1
|
Belloni A, Pugnaloni A, Rippo MR, Di Valerio S, Giordani C, Procopio AD, Bronte G. The cell line models to study tyrosine kinase inhibitors in non-small cell lung cancer with mutations in the epidermal growth factor receptor: A scoping review. Crit Rev Oncol Hematol 2024; 194:104246. [PMID: 38135018 DOI: 10.1016/j.critrevonc.2023.104246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023] Open
Abstract
Non-Small Cell Lung Cancer (NSCLC) represents ∼85% of all lung cancers and ∼15-20% of them are characterized by mutations affecting the Epidermal Growth Factor Receptor (EGFR). For several years now, a class of tyrosine kinase inhibitors was developed, targeting sensitive mutations affecting the EGFR (EGFR-TKIs). To date, the main burden of the TKIs employment is due to the onset of resistance mutations. This scoping review aims to resume the current situation about the cell line models employed for the in vitro evaluation of resistance mechanisms induced by EGFR-TKIs in oncogene-addicted NSCLC. Adenocarcinoma results the most studied NSCLC histotype with the H1650, H1975, HCC827 and PC9 mutated cell lines, while Gefitinib and Osimertinib the most investigated inhibitors. Overall, data collected frame the current advancement of this topic, showing a plethora of approaches pursued to overcome the TKIs resistance, from RNA-mediated strategies to the innovative combination therapies.
Collapse
Affiliation(s)
- Alessia Belloni
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Armanda Pugnaloni
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Silvia Di Valerio
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Chiara Giordani
- Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences on Ageing (IRCCS INRCA), Ancona, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy; Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences on Ageing (IRCCS INRCA), Ancona, Italy
| | - Giuseppe Bronte
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy; Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences on Ageing (IRCCS INRCA), Ancona, Italy.
| |
Collapse
|
2
|
Chen X, Gu J, Huang J, Wen K, Zhang G, Chen Z, Wang Z. Characterization of circRNAs in established osimertinib‑resistant non‑small cell lung cancer cell lines. Int J Mol Med 2023; 52:102. [PMID: 37681495 PMCID: PMC10619537 DOI: 10.3892/ijmm.2023.5305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023] Open
Abstract
Drug resistance is an urgent problem to be solved in the treatment of non‑small‑cell lung cancer (NSCLC). Osimertinib is a third‑generation EGFR‑tyrosine kinase inhibitor, which can improve the efficacy and quality of life of patients; however, the inevitable resistance after long‑term use of osimertinib often leads to treatment failure. Cell lines are key tools for basic and preclinical studies. At present, few osimertinib‑resistant cell lines (HCC827‑OR and H1975‑OR) have been established. In the present study, osimertinib‑resistant cell lines were established by gradually increasing the drug concentration. Half‑maximal inhibitory concentration (IC50), cell morphology, whole exon sequencing, Cell Counting Kit‑8 assay, EdU staining and flow cytometry were used to evaluate the osimertinib‑resistant cell lines. Western blot analysis was used to detect the expression levels of key proteins involved in osimertinib resistance. The circular RNA (circRNA) expression profile was identified by RNA sequencing (RNA‑seq) analysis of HCC827, HCC827‑OR, H1975 and H1975‑OR cells. Subsequently, the biological roles of differentially expressed circRNAs were explored in in vitro studies. Osimertinib‑resistant cell lines were successfully established via treatment with an increasing concentration of osimertinib. Osimertinib IC50 and proliferation of resistant cells were much higher than those of sensitive cells. Notably, phosphorylated (p)‑AKT and p‑ERK were markedly activated in resistant cells, and the inhibitory effect of osimertinib on p‑AKT and p‑ERK was weaker in resistant cells than that in parental cells. RNA‑seq analysis identified differentially expressed circRNAs in HCC827, HCC827‑OR, H1975 and H1975‑OR cells. The most dysregulated circRNAs (circPDLIM5 and circPPP4R1) were selected for further functional study. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that the host genes of differentially expressed circRNAs were associated with 'endocytosis' and 'regulation of autophagy'. In conclusion, the present study established osimertinib‑resistant cell lines and revealed that circRNAs may serve as a promising biomarker in NSCLC osimertinib resistance.
Collapse
Affiliation(s)
- Xin Chen
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011
| | - Jingyao Gu
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011
| | - Jiali Huang
- Department of Pharmaceutical Engineering, School of Engineering,
China Pharmaceutical University, Nanjing, Jiangsu 210009
| | - Kang Wen
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011
| | - Ge Zhang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011
| | - Zhenyao Chen
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032,
P.R. China
| | - Zhaoxia Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011
| |
Collapse
|
3
|
Alahdal M, Elkord E. Non-coding RNAs in cancer immunotherapy: Predictive biomarkers and targets. Clin Transl Med 2023; 13:e1425. [PMID: 37735815 PMCID: PMC10514379 DOI: 10.1002/ctm2.1425] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND To date, standardising clinical predictive biomarkers for assessing the response to immunotherapy remains challenging due to variations in personal genetic signatures, tumour microenvironment complexities and epigenetic onco-mechanisms. MAIN BODY Early monitoring of key non-coding RNA (ncRNA) biomarkers may help in predicting the clinical efficacy of cancer immunotherapy and come up with standard predictive ncRNA biomarkers. For instance, reduced miR-125b-5p level in the plasma of non-small cell lung cancer patients treated with anti-PD-1 predicts a positive outcome. The level of miR-153 in the plasma of colorectal cancer patients treated with chimeric antigen receptor T lymphocyte (CAR-T) cell therapy may indicate the activation of T-cell killing activity. miR-148a-3p and miR-375 levels may forecast favourable responses to CAR-T-cell therapy in B-cell acute lymphoblastic leukaemia. In cancer patients treated with the GPC3 peptide vaccine, serum levels of miR-1228-5p, miR-193a-5p and miR-375-3p were reported as predictive biomarkers of good response and improved overall survival. Therefore, there is a critical need for further studies to elaborate on the key ncRNA biomarkers that have the potential to predict early clinical responses to immunotherapy. CONCLUSION This review summarises important predictive ncRNA biomarkers that were reported in cancer patients treated with different immunotherapeutic modalities, including monoclonal antibodies, small molecule inhibitors, cancer vaccines and CAR-T cells. In addition, a concise discussion on forthcoming perspectives is provided, outlining technical approaches for the optimal utilisation of immunomodulatory ncRNA biomarkers as predictive tools and therapeutic targets.
Collapse
Affiliation(s)
- Murad Alahdal
- Johns Hopkins All Children's Hospital, StPetersburgFloridaUSA
- Department of OncologySydney Kimmel Cancer CenterSchool of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Eyad Elkord
- Department of Applied BiologyCollege of ScienceUniversity of SharjahUniversity CitySharjahUnited Arab Emirates
- Biomedical Research CenterSchool of ScienceEngineering and EnvironmentUniversity of SalfordManchesterUK
| |
Collapse
|
4
|
Miao S, Zhang Q. Circulating circRNA: a social butterfly in tumors. Front Oncol 2023; 13:1203696. [PMID: 37546422 PMCID: PMC10401440 DOI: 10.3389/fonc.2023.1203696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/20/2023] [Indexed: 08/08/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of single-stranded non-coding RNAs that form circular structures through irregular splicing or post-splicing events. CircRNAs are abnormally expressed in many cancers and regulate the occurrence and development of tumors. Circulating circRNAs are cell-free circRNAs present in peripheral blood, they are considered promising biomarkers due to their high stability. In recent years, more and more studies have revealed that circulating circRNAs participate in various cellular communication and regulate the occurrence and development of tumors, which involve many pathological processes such as tumorigenesis, tumor-related immunity, tumor angiogenesis, and tumor metastasis. Understanding the role of cell communication mediated by circulating circRNAs in tumor will further reveal the value and significance behind their use as biomarkers and potential therapeutic targets. In this review, we summarize the recent findings and provide an overview of the cell-cell communication mediated by circulating circRNAs, aiming to explore the role and application value of circulating circRNAs in tumors.
Collapse
Affiliation(s)
- Shuo Miao
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qingsong Zhang
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Zalaquett Z, Catherine Rita Hachem M, Kassis Y, Hachem S, Eid R, Raphael Kourie H, Planchard D. Acquired resistance mechanisms to osimertinib: The constant battle. Cancer Treat Rev 2023; 116:102557. [PMID: 37060646 DOI: 10.1016/j.ctrv.2023.102557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/26/2023] [Accepted: 04/04/2023] [Indexed: 04/17/2023]
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. Detectable driver mutations have now changed the course of lung cancer treatment with the emergence of targeted therapy as a novel strategy that widely improved lung cancer prognosis, especially in metastatic patients. Osimertinib (AZD9291) is an irreversible third-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) used to treat stage IV EGFR-mutated non-small-cell lung cancer. It was initially designed to target both EGFR-activating mutations and the EGFR T790M mutation as well, which is the most common resistance mechanism to first- and second-generation EGFR-TKIs. Following the FLAURA trial, osimertinib is now widely used in the first-line setting. However, resistance to osimertinib inevitably develops, with numerous mechanisms leading to its resistance, classified into two main categories: EGFR-dependent and EGFR-independent mechanisms. While EGFR-dependent mechanisms consist mainly of the C797S EGFR mutation, EGFR-independent mechanisms include bypass pathways, oncogenic fusions, and phenotypic transformation, among others. This review summarizes the molecular resistance mechanisms to osimertinib, with the aim of identifying novel therapeutic approaches to overcome osimertinib resistance and improve patient outcome.
Collapse
Affiliation(s)
- Ziad Zalaquett
- Department of Hematology-Oncology, Hôtel-Dieu de France University Hospital, Saint Joseph University of Beirut, Beirut, Lebanon.
| | - Maria Catherine Rita Hachem
- Department of Hematology-Oncology, Hôtel-Dieu de France University Hospital, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Yara Kassis
- Department of Hematology-Oncology, Hôtel-Dieu de France University Hospital, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Samir Hachem
- Department of Hematology-Oncology, Hôtel-Dieu de France University Hospital, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Roland Eid
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Hampig Raphael Kourie
- Department of Hematology-Oncology, Hôtel-Dieu de France University Hospital, Saint Joseph University of Beirut, Beirut, Lebanon
| | - David Planchard
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
6
|
Yi Q, Feng J, Liao Y, Sun W. Circular RNAs in chemotherapy resistance of lung cancer and their potential therapeutic application. IUBMB Life 2023; 75:225-237. [PMID: 35594011 DOI: 10.1002/iub.2624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/25/2022] [Indexed: 11/10/2022]
Abstract
Lung cancer is one of the high malignancy-related incidence and mortality worldwide, accounting for about 13% of total cancer diagnoses. Currently, the use of anti-cancer agents is still the main therapeutic method for lung cancer. However, cancer cells will gradually show resistance to these drugs with the progress of treatment. And the molecular mechanisms underlying chemotherapy agents resistance remain unclear. circRNAs are newly identified noncoding RNAs molecules with covalently closed circular structures. Previous studies have shown that circRNAs are associated with tumorigenesis and progression of various cancers, including lung cancer. Recently, growing reports have suggested that circRNAs could contribute to drug resistance of lung cancer cell through different mechanisms. Therefore, in this review, we summarized the functions and underlying mechanisms of circRNAs in regulating chemoresistance of lung cancer and discussed their potential applications for diagnosis, prognosis, and treatment of lung cancer.
Collapse
Affiliation(s)
- Qian Yi
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yi Liao
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Weichao Sun
- The Central Laboratory, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, Guangdong, China.,Department of Orthopedics, Shenzhen Second People's Hospital (First Affiliated Hospital of Shenzhen University), Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Liu L, Zhang Q, Peng H. Circ_0048856 competes with ABCC1 for miR-193a-5p/miR-98-5p binding sites to promote the cisplatin resistance and tumorigenesis in lung cancer. J Chemother 2023; 35:39-52. [PMID: 35289739 DOI: 10.1080/1120009x.2022.2043515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Although cisplatin (DDP)-based therapy is the most predominant chemotherapeutic strategy used for lung cancer, drug resistance usually occurs after several cycle use of it. Circular RNAs (circRNAs) are found to be involved in the chemoresistance in lung cancer. Hence, this study aimed to clarify the role and mechanism of circ_0048856 in lung cancer tumorigenesis and DDP resistance. The levels of circ_0048856, miR-193a-5p, miR-98-5p and ABCC1 (ATP Binding Cassette Subfamily C Member 1) were determined by qRT-PCR and western blotting. In vitro assays were conducted by cell counting kit-8 assay, 5-ethynyl-2'-deoxyuridine (EDU) assay, flow cytometry and transwell assay, respectively. The binding interaction was verified using dual-luciferase reporter assay and RIP assay. In vivo experiment was performed by the establishment of murine xenograft model. Circ_0048856 was highly expressed in DDP-resistant lung cancer tissues and cells. Functionally, circ_0048856 silencing re-sensitized DDP-resistant lung cancer cells to DDP, as well as suppressed cell growth and invasion in lung cancer in vitro and in vivo. Mechanistically, circ_0048856 acted as the sponge for miR-193a-5p or miR-98-5p, which targeted ABCC1. Furthermore, rescue experiments showed that inhibition of miR-193a-5p or miR-98-5p reversed the effects of circ_0048856 knockdown on lung cancer cells. Besides that, overexpression of miR-193a-5p or miR-98-5p suppressed cell tumorigenesis and reduced DDP resistance in lung cancer, which were attenuated by ABCC1 up-regulation. Circ_0048856 knockdown suppressed tumor growth and reduced DDP resistance in lung cancer by miR-193a-5p/ABCC1 or miR-98-5p/ABCC1 axis, indicating a novel strategy for efficient application of DDP in lung cancer.
Collapse
Affiliation(s)
- Lingxi Liu
- Department of Thoracic Surgery, Leshan City People's Hospital, Leshan, China
| | - Qingping Zhang
- Department of Thoracic Surgery, Leshan City People's Hospital, Leshan, China
| | - Huali Peng
- Department of Thoracic Surgery, Leshan City People's Hospital, Leshan, China
| |
Collapse
|
8
|
N6-Methyladenosine Modification of CIRCKRT17 Initiated by METTL3 Promotes Osimertinib Resistance of Lung Adenocarcinoma by EIF4A3 to Enhance YAP1 Stability. Cancers (Basel) 2022; 14:cancers14225582. [PMID: 36428672 PMCID: PMC9688051 DOI: 10.3390/cancers14225582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) play a key role in regulating the drug resistance of numerous human tumors. However, whether circKRT17 involves in the osimertinib resistance of lung adenocarcinoma (LUAD) remains undetermined. METHODS Relative mRNA/circRNA and protein levels were detected by qRT-PCR and western blotting. Localization of circKRT17 and YAP1 was determined by FISH and immunofluorescence staining. Cell growth and apoptosis were evaluated using colony formation, EdU assays, and flow cytometry. The N6-methyladenosine (m6A) modification was analyzed by MeRIP. The interplay between EIF4A3 and circKRT17 or YAP1 was verified by RNA pull-down or/and RIP assays. Subcutaneous tumor growth was monitored in nude mice, and Ki-67 and TUNEL staining were carried out to evaluate cell proliferation and apoptosis, respectively. RESULTS CircKRT17 and METTL3 were elevated in osimertinib-insensitive LUAD tissues and cells. Knockdown of circKRT 17 and METTL3 increased the sensitivity of LUAD cells to osimertinib. Knockdown of METTL3 decreased the expression of circKRT17 by inhibiting m6A modification. CircKRT17 promoted the stability and nuclear transportation of YAP1 by recruiting EIF4A3 in LUAD cells. Overexpression of YAP1 abolished the impacts of circKRT17 knockdown on the osimertinib sensitivity of LUAD cells. CircKRT17 knockdown increased the repressive effects of osimertinib on tumor growth in vivo by inhibiting YAP1 signaling. CONCLUSION METTL3 initiated the m6A modification of circKRT17, thus promoting osimertinib resistance of LUAD by enhancing YAP1 stability through EIF4A4 recruitment.
Collapse
|
9
|
Mahfoudhi E, Ricordel C, Lecuyer G, Mouric C, Lena H, Pedeux R. Preclinical Models for Acquired Resistance to Third-Generation EGFR Inhibitors in NSCLC: Functional Studies and Drug Combinations Used to Overcome Resistance. Front Oncol 2022; 12:853501. [PMID: 35463360 PMCID: PMC9023070 DOI: 10.3389/fonc.2022.853501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/02/2022] [Indexed: 11/29/2022] Open
Abstract
Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) are currently recommended as first-line treatment for advanced non-small-cell lung cancer (NSCLC) with EGFR-activating mutations. Third-generation (3rd G) EGFR-TKIs, including osimertinib, offer an effective treatment option for patients with NSCLC resistant 1st and 2nd EGFR-TKIs. However, the efficacy of 3rd G EGFR-TKIs is limited by acquired resistance that has become a growing clinical challenge. Several clinical and preclinical studies are being carried out to better understand the mechanisms of resistance to 3rd G EGFR-TKIs and have revealed various genetic aberrations associated with molecular heterogeneity of cancer cells. Studies focusing on epigenetic events are limited despite several indications of their involvement in the development of resistance. Preclinical models, established in most cases in a similar manner, have shown different prevalence of resistance mechanisms from clinical samples. Clinically identified mechanisms include EGFR mutations that were not identified in preclinical models. Thus, NRAS genetic alterations were not observed in patients but have been described in cell lines resistant to 3rd G EGFR-TKI. Mainly, resistance to 3rd G EGFR-TKI in preclinical models is related to the activation of alternative signaling pathways through tyrosine kinase receptor (TKR) activation or to histological and phenotypic transformations. Yet, preclinical models have provided some insight into the complex network between dominant drivers and associated events that lead to the emergence of resistance and consequently have identified new therapeutic targets. This review provides an overview of preclinical studies developed to investigate the mechanisms of acquired resistance to 3rd G EGFR-TKIs, including osimertinib and rociletinib, across all lines of therapy. In fact, some of the models described were first generated to be resistant to first- and second-generation EGFR-TKIs and often carried the T790M mutation, while others had never been exposed to TKIs. The review further describes the therapeutic opportunities to overcome resistance, based on preclinical studies.
Collapse
Affiliation(s)
- Emna Mahfoudhi
- Univ Rennes, Institut Nationale de la Santé et de la Recherche Médicale (INSERM), COSS (Chemistry Oncogenesis Stress Signaling), UMR_S 1242, Centre de Lutte Contre le Cancer (CLOC) Eugène Marquis, Rennes, France
| | - Charles Ricordel
- Univ Rennes, Institut Nationale de la Santé et de la Recherche Médicale (INSERM), COSS (Chemistry Oncogenesis Stress Signaling), UMR_S 1242, Centre de Lutte Contre le Cancer (CLOC) Eugène Marquis, Rennes, France.,Centre Hospitalier Universitaire de Rennes, Service de Pneumologie, Université de Rennes 1, Rennes, France
| | - Gwendoline Lecuyer
- Univ Rennes, Institut Nationale de la Santé et de la Recherche Médicale (INSERM), COSS (Chemistry Oncogenesis Stress Signaling), UMR_S 1242, Centre de Lutte Contre le Cancer (CLOC) Eugène Marquis, Rennes, France
| | - Cécile Mouric
- Univ Rennes, Institut Nationale de la Santé et de la Recherche Médicale (INSERM), COSS (Chemistry Oncogenesis Stress Signaling), UMR_S 1242, Centre de Lutte Contre le Cancer (CLOC) Eugène Marquis, Rennes, France
| | - Hervé Lena
- Univ Rennes, Institut Nationale de la Santé et de la Recherche Médicale (INSERM), COSS (Chemistry Oncogenesis Stress Signaling), UMR_S 1242, Centre de Lutte Contre le Cancer (CLOC) Eugène Marquis, Rennes, France.,Centre Hospitalier Universitaire de Rennes, Service de Pneumologie, Université de Rennes 1, Rennes, France
| | - Rémy Pedeux
- Univ Rennes, Institut Nationale de la Santé et de la Recherche Médicale (INSERM), COSS (Chemistry Oncogenesis Stress Signaling), UMR_S 1242, Centre de Lutte Contre le Cancer (CLOC) Eugène Marquis, Rennes, France
| |
Collapse
|
10
|
Choi SS, Kim SE, Oh SY, Ahn YH. Clinical Implications of Circulating Circular RNAs in Lung Cancer. Biomedicines 2022; 10:biomedicines10040871. [PMID: 35453621 PMCID: PMC9028053 DOI: 10.3390/biomedicines10040871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 12/18/2022] Open
Abstract
Circular RNAs (circRNAs) are single-stranded RNAs with a covalently closed-loop structure that increases their stability; thus, they are more advantageous to use as liquid biopsy markers than linear RNAs. circRNAs are thought to be generated by back-splicing of pre-mRNA transcripts, which can be facilitated by reverse complementary sequences in the flanking introns and trans-acting factors, such as splicing regulatory factors and RNA-binding factors. circRNAs function as miRNA sponges, interact with target proteins, regulate the stability and translatability of other mRNAs, regulate gene expression, and produce microproteins. circRNAs are also found in the body fluids of cancer patients, including plasma, saliva, urine, and cerebrospinal fluid, and these “circulating circRNAs” can be used as cancer biomarkers. In lung cancer, some circulating circRNAs have been reported to regulate cancer progression and drug resistance. Circulating circRNAs have significant diagnostic value and are associated with the prognosis of lung cancer patients. Owing to their functional versatility, heightened stability, and practical applicability, circulating circRNAs represent promising biomarkers for lung cancer diagnosis, prognosis, and treatment monitoring.
Collapse
Affiliation(s)
- Sae Seul Choi
- Department of Medicine, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (S.S.C.); (S.E.K.)
| | - Sae Eun Kim
- Department of Medicine, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (S.S.C.); (S.E.K.)
| | - Seon Young Oh
- Department of Molecular Medicine, Ewha Womans University, Seoul 07804, Korea;
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea
| | - Young-Ho Ahn
- Department of Medicine, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (S.S.C.); (S.E.K.)
- Department of Molecular Medicine, Ewha Womans University, Seoul 07804, Korea;
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea
- Correspondence: ; Tel.: +82-2-6986-6268
| |
Collapse
|
11
|
Exosomal circ_0048856 derived from non-small cell lung cancer contributes to aggressive cancer progression through downregulation of miR-1287–5p. Pathol Res Pract 2022; 232:153659. [DOI: 10.1016/j.prp.2021.153659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/27/2021] [Accepted: 10/13/2021] [Indexed: 12/25/2022]
|
12
|
Song L, Qian G, Huang J, Chen T, Yang Y. AZD9291-resistant non-small cell lung cancer cell-derived exosomal lnc-MZT2A-5:1 induces the activation of fibroblasts. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1593. [PMID: 34790799 PMCID: PMC8576687 DOI: 10.21037/atm-21-5186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/22/2021] [Indexed: 11/06/2022]
Abstract
Background AZD9291 resistance is still a challenge in the treatment of non-small cell lung cancer (NSCLC) and fibroblasts in the tumor microenvironment (TME) play a key role in the malignant phenotype of NSCLC. The study aimed to investigate the role of exosomes derived from AZD9291-resistant cells on the phenotypes of lung fibroblasts and the underlying mechanism. Methods The supernatants and exosomes of wild type and AZD9291-resistant NSCLC (H1975/PC9) cells were collected, and co-cultured with lung fibroblasts (MRC-5 cells) respectively. Transwell and quantitative real-time PCR (qRT-PCR) assays were used to evaluate migration and inflammation levels. Exosomes were collected by ultracentrifugation, and identified by nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM) and western blots. Microarray was used to screen dysregulated exosomal lncRNAs from the resistant cells. Candidate lncRNAs were selected by bioinformatical annotation of their target genes and verified by qRT-PCR. The target lncRNA was then selected for further confirmation. Results Both the supernatant and exosomes from resistant cells significantly promoted the migration of MRC-5 cells, and the exosomes also upregulated mRNA levels of inflammation cytokines. Microarray identified 159 dysregulated exosomal lncRNAs. Fifteen candidate lncRNAs were selected following the biological roles of their target genes. qRT-PCR validation indicated that lnc-MZT2A-5:1 had the highest fold change. Finally, we found that lnc-MZT2A-5:1 could promote the migration ability and inflammation cytokines expression level of MRC-5 cells. Conclusions Our study clarified that lnc-MZT2A-5:1 from AZD9291-resistant NSCLC cell lines could promote the activation of MRC-5 cells, thus to uncover a new mechanism for AZD9291 resistance and provide new potential targets for the treatment of NSCLC.
Collapse
Affiliation(s)
- Liwei Song
- Shanghai Pulmonary Tumor Medical Center, Shanghai Chest Hospital, Shanghai, China
| | - Gang Qian
- Department of Thoracic Surgery, Zhangjiagang Third People's Hospital, Suzhou, China
| | - Jia Huang
- Shanghai Pulmonary Tumor Medical Center, Shanghai Chest Hospital, Shanghai, China
| | - Tianxiang Chen
- Shanghai Pulmonary Tumor Medical Center, Shanghai Chest Hospital, Shanghai, China
| | - Yunhai Yang
- Shanghai Pulmonary Tumor Medical Center, Shanghai Chest Hospital, Shanghai, China
| |
Collapse
|
13
|
Ishola AA, Chien CS, Yang YP, Chien Y, Yarmishyn AA, Tsai PH, Chen JCY, Hsu PK, Luo YH, Chen YM, Liang KH, Lan YT, Huo TI, Ma HI, Chen MT, Wang ML, Chiou SH. Oncogenic circRNA hsa_circ_0000190 modulates EGFR/ERK pathway in promoting NSCLC. Cancer Res 2021; 82:75-89. [PMID: 34753774 DOI: 10.1158/0008-5472.can-21-1473] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/28/2021] [Accepted: 11/05/2021] [Indexed: 12/24/2022]
Abstract
Lung cancers (LC) are the leading cause of cancer-related mortality worldwide, and the majority of LC are non-small cell lung carcinoma (NSCLC). Overexpressed or activated EGFR has been associated with a poor prognosis in NSCLC. We previously identified a circular non-coding RNA, hsa_circ_0000190 (C190), as a negative prognostic biomarker of LC. Here we attempted to dissect the mechanistic function of C190 and test the potential of C190 as a therapeutic target in NSCLC. C190 was upregulated in both NSCLC clinical samples and cell lines. Activation of the EGFR pathway increased C190 expression through a MAPK/ERK-dependent mechanism. Transient and stable overexpression of C190 induced ERK1/2 phosphorylation, proliferation, and migration in vitro and xenograft tumor growth in vivo. RNA sequencing and Expression2Kinases (X2K) analysis indicated that kinases associated with cell cycle and global translation are involved in C190-activated networks, including CDKs and p70S6K, which were further validated by immunoblotting. CRISPR/Cas13a-mediated knockdown of C190 decreased proliferation and migration of NSCLC cells in vitro and suppressed tumor growth in vivo. TargetScan and CircInteractome databases predicted that C190 targets CDKs by sponging miR-142-5p. Analysis of clinical LC samples showed that C190, CDK1, and CDK6 expression were significantly higher in advanced-stage LC than in early-stage LC. In summary, C190 is directly involved in EGFR-MAPK-ERK signaling and may serve as a potential therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
| | - Chian-Shiu Chien
- Department of Medical Research, Taipei Veterans General Hospital
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital
| | | | - Ping-Hsing Tsai
- Department of Medical Research, Taipei Veterans General Hospital
| | | | - Po-Kuei Hsu
- Department of Surgery, Taipei Veterans General Hospital
| | | | | | - Kung-Hao Liang
- Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital
| | | | - Teh-Ia Huo
- Department of Medical Research, Taipei Veterans General Hospital
| | - Hsin-I Ma
- Department of Neurological Surgery, Tri-Service General Hospital and National Defense Medical Center
| | - Ming-Teh Chen
- Department of Neurosurgery, Taipei Veterans General Hospital
| | - Mong-Lien Wang
- Department of Medical Research, National Yang Ming University
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital
| |
Collapse
|
14
|
Yong W, Deng S, Tan Y, Li S. Circular RNA circSLC8A1 inhibits the proliferation and invasion of non-small cell lung cancer cells through targeting the miR-106b-5p /FOXJ3 axis. Cell Cycle 2021; 20:2597-2606. [PMID: 34724864 DOI: 10.1080/15384101.2021.1995968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Circular RNA derived from the SLC8A1 gene (circSLC8A1) has been implicated in the pathogenesis of several types of cancers. However, the role of circSLC8A1 in non-small cell lung cancer (NSCLC) remains unclear. In the present study, the expression levels of circSLC8A1 in NSCLC tissues and cell lines were determined by qRT-PCR analysis. Function-gain-assays were then carried out to further validate the role of circSLC8A1 in NSCLC in vitro. Online prediction software and the subsequent luciferase reporter assay were used to identify the target genes of circSLC8A1 and microRNA (miR)-106b-5p. CircSLC8A1 was found to be downregulated in NSCLC tissues and cell lines. Overexpression of circSLC8A1 significantly inhibited the proliferation and invasion of NSCLC cells. Further investigations shown that circSLC8A1 was able to bind to miR-106b-5p as well as inhibit the expression of miR-106b-5p in NSCLC cells. MiR-106b-5p mimics reversed the inhibitory effects of circSLC8A1 overexpression on cell proliferation and invasion. Furthermore, we found that forkhead box J3 (FOXJ3) to be a target gene of miR-106b-5p in NSCLC cells. Knockdown of FOXJ3 reversed the inhibitory effects of miR-106b-5p inhibitor on cell proliferation and invasion. Collectively, these findings indicate that circSLC8A1 exhibits anti-tumor activity in NSCLC, which might be mediated by the miR-106b-5p/FOXJ3 axis. The circSLC8A1/miR-106b-5p/FOXJ3 axis may thus represent a promising therapeutic target for the management of NSCLC.
Collapse
Affiliation(s)
- Wenmu Yong
- Department of Respiratory and Critical Care Medicine, HanZhong Central Hospital, Hanzhong, China
| | - Shujiao Deng
- Department of Respiratory and Critical Care Medicine, HanZhong Central Hospital, Hanzhong, China
| | - Yunfang Tan
- Department of Respiratory and Critical Care Medicine, HanZhong Central Hospital, Hanzhong, China
| | - Sen Li
- Department of Respiratory and Critical Care Medicine, HanZhong Central Hospital, Hanzhong, China
| |
Collapse
|
15
|
Lei F, Lei T, Huang Y, Yang M, Liao M, Huang W. Radio-Susceptibility of Nasopharyngeal Carcinoma: Focus on Epstein- Barr Virus, MicroRNAs, Long Non-Coding RNAs and Circular RNAs. Curr Mol Pharmacol 2021; 13:192-205. [PMID: 31880267 DOI: 10.2174/1874467213666191227104646] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/22/2019] [Accepted: 12/29/2019] [Indexed: 02/07/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is a type of head and neck cancer. As a neoplastic disorder, NPC is a highly malignant squamous cell carcinoma that is derived from the nasopharyngeal epithelium. NPC is radiosensitive; radiotherapy or radiotherapy combining with chemotherapy are the main treatment strategies. However, both modalities are usually accompanied by complications and acquired resistance to radiotherapy is a significant impediment to effective NPC therapy. Therefore, there is an urgent need to discover effective radio-sensitization and radio-resistance biomarkers for NPC. Recent studies have shown that Epstein-Barr virus (EBV)-encoded products, microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), which share several common signaling pathways, can function in radio-related NPC cells or tissues. Understanding these interconnected regulatory networks will reveal the details of NPC radiation sensitivity and resistance. In this review, we discuss and summarize the specific molecular mechanisms of NPC radio-sensitization and radio-resistance, focusing on EBV-encoded products, miRNAs, lncRNAs and circRNAs. This will provide a foundation for the discovery of more accurate, effective and specific markers related to NPC radiotherapy. EBVencoded products, miRNAs, lncRNAs and circRNAs have emerged as crucial molecules mediating the radio-susceptibility of NPC. This understanding will improve the clinical application of markers and inform the development of novel therapeutics for NPC.
Collapse
Affiliation(s)
- Fanghong Lei
- Cancer Research Institute, Hengyang Medical College of University of South China; Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology (2016TP1015), Hengyang 421001, Hunan Province, China
| | - Tongda Lei
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yun Huang
- Cancer Research Institute, Hengyang Medical College of University of South China; Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology (2016TP1015), Hengyang 421001, Hunan Province, China
| | - Mingxiu Yang
- Cancer Research Institute, Hengyang Medical College of University of South China; Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology (2016TP1015), Hengyang 421001, Hunan Province, China
| | - Mingchu Liao
- Department of Oncology, The First Affiliated Hospital of University of South China, Hengyang 421001, Hunan Province, China
| | - Weiguo Huang
- Cancer Research Institute, Hengyang Medical College of University of South China; Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology (2016TP1015), Hengyang 421001, Hunan Province, China
| |
Collapse
|
16
|
Chen HH, Zhang TN, Wu QJ, Huang XM, Zhao YH. Circular RNAs in Lung Cancer: Recent Advances and Future Perspectives. Front Oncol 2021; 11:664290. [PMID: 34295810 PMCID: PMC8290158 DOI: 10.3389/fonc.2021.664290] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Globally, lung cancer is the most commonly diagnosed cancer and carries with it the greatest mortality rate, with 5-year survival rates varying from 4–17% depending on stage and geographical differences. For decades, researchers have studied disease mechanisms, occurrence rates and disease development, however, the mechanisms underlying disease progression are not yet fully elucidated, thus an increased understanding of disease pathogenesis is key to developing new strategies towards specific disease diagnoses and targeted treatments. Circular RNAs (circRNAs) are a class of non-coding RNA widely expressed in eukaryotic cells, and participate in various biological processes implicated in human disease. Recent studies have indicated that circRNAs both positively and negatively regulate lung cancer cell proliferation, migration, invasion and apoptosis. Additionally, circRNAs could be promising biomarkers and targets for lung cancer therapies. This review systematically highlights recent advances in circRNA regulatory roles in lung cancer, and sheds light on their use as potential biomarkers and treatment targets for this disease.
Collapse
Affiliation(s)
- Huan-Huan Chen
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China.,Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tie-Ning Zhang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China.,Department of Pediatric, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin-Mei Huang
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yu-Hong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
17
|
Cao X, Li F, Shao J, Lv J, Chang A, Dong W, Zhu F. Circular RNA hsa_circ_0102231 sponges miR-145 to promote non-small cell lung cancer cell proliferation by up-regulating the expression of RBBP4. J Biochem 2021; 169:65-73. [PMID: 33084863 DOI: 10.1093/jb/mvaa093] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/25/2020] [Indexed: 01/14/2023] Open
Abstract
Circular RNAs (circRNAs) are important regulators in various cancers. Previous studies have found that hsa_circ_0102231 is an oncogene in lung adenocarcinoma. Here, we investigated its mechanism in the development of non-small cell lung cancer (NSCLC). We detected the levels of hsa_circ_0102231 in five NSCLC cell lines and one normal bronchial epithelium cell line. The interaction between hsa_circ_0102231 and miR-145 was predicted and confirmed by pull-down and luciferase assays. The nuclear mass separation assay and fluorescence in situ hybridization were used to detect the distribution of hsa_circ_0102231. Cell Counting Kit-8 and Transwell assays were used to assess the cell proliferative and invasive ability. Western blot and RT-qPCR, respectively, detected the protein and mRNA levels of RBBP4. The RBBP4 promoter activity was detected with a luciferase assay. We found that hsa_circ_0102231 level was higher in NSCLC cells. hsa_circ_0102231 is mainly localized to the cytoplasm. hsa_circ_0102231 promotes NSCLC cell proliferation and invasion by sponge for miR-145. miR-145 significantly decreases the RBBP4 promoter activity, and its mRNA and protein levels. RBBP4 is an oncogene to promote proliferation and invasion ability. Our findings suggest that hsa_circ_0102231 promotes proliferation and invasion by mediating the miR-145/RBBP4 axis in NSCLC, indicating that it might be a potential target for NSCLC treatment.
Collapse
Affiliation(s)
- Xueru Cao
- Department of Respiratory Medicine, Heze Municipal Hospital, 2888 Caozhou Road, Heze, Shandong, 274000, People's Republic of China
| | - Fengzhen Li
- Department of Respiratory Medicine, Heze Municipal Hospital, 2888 Caozhou Road, Heze, Shandong, 274000, People's Republic of China
| | - Jianping Shao
- Department of Respiratory Medicine, Heze Municipal Hospital, 2888 Caozhou Road, Heze, Shandong, 274000, People's Republic of China
| | - Jianmei Lv
- Department of Respiratory Medicine, Heze Municipal Hospital, 2888 Caozhou Road, Heze, Shandong, 274000, People's Republic of China
| | - Ailan Chang
- Department of Respiratory Medicine, Heze Municipal Hospital, 2888 Caozhou Road, Heze, Shandong, 274000, People's Republic of China
| | - Weiping Dong
- Department of Respiratory Medicine, Heze Municipal Hospital, 2888 Caozhou Road, Heze, Shandong, 274000, People's Republic of China
| | - Fulian Zhu
- Department of Respiratory Medicine, Heze Municipal Hospital, 2888 Caozhou Road, Heze, Shandong, 274000, People's Republic of China
| |
Collapse
|
18
|
Pedraz-Valdunciel C, Rosell R. Defining the landscape of circRNAs in non-small cell lung cancer and their potential as liquid biopsy biomarkers: a complete review including current methods. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2021; 2:179-201. [PMID: 39697533 PMCID: PMC11648509 DOI: 10.20517/evcna.2020.07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/22/2021] [Accepted: 06/02/2021] [Indexed: 12/20/2024]
Abstract
Despite the significant decrease in population-level mortality of lung cancer patients as reflected in the Surveillance Epidemiology and End Results program national database, lung cancer, with non-small cell lung cancer (NSCLC) in the lead, continues to be the most commonly diagnosed cancer and foremost cause of cancer-related death worldwide, primarily due to late-stage diagnosis and ineffective treatment regimens. Although innovative single therapies and their combinations are constantly being tested in clinical trials, the five-year survival rate of late-stage lung cancer remains only 5% (Cancer Research, UK). Henceforth, investigation in the early diagnosis of lung cancer and prediction of treatment response is critical for improving the overall survival of these patients. Circular RNAs (circRNAs) are a re-discovered type of RNAs featuring stable structure and high tissue-specific expression. Evidence has revealed that aberrant circRNA expression plays an important role in carcinogenesis and tumor progression. Further investigation is warranted to assess the value of EV- and platelet-derived circRNAs as liquid biopsy-based readouts for lung cancer detection. This review discusses the origin and biology of circRNAs, and analyzes their present landscape in NSCLC, focusing on liquid biopsies to illustrate the different methodological trends currently available in research. The possible limitations that could be holding back the clinical implementation of circRNAs are also analyzed.
Collapse
Affiliation(s)
- Carlos Pedraz-Valdunciel
- Cancer Biology and Precision Medicine Department, Germans Trias i Pujol Research Institute and Hospital, Badalona 08916, Spain
- Biochemistry, Molecular Biology and Biomedicine Department, Universitat Autónoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Rafael Rosell
- Cancer Biology and Precision Medicine Department, Germans Trias i Pujol Research Institute and Hospital, Badalona 08916, Spain
- Universitat Autónoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| |
Collapse
|
19
|
Zhang T, Sun B, Zhong C, Xu K, Wang Z, Hofman P, Nagano T, Legras A, Breadner D, Ricciuti B, Divisi D, Schmid RA, Peng RW, Yang H, Yao F. Targeting histone deacetylase enhances the therapeutic effect of Erastin-induced ferroptosis in EGFR-activating mutant lung adenocarcinoma. Transl Lung Cancer Res 2021; 10:1857-1872. [PMID: 34012798 PMCID: PMC8107764 DOI: 10.21037/tlcr-21-303] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Intrinsic or acquired resistance to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) is common, thus strategies for the management of EGFR-TKIs resistance are urgently required. Ferroptosis is a recently discovered form of cell death that has been implicated in tumorigenesis and resistance treatment. Accumulating evidence suggests that ferroptosis can be therapeutically exploited for the treatment of solid tumors; however, whether ferroptosis can be targeted to treat EGFR mutant lung cancer and/or overcome the resistance to EGFR-TKIs is still unknown. Methods The effect of ferroptosis inducers on a panel of EGFR mutant lung cancer cell lines, including those with EGFR-TKI intrinsic and acquired (generated by long-term exposure to the third-generation EGFR-TKI osimertinib), was determined using cytotoxicity assays. Further, drug candidates to enhance the effect of ferroptosis inducers were screened through implementing WGCNA (weighted gene co-expression network analysis) and CMAP (connectivity map) analysis. Flow cytometry-based apoptosis and lipid hydroperoxides measurement were used to evaluate the cell fates after treatment. Results Compared with EGFR-TKI-sensitive cells, those with intrinsic or acquired resistance to EGFR-TKI display high sensitivity to ferroptosis inducers. In addition, Vorinostat, a clinically used inhibitor targeting histone deacetylase, can robustly enhance the efficacy of ferroptosis inducers, leading to a dramatic increase of hydroperoxides in EGFR mutant lung cancer cells with intrinsic or acquired resistance to EGFR-TKI. Mechanistically, Vorinostat promotes ferroptosis via xCT downregulation. Conclusions Ferroptosis-inducing therapy shows promise in EGFR-activating mutant lung cancer cells that display intrinsic or acquired resistance to EGFR-TKI. Histone deacetylase inhibitor (HDACi) Vorinostat can further promote ferroptosis by inhibiting xCT expression.
Collapse
Affiliation(s)
- Tuo Zhang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Beibei Sun
- Institute for Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chenxi Zhong
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ke Xu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhexin Wang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, FHU OncoAge, Nice, France
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Antoine Legras
- Thoracic and Cardio-Vascular Surgery Department, Tours University Hospital, INSERM, N2C UMR 1069, University of Tours, Tours, France
| | - Daniel Breadner
- Division of Medical Oncology, London Regional Cancer Program at London Health Science Center, London, Canada
| | - Biagio Ricciuti
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi University Hospital, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Duilio Divisi
- Department of MeSVA, University of L'Aquila, Thoracic Surgery Unit, "Giuseppe Mazzini" Hospital, Teramo, Italy
| | - Ralph A Schmid
- Division of General Thoracic Surgery, Department of BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ren-Wang Peng
- Division of General Thoracic Surgery, Department of BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Haitang Yang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Yao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
20
|
Verusingam ND, Chen YC, Lin HF, Liu CY, Lee MC, Lu KH, Cheong SK, Han-Kiat Ong A, Chiou SH, Wang ML. Generation of osimertinib-resistant cells from epidermal growth factor receptor L858R/T790M mutant non-small cell lung carcinoma cell line. J Chin Med Assoc 2021; 84:248-254. [PMID: 33009209 DOI: 10.1097/jcma.0000000000000438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Lung cancer contributes to high cancer mortality worldwide with 80% of total cases diagnosed as non-small cell lung cancer (NSCLC). Epidermal growth factor receptor (EGFR) tyrosine kinase (TK) domain serves as a druggable target in NSCLC patients with exon 19 deletion and L858R mutation. However, patients eventually succumbed to resistance to first- and second-generation EGFR-TK inhibitors through activation of T790M mutation. Third-generation EGFR-TKI, Osimertinib exhibits high efficacy in patients with exon 19 deletion/L858R/T790M mutation but they experienced acquired resistance thereafter. Available treatment options in NSCLC patients remains a challenge due to unknown molecular heterogeneity responsible for acquired resistance to EGFR-TKI. In this study, we aim to generate Osimertinib-resistant (OR) cells from H1975 carrying L858R/T790M double mutation which can be used as a model to elucidate mechanism of resistance. METHODS OR cells were established via stepwise-dose escalation and limiting single-cell dilution method. We then evaluated Osimertinib resistance potential via cell viability assay. Proteins expression related to EGFR-signalling, epithelial to mesenchymal transition (EMT), and autophagy were analyzed via western blot. RESULTS OR cell lines exhibited increased drug resistance potential compared to H1975. Distinguishable mesenchymal-like features were observed in OR cells. Protein expression analysis revealed EGFR-independent signaling involved in the derived OR cells as well as EMT and autophagy activity. CONCLUSION We generated OR cell lines in-vitro as evidenced by increased drug resistance potential, increased mesenchymal features, and enhanced autophagy activity. Development of Osimertinib resistance cells may serve as in-vitro model facilitating discovery of molecular aberration present during acquired mechanism of resistance.
Collapse
Affiliation(s)
- Nalini Devi Verusingam
- Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- National Cancer Council (MAKNA), Kuala Lumpur, Malaysia
| | - Yi-Chen Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Heng-Fu Lin
- Division of Thoracic Surgery, Department of Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan, ROC
| | - Chao-Yu Liu
- Division of Traumatology, Department of Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan, ROC
| | - Ming-Cheng Lee
- Division of Infectious Diseases, Department of Internal Medicine, Cheng-Hsin General Hospital, Taipei, Taiwan, ROC
| | - Kai-Hsi Lu
- Department of Medical Research and Education, Cheng-Hsin General Hospital, Taipei, Taiwan, ROC
| | - Soon-Keng Cheong
- Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
- National Cancer Council (MAKNA), Kuala Lumpur, Malaysia
| | - Alan Han-Kiat Ong
- Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Shih-Hwa Chiou
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Stem Cell & Genomic Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Genomic Research Center, Academia Sinica, Taipei, Taiwan, ROC
| | - Mong-Lien Wang
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| |
Collapse
|
21
|
Feng B, Zhou H, Wang T, Lin X, Lai Y, Chu X, Wang R. Insights Into circRNAs: Functional Roles in Lung Cancer Management and the Potential Mechanisms. Front Cell Dev Biol 2021; 9:636913. [PMID: 33634138 PMCID: PMC7900409 DOI: 10.3389/fcell.2021.636913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/20/2021] [Indexed: 01/17/2023] Open
Abstract
Lung cancer is the most prevalent cancer globally. It is also the leading cause of cancer-related death because of the late diagnosis and the frequent resistance to therapeutics. Therefore, it is impending to identify novel biomarkers and effective therapeutic targets to improve the clinical outcomes. Identified as a new class of RNAs, circular RNAs (circRNAs) derive from pre-mRNA back splicing with considerable stability and conservation. Accumulating research reveal that circRNAs can function as microRNA (miRNA) sponges, regulators of gene transcription and alternative splicing, as well as interact with RNA-binding proteins (RBPs), or even be translated into proteins directly. Currently, a large body of circRNAs have been demonstrated differentially expressed in physiological and pathological processes including cancer. In lung cancer, circRNAs play multiple roles in carcinogenesis, development, and response to different therapies, indicating their potential as diagnostic and prognostic biomarkers as well as novel therapeutics. In this review, we summarize the multi-faceted functions of circRNAs in lung cancer and the underlying mechanisms, together with the possible future of these discoveries in clinical application.
Collapse
Affiliation(s)
- Bing Feng
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Hao Zhou
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Ting Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Xinrong Lin
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Yongting Lai
- Department of Medical Oncology, Nanjing School of Clinical Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.,Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China.,Department of Medical Oncology, Nanjing School of Clinical Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Rui Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.,Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China.,Department of Medical Oncology, Nanjing School of Clinical Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| |
Collapse
|
22
|
Ma Q, Huai B, Liu Y, Jia Z, Zhao Q. Circular RNA circ_0020123 Promotes Non-Small Cell Lung Cancer Progression Through miR-384/TRIM44 Axis. Cancer Manag Res 2021; 13:75-87. [PMID: 33442296 PMCID: PMC7800473 DOI: 10.2147/cmar.s278913] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/20/2020] [Indexed: 01/03/2023] Open
Abstract
Background It was reported that circular RNAs (circRNAs) and microRNAs (miRNAs) were related to non-small cell lung cancer (NSCLC) development. However, the detailed mechanisms of circ_0020123 and miR-384 in NSCLC are elusive. Methods QRT-PCR and Western blot assay were performed to detect the transcription and protein levels of genes, respectively. Then, the functional experiments, including MTT assay, flow cytometry, and transwell assay, were employed. Besides, the interaction between miR-384 and circ_0020123 or tripartite motif‑containing protein 44 (TRIM44) was predicted by starbase or targetscan, and then verified by the dual-luciferase reporter, RNA pull-down assays and RNA immunoprecipitation assay (RIP). Mouse xenograft assay was performed to evaluate the effect of circ_0020123 on tumor growth in vivo. Results Levels of circ_0020123 and TRIM44 were enhanced, and the miR-384 level was attenuated in NSCLC tissues and cells. Circ_0020123 depletion attenuated the abilities of NSCLC cell viability, migration, invasion, and epithelial–mesenchymal transition (EMT), and induced apoptosis. Besides, circ_0020123 interacted with miR-384, and miR-384 targeted TRIM44. Circ_0020123 regulated cell progression by regulating miR-384 and subsequently mediated TRIM44 expression. Besides, circ_0020123 depletion repressed tumor growth in vivo. Conclusion We demonstrated that circ_0020123 knockdown suppressed NSCLC cell progression by regulating the miR-384/TRIM44 axis, providing the theoretical basis for the therapy of NSCLC.
Collapse
Affiliation(s)
- Qingshan Ma
- Department of Oncology, Linyi People's Hospital, Linyi, Shandong 276000, People's Republic of China
| | - Baogang Huai
- Department of Pulmonary Disease, Pinyi County Hospital of Traditional Chinese Medicine, Linyi, Shandong 273300, People's Republic of China
| | - Yuting Liu
- University Department, Linyi People's Hospital, Linyi, Shandong 276000, People's Republic of China
| | - Zhongyao Jia
- Department of Oncology, Linyi People's Hospital, Linyi, Shandong 276000, People's Republic of China
| | - Qilong Zhao
- Department of Oncology, Linyi People's Hospital, Linyi, Shandong 276000, People's Republic of China
| |
Collapse
|
23
|
Shang JL, Ning SB, Chen YY, Chen TX, Zhang J. MDL-800, an allosteric activator of SIRT6, suppresses proliferation and enhances EGFR-TKIs therapy in non-small cell lung cancer. Acta Pharmacol Sin 2021; 42:120-131. [PMID: 32541922 PMCID: PMC7921659 DOI: 10.1038/s41401-020-0442-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/12/2020] [Indexed: 12/17/2022] Open
Abstract
Sirtuin 6 (SIRT6), a member of the sirtuin family, is a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase that is involved in various physiological and pathological processes. SIRT6 is generally downregulated and linked to tumorigenesis in non-small cell lung carcinoma (NSCLC), thus regarded as a promising therapeutic target of NSCLC. In this study, we investigated whether MDL-800, an allosteric activator of SIRT6, exerted antiproliferation effect against NSCLC cells in vitro and in vivo. We showed that MDL-800 increased SIRT6 deacetylase activity with an EC50 value of 11.0 ± 0.3 μM; MDL-800 (10-50 μM) induced dose-dependent deacetylation of histone H3 in 12 NSCLC cell lines. Treatment with MDL-800 dose dependently inhibited the proliferation of 12 NSCLC cell lines with IC50 values ranging from 21.5 to 34.5 μM. The antiproliferation effect of MDL-800 was significantly diminished by SIRT6 knockout. Treatment with MDL-800 induced remarkable cell cycle arrest at the G0/G1 phase in NSCLC HCC827 and PC9 cells. Furthermore, MDL-800 (25, 50 μM) enhanced the antiproliferation of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) in osimertinib-resistant HCC827 and PC9 cells as well as in patient-derived primary tumor cells, and suppressed mitogen-activated protein kinase (MAPK) pathway. In HCC827 cell-derived xenograft nude mice, intraperitoneal administration of MDL-800 (80 mg · kg-1 · d-1, for 14 days) markedly suppressed the tumor growth, accompanied by enhanced SIRT6-dependent histone H3 deacetylation and decreased p-MEK and p-ERK in tumor tissues. Our results provide the pharmacological evidence for future clinical investigation of MDL-800 as a promising lead compound for NSCLC treatment alone or in combination with EGFR-TKIs.
Collapse
Affiliation(s)
- Jia-Lin Shang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shao-Bo Ning
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ying-Yi Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tian-Xiang Chen
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Jian Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
24
|
Gu Y, Lai S, Dong Y, Fu H, Song L, Chen T, Duan Y, Zhang Z. AZD9291 Resistance Reversal Activity of a pH-Sensitive Nanocarrier Dual-Loaded with Chloroquine and FGFR1 Inhibitor in NSCLC. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002922. [PMID: 33511016 PMCID: PMC7816715 DOI: 10.1002/advs.202002922] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/10/2020] [Indexed: 05/03/2023]
Abstract
AZD9291 can effectively prolong survival of non-small cell lung cancer (NSCLC) patients. Unfortunately, the mechanism of its acquired drug resistance is largely unknown. This study shows that autophagy and fibroblast growth factor receptor 1 signaling pathways are both activated in AZD9291 resistant NSCLC, and inhibition of them, respectively, by chloroquine (CQ) and PD173074 can synergistically reverse AZD9291 resistance. Herein, a coloaded CQ and PD173074 pH-sensitive shell-core nanoparticles CP@NP-cRGD is developed to reverse AZD9291 resistance in NSCLC. CP@NP-cRGD has a high encapsulation rate and stability, and can effectively prevent the degradation of drugs in circulation process. CP@NP-cRGD can target tumor cells by enhanced permeability and retention effect and the cRGD peptide. The pH-sensitive CaP shell can realize lysosome escape and then release drugs successively. The combination of CP@NP-cRGD and AZD9291 significantly induces a higher rate of apoptosis, more G0/G1 phase arrest, and reduces proliferation of resistant cell lines by downregulation of p-ERK1/2 in vitro. CQ in CP@NP-cRGD can block protective autophagy induced by both AZD9291 and PD173074. CP@NP-cRGD combined with AZD9291 shows adequate tumor enrichment, low toxicity, and excellent antitumor effect in nude mice. It provides a novel multifunctional nanoparticle to overcome AZD9291 resistance for potential clinical applications.
Collapse
Affiliation(s)
- Yu Gu
- Department of Radiation OncologyFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Songtao Lai
- Department of Radiation OncologyFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Yang Dong
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| | - Hao Fu
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| | - Liwei Song
- Shanghai Lung Cancer CenterShanghai Chest HospitalShanghai Jiao Tong UniversityShanghai200030China
| | - Tianxiang Chen
- Shanghai Lung Cancer CenterShanghai Chest HospitalShanghai Jiao Tong UniversityShanghai200030China
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| | - Zhen Zhang
- Department of Radiation OncologyFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| |
Collapse
|
25
|
Brown JR, Chinnaiyan AM. The Potential of Circular RNAs as Cancer Biomarkers. Cancer Epidemiol Biomarkers Prev 2020; 29:2541-2555. [PMID: 33060073 DOI: 10.1158/1055-9965.epi-20-0796] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/24/2020] [Accepted: 10/12/2020] [Indexed: 01/17/2023] Open
Abstract
Circular RNA (circRNA) is a covalently closed RNA structure that has several proposed functions related to cancer development. Recently, cancer-specific and tissue-specific circRNAs have been identified by high-throughput sequencing and are curated in publicly available databases. CircRNAs have features that are ideal properties of biomarkers, including conservation, abundance, and stability in plasma, saliva, and urine. Many circRNAs with predictive and prognostic significance in cancer have been described, and functional mechanisms for some circRNAs have been suggested. CircRNA also has great potential as a noninvasive biomarker for early cancer detection, although further investigation is necessary before clinical application is feasible.See all articles in this CEBP Focus section, "NCI Early Detection Research Network: Making Cancer Detection Possible."
Collapse
Affiliation(s)
- Jason R Brown
- Rogel Cancer Center, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Arul M Chinnaiyan
- Rogel Cancer Center, Michigan Medicine, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
26
|
Wu W, Zhen T, Yu J, Yang Q. Circular RNAs as New Regulators in Gastric Cancer: Diagnosis and Cancer Therapy. Front Oncol 2020; 10:1526. [PMID: 33072546 PMCID: PMC7531269 DOI: 10.3389/fonc.2020.01526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer (GC) is one of the most commonly diagnosed cancers that causes high mortality in the world. Although the surgery tools and chemotherapies have significantly improved the overall survival of patients with GC, the early diagnosis of GC remains insufficient and many patients diagnosed with advanced stages of GC are not able to benefit from curative therapy. Circular RNAs (circRNAs), novel members of the non-coding cancer genome, are being explored with regards to various cancer types including GC. CircRNAs could work as miRNA sponges to regulate cell proliferation, cell migration, and cell cycle in GC. In addition, it was found that abnormal expression of circRNAs was associated with pathological characteristics in GC tissues, which could help to act as potential markers of early diagnosis or predictors of prognosis. Although various functional circRNAs have been discovered and characterized, the studies of circRNAs in GC are still at early stages compared with other RNAs. In order to provide a whole view to better understand the circRNAs in the occurrence and development of GC, we review the current knowledge on circRNAs in relation to their expression and regulation in GC as well as their potential to be diagnosis markers, and their role in drug resistance will be mentioned. It is helpful to address their possibility from basic research into practical application.
Collapse
Affiliation(s)
- Wei Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Tianyuan Zhen
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Junmin Yu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
27
|
CircRNAs in lung cancer - Biogenesis, function and clinical implication. Cancer Lett 2020; 492:106-115. [PMID: 32860847 DOI: 10.1016/j.canlet.2020.08.013] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/26/2020] [Accepted: 08/12/2020] [Indexed: 02/08/2023]
Abstract
Lung cancer is the leading cause of malignancy-related incidence and mortality worldwide. Molecular mechanisms underlying tumorigenesis and development of lung cancer are still warranted to be elucidated. Previous studies have shown that non-coding RNAs are related to the tumorigenesis and progression of various cancers. However, the expression patterns and clinical implications of circRNAs in lung cancer remain obscure. CircRNAs are a special class of non-coding RNAs with stable covalently closed circular structures, high abundance and tissue/cell/development-specific expression patterns. Thus, circRNAs are a new frontier in lung cancer research. Therefore, in this review, we elucidated the biological function and mechanism of circRNAs, as well as the role of aberrant expressed circRNAs in proliferation, invasion, drug resistance and tumor microenvironment. Furthermore, we discussed that circRNAs may serve as potential clinical biomarkers for the diagnosis, prognosis and treatment of lung cancer.
Collapse
|
28
|
Xu T, Wang M, Jiang L, Ma L, Wan L, Chen Q, Wei C, Wang Z. CircRNAs in anticancer drug resistance: recent advances and future potential. Mol Cancer 2020; 19:127. [PMID: 32799866 PMCID: PMC7429705 DOI: 10.1186/s12943-020-01240-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022] Open
Abstract
CircRNAs are a novel class of RNA molecules with a unique closed continuous loop structure. CircRNAs are abundant in eukaryotic cells, have unique stability and tissue specificity, and can play a biological regulatory role at various levels, such as transcriptional and posttranscriptional levels. Numerous studies have indicated that circRNAs serve a crucial purpose in cancer biology. CircRNAs regulate tumor behavioral phenotypes such as proliferation and migration through various molecular mechanisms, such as miRNA sponging, transcriptional regulation, and protein interaction. Recently, several reports have demonstrated that they are also deeply involved in resistance to anticancer drugs, from traditional chemotherapeutic drugs to targeted and immunotherapeutic drugs. This review is the first to summarize the latest research on circRNAs in anticancer drug resistance based on drug classification and to discuss their potential clinical applications.
Collapse
Affiliation(s)
- Tianwei Xu
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan road 121#, Nanjing, 210011, Jiangsu, P.R. China
| | - Mengwei Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan road 121#, Nanjing, 210011, Jiangsu, P.R. China
| | - Lihua Jiang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan road 121#, Nanjing, 210011, Jiangsu, P.R. China
| | - Li Ma
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan road 121#, Nanjing, 210011, Jiangsu, P.R. China
| | - Li Wan
- Department of Oncology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu, China
| | - Qinnan Chen
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan road 121#, Nanjing, 210011, Jiangsu, P.R. China
| | - Chenchen Wei
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan road 121#, Nanjing, 210011, Jiangsu, P.R. China.
| | - Zhaoxia Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan road 121#, Nanjing, 210011, Jiangsu, P.R. China.
| |
Collapse
|
29
|
Ma J, Qi G, Li L. A Novel Serum Exosomes-Based Biomarker hsa_circ_0002130 Facilitates Osimertinib-Resistance in Non-Small Cell Lung Cancer by Sponging miR-498. Onco Targets Ther 2020; 13:5293-5307. [PMID: 32606748 PMCID: PMC7293392 DOI: 10.2147/ott.s243214] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/15/2020] [Indexed: 12/15/2022] Open
Abstract
Purpose Exosomes are the effective delivery system for biological compounds, including circular RNAs. In this research, we aimed to explore the role of circular RNA hsa_circRNA_0002130 in osimertinib-resistant non-small cell lung cancer (NSCLC). Materials and Methods In our study, the relative protein expression of glucose transporter 1 (GLUT1), hexokinase-2 (HK2) and lactate dehydrogenase A (LDHA) was detected by Western blot, while the expression of hsa_circ_0002130 and microRNA-498 (miR-498) was detected by quantitative real-time PCR (qRT-PCR). The biological functions of hsa_circ_0002130 in osimertinib-resistant NSCLC were analyzed by cell viability assay, flow cytometry analysis, luciferase reporter assay, RNA pull-down assay, and tumor xenograft model in vivo. Moreover, glucose uptake, lactate production and extracellular acidification (ECAR) levels were measured by glucose uptake colorimetric assay kit, lactate assay kit II, and Seahorse Extracellular Flux Analyzer XF96 assay, respectively. hsa_circ_0002130 identification and localization were confirmed by RNase R digestion and subcellular localization assay, respectively. Exosomes were isolated from the sera collected from NSCLC patients and identified using a transmission electron microscopy and nanoparticle tracking analysis. Results Osimertinib-resistance was closely related to glycolysis. hsa_circ_0002130 was highly expressed in osimertinib-resistant NSCLC cells and hsa_circ_0002130 deletion inhibited osimertinib-resistance both in vitro and in vivo. Moreover, hsa_circ_0002130 targeted miR-498 to regulate GLUT1, HK2 and LDHA. The inhibitory effects of hsa_circ_0002130 deletion on osimertinib-resistant were reversed by downregulating miR-498. Importantly, hsa_circ_0002130 was upregulated in serum exosomes from osimertinib-resistant NSCLC patients. Conclusion Our findings confirmed that hsa_circ_0002130 served as a promotion role in osimertinib-resistant NSCLC.
Collapse
Affiliation(s)
- Jing Ma
- Department of Respiratory and Critical Medicine, Huaihe Hospital of Henan University, Kaifeng, Henan, People's Republic of China
| | - Guanbin Qi
- Department of Respiratory and Critical Medicine, Huaihe Hospital of Henan University, Kaifeng, Henan, People's Republic of China
| | - Lei Li
- Department of Respiratory and Critical Medicine, Huaihe Hospital of Henan University, Kaifeng, Henan, People's Republic of China
| |
Collapse
|
30
|
Zhou DN, Ye CS, Deng YF. CircRNAs: potency of protein translation and feasibility of novel biomarkers and therapeutic targets for head and neck cancers. Am J Transl Res 2020; 12:1535-1552. [PMID: 32509160 PMCID: PMC7270011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
Circular RNAs (circRNAs), a new star noncoding RNA (ncRNA), show stability, conservation, abundance, and tissue and stage specificity. They act as key regulators of biological processes. They target the mRNAs of many other different genes or signaling pathways, and closely link associated genes into regulatory networks. Growing evidence has demonstrated that circRNAs may play an important role in the carcinogenesis, progression and chemoradiation resistance of many cancers including head and neck cancers (HNC). CircRNA, like other ncRNA, such as miRNA, lncRNA, usually is considered to be non-protein coding transcript. However, recent studies indicated that abnormal translation of circRNAs may be involved in human diseases. In this review, we collected the origin, classification, characteristics, function of circRNAs, exosmal circRNAs, and then synthesize current study results to highlight aberration of circRNAs in various types of HNC, and try to clarify the molecular mechanisms of circRNAs affecting the pathogenesis and progression of HNC, as well as pay particular attention to provide a new avenue to the diagnosis and treatment strategy for HNC.
Collapse
Affiliation(s)
- Dong-Ni Zhou
- Department of Pathology, Zhongshan Hospital, Xiamen University209 Hubin South Road, Xiamen 361004, Fujian, China
| | - Chun-Sheng Ye
- Department of Otolaryngology-Head and Neck Surgery, Zhongshan Hospital, Xiamen University209 Hubin South Road, Xiamen 361004, Fujian, China
| | - Yan-Fei Deng
- Department of Otolaryngology-Head and Neck Surgery, Zhongshan Hospital, Xiamen University209 Hubin South Road, Xiamen 361004, Fujian, China
- Union School of Clinical Medicine, Fujian Medical UniversityFuzhou 350001, Fujian, China
| |
Collapse
|
31
|
Drula R, Braicu C, Harangus A, Nabavi SM, Trif M, Slaby O, Ionescu C, Irimie A, Berindan-Neagoe I. Critical function of circular RNAs in lung cancer. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1592. [PMID: 32180372 DOI: 10.1002/wrna.1592] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/12/2022]
Abstract
Lung cancer is one of the main causes of cancer-related death in the world, especially due to its frequency and ineffective therapeutically approaches in the late stages of the disease. Despite the recent advent of promising new targeted therapies, lung cancer diagnostic strategies still have difficulty in identifying the disease at an early stage. Therefore, the characterizations of more sensible and specific cancer biomarkers have become an important goal for clinicians. Circular RNAs (circRNAs), a type of RNA with covalently closed continuous loop structures that display high structural resistance and tissue specificity pointed toward a potential biomarker role. Current investigations have identified that circRNAs have a prominent function in the regulation of oncogenic pathways, by regulating gene expression both at transcriptional and post-transcriptional level. The aim of this review is to provide novel information regarding the implications of circRNAs in lung cancer, with an emphasis on the role in disease development and progression. Initially, we explored the potential utility of circRNAs as biomarkers, focusing on function, mechanisms, and correlation with disease progression in lung cancer. Further, we will describe the interaction between circRNAs and other non-coding species of RNA (particularly microRNA) and their biological significance in lung cancer. Describing the nature of these interactions and their therapeutic potential will provide additional insight regarding the altered molecular landscape of lung cancer and consolidate the potential clinical value of these circular transcripts. This article is categorized under: RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Rares Drula
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Antonia Harangus
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,"Leon Daniello" Pneumology Clinic, Cluj-Napoca, Romania
| | - Seyed M Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Calin Ionescu
- 5th Surgical Department, Municipal Hospital, Cluj-Napoca, Romania.,Department of Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alexandru Irimie
- Department of Surgery, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania.,Department of Surgical Oncology and Gynecological Oncology, University of Medicine and Pharmacy Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu Hatieganu, Cluj-Napoca, Romania.,Department of Functional Genomics and Experimental Pathology, The Oncology Institute Prof. Dr. Ion Chiricuta, Cluj-Napoca, Romania
| |
Collapse
|
32
|
Cui C, Yang J, Li X, Liu D, Fu L, Wang X. Functions and mechanisms of circular RNAs in cancer radiotherapy and chemotherapy resistance. Mol Cancer 2020; 19:58. [PMID: 32171304 PMCID: PMC7071709 DOI: 10.1186/s12943-020-01180-y] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/05/2020] [Indexed: 12/16/2022] Open
Abstract
Circular RNAs (circRNAs), one type of non-coding RNA, were initially misinterpreted as nonfunctional products of pre-mRNA mis-splicing. Currently, circRNAs have been proven to manipulate the functions of diverse molecules, including non-coding RNAs, mRNAs, DNAs and proteins, to regulate cell activities in physiology and pathology. Accumulating evidence indicates that circRNAs play critical roles in tumor genesis, development, and sensitivity to radiation and chemotherapy. Radiotherapy and chemotherapy are two primary types of intervention for most cancers, but their therapeutic efficacies are usually retarded by intrinsic and acquired resistance. Thus, it is urgent to develop new strategies to improve therapeutic responses. To achieve this, clarification of the underlying mechanisms affecting therapeutic responses in cancer is needed. This review summarizes recent progress and mechanisms of circRNAs in cancer resistance to radiation and chemotherapy, and it discusses the limitations of available knowledge and potential future directions.
Collapse
Affiliation(s)
- Chaochu Cui
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jianbo Yang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiao Li
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Dongling Liu
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Xianwei Wang
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China.
| |
Collapse
|
33
|
Zhang C, Zhang B, Yuan B, Chen C, Zhou Y, Zhang Y, Sheng Z, Sun N, Wu X. RNA-Seq profiling of circular RNAs in human small cell lung cancer. Epigenomics 2020; 12:685-700. [PMID: 32079426 DOI: 10.2217/epi-2019-0382] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: We aimed to explore the circular RNA (circRNA) profile of small-cell lung cancer (SCLC). Materials & methods: Total RNA was extracted from six paired SCLC tumors and adjacent noncancerous tissues. Next-generation sequencing was performed to identify the circRNA expression profile of SCLC. Results: We found that five circRNAs were significantly upregulated and 30 circRNAs were significantly downregulated in the SCLC tissues. We confirmed the five upregulated and four randomly selected downregulated circRNAs using real-time quantitative PCR. Notably, circ-STXBP5L was selectively upregulated in SCLC samples, but undetectable in the normal control tissues. Bioinformatics analysis demonstrated that circ-STXBP5L may participate in SCLC carcinogenesis by regulating numerous cancer-related pathways. Conclusion: This study may provide new insights into the early diagnosis and development of targeted therapies for SCLC.
Collapse
Affiliation(s)
- Chenxi Zhang
- Central Laboratory, Nanjing Chest Hospital, Medical School of Southeast University, Nanjing, PR China.,Central Laboratory, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China
| | - Bin Zhang
- Central Laboratory, Nanjing Chest Hospital, Medical School of Southeast University, Nanjing, PR China.,Central Laboratory, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China
| | - Baiyin Yuan
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, PR China
| | - Caiping Chen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Ying Zhou
- Central Laboratory, Nanjing Chest Hospital, Medical School of Southeast University, Nanjing, PR China.,Central Laboratory, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China
| | - Yu Zhang
- Department of Respiratory Medicine, Nanjing Chest Hospital, Medical School of Southeast University, Nanjing, PR China.,Department of Respiratory Medicine, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China
| | - Zhihong Sheng
- Central Laboratory, Nanjing Chest Hospital, Medical School of Southeast University, Nanjing, PR China.,Central Laboratory, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China
| | - Nan Sun
- Central Laboratory, Nanjing Chest Hospital, Medical School of Southeast University, Nanjing, PR China.,Central Laboratory, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China
| | - Xiaoyuan Wu
- Central Laboratory, Nanjing Chest Hospital, Medical School of Southeast University, Nanjing, PR China.,Central Laboratory, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, PR China
| |
Collapse
|
34
|
Zheng F, Xu R. CircPVT1 contributes to chemotherapy resistance of lung adenocarcinoma through miR-145-5p/ABCC1 axis. Biomed Pharmacother 2020; 124:109828. [PMID: 31986409 DOI: 10.1016/j.biopha.2020.109828] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/01/2020] [Accepted: 01/10/2020] [Indexed: 12/13/2022] Open
Abstract
Recently, increasing studies have confirmed some circRNAs were involved in the genesis of chemotherapy resistance in almost all kinds of malignant tumors, including lung adenocarcinoma (LAD). Nevertheless, the function and mechanism of circPVT1 in regulating chemotherapy resistance of LAD has not been elucidated so far. The current study found circPVT1 was highly expressed in LAD, which expression was positively related to N stage and chemotherapy insensitivity (cisplatin and pemetrexed) of LAD patients, and it was an independent prognostic biomarker for LAD patients. The circPVT1 expression was up-regulated in LAD tissues and cell line (A549/DR) resistant to cisplatin and pemetrexed. CircPVT1 knockdown sensitized A549/DR cells to cisplatin and pemetrexed. RNA pull-down assay et al. confirmed circPVT1 acted as a ceRNA for miR-145-5p in A549/DR cells. In addition, miR-145-5p was lowly expressed in cisplatin and pemetrexed resistant LAD tissues and cell line, and its over-expression also sensitized A549/DR cells to cisplatin and pemetrexed. The luciferase reporter assay et al. proved ABCC1 was a target gene of miR-145-5p in A549/DR cells. Moreover, miR-145-5p enhancement partly restored the effecting of circPVT1 knockdown on chemotherapy resistance in A549/DR cells, miR-145-5p/ABCC1 pathway mediated chemotherapy resistance induced by circPVT1 knockdown in LAD cells. In conclusion, the high-expression of circPVT1 is related with the cisplatin and pemetrexed insensitivity of LAD patients, circPVT1 contributes to cisplatin and pemetrexed chemotherapy resistance through miR-145-5p/ABCC1 axis.
Collapse
Affiliation(s)
- Fushuang Zheng
- Department of Thoracic Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| | - Ran Xu
- Department of Thoracic Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
35
|
Zhang Q, Wang W, Zhou Q, Chen C, Yuan W, Liu J, Li X, Sun Z. Roles of circRNAs in the tumour microenvironment. Mol Cancer 2020; 19:14. [PMID: 31973726 PMCID: PMC6977266 DOI: 10.1186/s12943-019-1125-9] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/26/2019] [Indexed: 02/06/2023] Open
Abstract
The tumour microenvironment (TME) constitutes the area surrounding the tumour during its development and has been demonstrated to play roles in cancer-related diseases through crosstalk with tumour cells. Circular RNAs (circRNAs) are a subpopulation of endogenous noncoding RNAs (ncRNAs) that are ubiquitously expressed in eukaryotes and have multiple biological functions in the regulation of cancer onset and progression. An increasing number of studies have shown that circRNAs participate in the multifaceted biological regulation of the TME. However, details on the mechanisms involved have remained elusive until now. In this review, we analyse the effects of circRNAs on the TME from various perspectives, including immune surveillance, angiogenesis, hypoxia, matrix remodelling, exo-circRNAs and chemoradiation resistance. Currently, the enormous potential for circRNA use in targeted therapy and as noninvasive biomarkers have drawn our attention. We emphasize the prospect of targeting circRNAs as an essential strategy to regulate TME, overcome cancer resistance and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Qiuge Zhang
- Department of Geriatric Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| | - Quanbo Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chen Chen
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jinbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Xiaoli Li
- Department of Geriatric Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China. .,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
36
|
Ma Z, Shuai Y, Gao X, Wen X, Ji J. Circular RNAs in the tumour microenvironment. Mol Cancer 2020; 19:8. [PMID: 31937318 PMCID: PMC6958568 DOI: 10.1186/s12943-019-1113-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/02/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are a new class of endogenous non-coding RNAs (ncRNAs) widely expressed in eukaryotic cells. Mounting evidence has highlighted circRNAs as critical regulators of various tumours. More importantly, circRNAs have been revealed to recruit and reprogram key components involved in the tumour microenvironment (TME), and mediate various signaling pathways, thus affecting tumourigenesis, angiogenesis, immune response, and metastatic progression. In this review, we briefly introduce the biogenesis, characteristics and classification of circRNAs, and describe various mechanistic models of circRNAs. Further, we provide the first systematic overview of the interplay between circRNAs and cellular/non-cellular counterparts of the TME and highlight the potential of circRNAs as prospective biomarkers or targets in cancer clinics. Finally, we discuss the biological mechanisms through which the circRNAs drive development of resistance, revealing the mystery of circRNAs in drug resistance of tumours. SHORT CONCLUSION Deep understanding the emerging role of circRNAs and their involvements in the TME may provide potential biomarkers and therapeutic targets for cancer patients. The combined targeting of circRNAs and co-activated components in the TME may achieve higher therapeutic efficiency and become a new mode of tumour therapy in the future.
Collapse
Affiliation(s)
- Zhonghua Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China.,Department of Gastrointestinal Surgery, Peking University Cancer Hospital, Beijing, People's Republic of China
| | - You Shuai
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Xiangyu Gao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China.,Department of Gastrointestinal Surgery, Peking University Cancer Hospital, Beijing, People's Republic of China
| | - Xianzi Wen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Jiafu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China. .,Department of Gastrointestinal Surgery, Peking University Cancer Hospital, Beijing, People's Republic of China.
| |
Collapse
|
37
|
Ishola AA, La'ah AS, Le HD, Nguyen VQ, Yang YP, Chou SJ, Tai HY, Chien CS, Wang ML. Non-coding RNA and lung cancer progression. J Chin Med Assoc 2020; 83:8-14. [PMID: 31770191 DOI: 10.1097/jcma.0000000000000225] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lung cancer (LC) is a major killer disease globally. This situation is further supported by yearly increase in new LC cases and its poor 5-year survival which is less than 15%. Although a large percentage of LC cases have been attributed to smoking, a considerable amount of nonsmokers also develops this disease, thereby suggesting a genetic and/or epigenetic undertone to LC development. Several growth-related genes such as epidermal growth factor receptor (EGFR) and vascular endothelial growth factor (VEGF) as well as tumor suppressor genes such as p53 have been implicated in LC pathogenesis and progression. Likewise, the genome only contains approximately 1% of coding regions. Hence, noncoding portion of the genome such as noncoding RNAs (ncRNAs) has been studied and discovered to play a cogent role in LC pathogenesis. More precisely, microRNAs (miRNAs) and long ncRNAs (lncRNAs) have been studied for decades. Posttranscriptional gene modulation function of miRNAs is well established and characterized. Likewise, the antagonizing interaction between lncRNAs and miRNAs had also been proven to further control gene expression during healthy and disease conditions like LC. More recently, renewed attention toward circular RNAs [circular RNAs (circRNAs)] study showed that circRNAs can also sponge miRNAs to modulate gene expressions too. Hence, miRNAs, lncRNAs, and circRNAs seem to function within a circuit to optimally determine which gene is needed to be upregulated or downregulated in biological system. Therefore, this review will discuss important ncRNAs, namely miRNA, lncRNA, and circRNA in LC progression. Paracrine effect of exosomal ncRNA will be also reviewed. In addition, the prospect of these ncRNAs in enhancing better LC treatment will be highlighted as well.
Collapse
Affiliation(s)
- Afeez Adekunle Ishola
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan, ROC
| | - Anita Silas La'ah
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan, ROC
| | - Hung Dinh Le
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan, ROC
| | - Viet Quoc Nguyen
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan, ROC
| | - Yi-Ping Yang
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Pharmaceutical Science, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Shih-Jie Chou
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Hsiao-Yun Tai
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chian-Shiu Chien
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Mong-Lien Wang
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
- Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei, Taiwan, ROC
| |
Collapse
|
38
|
Geng X, Jia Y, Zhang Y, Shi L, Li Q, Zang A, Wang H. Circular RNA: biogenesis, degradation, functions and potential roles in mediating resistance to anticarcinogens. Epigenomics 2019; 12:267-283. [PMID: 31808351 DOI: 10.2217/epi-2019-0295] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim: This review aims to systematically describe the biogenesis and degradation of circular RNAs (circRNAs), discusses the major functions of circRNAs, introduces the mechanisms by which circRNAs play a role in cancer, comprehensively summarize the relationship between circRNAs and anticarcinogen resistance as well as underlying specific mechanisms in multiple cancers. Materials & methods: We screened and analyzed large quantity of scientific papers which associated with circRNAs, noncoding RNAs, function, cancer, drug resistance and chemoresistance, and then summarized in Figures 1 & 2 & Table 1. Results & conclusion: The biogenesis, degradation and function of circRNAs are specially compared with other noncoding RNAs, it can affect cancer pathogenesis and progression and are implicated in mediating resistance to various anticarcinogens in various types of cancer.
Collapse
Affiliation(s)
- Xiuchao Geng
- Faculty of Integrated Traditional Chinese & Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050091, PR China
| | - Youchao Jia
- Department of Medical Oncology, Hebei Key Laboratory of Cancer Radiotherapy & Chemotherapy, Affiliated Hospital of Hebei University, Baoding 071000, PR China
| | - Yuhao Zhang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding 071000, PR China
| | - Liang Shi
- Endoscopy Division, Department of General Surgery, Cangzhou Central Hospital, Cangzhou 061000, PR China
| | - Qiang Li
- Faculty of Acupuncture-Moxibustion & Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050091, PR China
| | - Aimin Zang
- Department of Medical Oncology, Hebei Key Laboratory of Cancer Radiotherapy & Chemotherapy, Affiliated Hospital of Hebei University, Baoding 071000, PR China
| | - Hong Wang
- Faculty of Integrated Traditional Chinese & Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050091, PR China
| |
Collapse
|