demand of high quality food products.
Collapse
Affiliation(s)
- Martina Cardoni
- Departamento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Jesús Mercado-Blanco
- Departamento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| |
Collapse
|
4
|
Pintado A, Domínguez-Cerván H, Pastor V, Vincent M, Lee SG, Flors V, Ramos C. Allelic variation in the indoleacetic acid-lysine synthase gene of the bacterial pathogen Pseudomonas savastanoi and its role in auxin production. FRONTIERS IN PLANT SCIENCE 2023; 14:1176705. [PMID: 37346122 PMCID: PMC10280071 DOI: 10.3389/fpls.2023.1176705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023]
Abstract
Indole-3-acetic acid (IAA) production is a pathogenicity/virulence factor in the Pseudomonas syringae complex, including Pseudomonas savastanoi. P. savastanoi pathovars (pvs.) genomes contain the iaaL gene, encoding an enzyme that catalyzes the biosynthesis of the less biologically active compound 3-indole-acetyl-ϵ-L-lysine (IAA-Lys). Previous studies have reported the identification of IAA-Lys in culture filtrates of P. savastanoi strains isolated from oleander (pv. nerii), but the conversion of IAA into a conjugate was not detectable in olive strains (pv. savastanoi). In this paper, we show the distribution of iaaL alleles in all available P. savastanoi genomes of strains isolated from woody hosts. Most strains encode two different paralogs, except for those isolated from broom (pv. retacarpa), which contain a single allele. In addition to the three previously reported iaaL alleles (iaaL Psv, iaaL Psn and iaaL Pto), we identified iaaL Psf, an exclusive allele of strains isolated from ash (pv. fraxini). We also found that the production of IAA-Lys in P. savastanoi pv. savastanoi and pv. nerii depends on a functional iaaL Psn allele, whereas in pv. fraxini depends on iaaL Psf. The production of IAA-Lys was detected in cultures of an olive strain heterologously expressing IaaLPsn-1, IaaLPsf-1 and IaaLPsf-3, but not when expressing IaaLPsv-1. In addition, Arabidopsis seedlings treated with the strains overproducing the conjugate, and thus reducing the free IAA content, alleviated the root elongation inhibitory effect of IAA. IAA-Lys synthase activity assays with purified allozymes confirmed the functionality and specificity of lysine as a substrate of IaaLPsn-1 and IaaLPsf-3, with IaaLPsf-3 showing the highest catalytic efficiency for both substrates. The IAA-Lys synthase activity of IaaLPsn-1 was abolished by the insertion of two additional tyrosine residues encoded in the inactive allozyme IaaLPsv-1. These results highlight the relevance of allelic variation in a phytohormone-related gene for the modulation of auxin production in a bacterial phytopathogen.
Collapse
Affiliation(s)
- Adrián Pintado
- Área de Genética, Facultad de Ciencias, Universidad de Málaga (UMA), Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - Hilario Domínguez-Cerván
- Área de Genética, Facultad de Ciencias, Universidad de Málaga (UMA), Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - Victoria Pastor
- Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I (UJI), Castelló de la Plana, Spain
| | - Marissa Vincent
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC, United States
| | - Soon Goo Lee
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, United States
| | - Víctor Flors
- Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I (UJI), Castelló de la Plana, Spain
| | - Cayo Ramos
- Área de Genética, Facultad de Ciencias, Universidad de Málaga (UMA), Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| |
Collapse
|
5
|
Košćak L, Lamovšek J, Đermić E, Tegli S, Gruntar I, Godena S. Identification and Characterisation of Pseudomonas savastanoi pv. savastanoi as the Causal Agent of Olive Knot Disease in Croatian, Slovenian and Portuguese Olive ( Olea europaea L.) Orchards. PLANTS (BASEL, SWITZERLAND) 2023; 12:307. [PMID: 36679019 PMCID: PMC9865541 DOI: 10.3390/plants12020307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Strains of Pseudomonas savastanoi pv. savastanoi (Pss), isolated from infected olive trees (Olea europaea L.) in three European countries (Croatia, Slovenia and Portugal) were identified and characterised according to their colony morphology, physiological and biochemical features. According to the LOPAT scheme, 38.6% of Pss isolates were grouped in the Ib cluster. The Portuguese Pss strains were fully consistent with the typical LOPAT profile for this bacterium. Conversely, most Slovenian Pss strains showed delayed oxidase activity, whilst Croatian Pss strains did not produce any fluorescent pigment when grown in vitro. For Pss molecular identification, both end-point and real-time PCR were used, as well as MALDI-TOF, which was additionally used for proteomic analysis and the subsequent species identification of a number of strains that showed deviations from expected LOPAT results. Pss was confirmed as a causal agent of olive knot disease in 46.6% of olive orchards screened. Overall, these data suggests a possible correlation of certain Pss features with the geographical origin and the ecological niche of Pss isolates.
Collapse
Affiliation(s)
- Laura Košćak
- Institute of Agriculture and Tourism, Carlo Hugues 8, 52440 Poreč, Croatia
| | - Janja Lamovšek
- Agricultural Institute of Slovenia, Hacquetova ulica 17, 1000 Ljubljana, Slovenia
| | - Edyta Đermić
- Faculty of Agriculture, University of Zagreb, Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Stefania Tegli
- Laboratorio di Patologia Vegetale Molecolare, Dipartimento di Scienze e Tecnologie Agrarie, Università degli Studi di Firenze, Alimentari, Ambientali e Forestali, Via della Lastruccia 10, 50019 Sesto Fiorentino, Firenze, Italy
| | - Igor Gruntar
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Sara Godena
- Institute of Agriculture and Tourism, Carlo Hugues 8, 52440 Poreč, Croatia
| |
Collapse
|
6
|
Pseudomonas ST1 and Pantoea Paga Strains Cohabit in Olive Knots. Microorganisms 2022; 10:microorganisms10081529. [PMID: 36013947 PMCID: PMC9414602 DOI: 10.3390/microorganisms10081529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Two bacteria belonging to the Pseudomonas and Pantoea genera were isolated from olive knots. Both bacterial strains were omnipresent in this study’s olive orchard with high susceptibility of the autochthonous olive genotypes indicating coevolution of bacteria with host plants. Genomes of two endemic bacteria show conserved core genomes and genome plasticity. The Pseudomonas ST1 genome has conserved virulence-related genes including genes for quorum sensing, pilus, and flagella biosynthesis, two copies of indole acetic acid biosynthesis (IAA) operons, type I-VI secretions systems, and genes for alginate and levan biosynthesis. Development of knots depends only on the presence of the Pseudomonas ST1 strain which then allows Pantoea paga strain co-infection and cohabitation in developed knots. The two bacteria are sensitive to a large number of antimicrobials, antibiotics, H2O2, and Cu (II) salts that can be efficiently used in propagation of bacterial free olive cultivars.
Collapse
|