1
|
Ciarmiello A, Giovannini E, Tutino F, Yosifov N, Milano A, Florimonte L, Bonatto E, Bareggi C, Dellavedova L, Castello A, Aschele C, Castellani M, Giovacchini G. Does FDG PET-Based Radiomics Have an Added Value for Prediction of Overall Survival in Non-Small Cell Lung Cancer? J Clin Med 2024; 13:2613. [PMID: 38731142 PMCID: PMC11084602 DOI: 10.3390/jcm13092613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
Objectives: Radiomics and machine learning are innovative approaches to improve the clinical management of NSCLC. However, there is less information about the additive value of FDG PET-based radiomics compared with clinical and imaging variables. Methods: This retrospective study included 320 NSCLC patients who underwent PET/CT with FDG at initial staging. VOIs were placed on primary tumors only. We included a total of 94 variables, including 87 textural features extracted from PET studies, SUVmax, MTV, TLG, TNM stage, histology, age, and gender. We used the least absolute shrinkage and selection operator (LASSO) regression to select variables with the highest predictive value. Although several radiomics variables are available, the added value of these predictors compared with clinical and imaging variables is still under evaluation. Three hundred and twenty NSCLC patients were included in this retrospective study and underwent 18F-FDG PET/CT at initial staging. In this study, we evaluated 94 variables, including 87 textural features, SUVmax, MTV, TLG, TNM stage, histology, age, and gender. Image-based predictors were extracted from a volume of interest (VOI) positioned on the primary tumor. The least absolute shrinkage and selection operator (LASSO) Cox regression was used to reduce the number of variables and select only those with the highest predictive value. The predictive model implemented with the variables selected using the LASSO analysis was compared with a reference model using only a tumor stage and SUVmax. Results: NGTDM coarseness, SUVmax, and TNM stage survived the LASSO analysis and were used for the radiomic model. The AUCs obtained from the reference and radiomic models were 80.82 (95%CI, 69.01-92.63) and 81.02 (95%CI, 69.07-92.97), respectively (p = 0.98). The median OS in the reference model was 17.0 months in high-risk patients (95%CI, 11-21) and 113 months in low-risk patients (HR 7.47, p < 0.001). In the radiomic model, the median OS was 16.5 months (95%CI, 11-20) and 113 months in high- and low-risk groups, respectively (HR 9.64, p < 0.001). Conclusions: Our results indicate that a radiomic model composed using the tumor stage, SUVmax, and a selected radiomic feature (NGTDM_Coarseness) predicts survival in NSCLC patients similarly to a reference model composed only by the tumor stage and SUVmax. Replication of these preliminary results is necessary.
Collapse
Affiliation(s)
- Andrea Ciarmiello
- Nuclear Medicine Department, Sant’ Andrea Hospital, 19124 La Spezia, Italy; (E.G.); (F.T.); (N.Y.); (G.G.)
| | - Elisabetta Giovannini
- Nuclear Medicine Department, Sant’ Andrea Hospital, 19124 La Spezia, Italy; (E.G.); (F.T.); (N.Y.); (G.G.)
| | - Francesca Tutino
- Nuclear Medicine Department, Sant’ Andrea Hospital, 19124 La Spezia, Italy; (E.G.); (F.T.); (N.Y.); (G.G.)
| | - Nikola Yosifov
- Nuclear Medicine Department, Sant’ Andrea Hospital, 19124 La Spezia, Italy; (E.G.); (F.T.); (N.Y.); (G.G.)
| | - Amalia Milano
- Oncology Unit, Sant’ Andrea Hospital, 19124 La Spezia, Italy; (A.M.); (C.A.)
| | - Luigia Florimonte
- Nuclear Medicine Department, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (L.F.); (A.C.); (M.C.)
| | - Elena Bonatto
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, 20122 Milan, Italy;
| | - Claudia Bareggi
- Medical Oncology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Luca Dellavedova
- Nuclear Medicine Department, ASST Ovest Milanese, 20025 Legnano, Italy;
| | - Angelo Castello
- Nuclear Medicine Department, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (L.F.); (A.C.); (M.C.)
| | - Carlo Aschele
- Oncology Unit, Sant’ Andrea Hospital, 19124 La Spezia, Italy; (A.M.); (C.A.)
| | - Massimo Castellani
- Nuclear Medicine Department, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (L.F.); (A.C.); (M.C.)
| | - Giampiero Giovacchini
- Nuclear Medicine Department, Sant’ Andrea Hospital, 19124 La Spezia, Italy; (E.G.); (F.T.); (N.Y.); (G.G.)
| |
Collapse
|
2
|
Li S, Yi H, Leng Q, Wu Y, Mao Y. New perspectives on cancer clinical research in the era of big data and machine learning. Surg Oncol 2024; 52:102009. [PMID: 38215544 DOI: 10.1016/j.suronc.2023.102009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/16/2023] [Indexed: 01/14/2024]
Abstract
In the 21st century, the development of medical science has entered the era of big data, and machine learning has become an essential tool for mining medical big data. The establishment of the SEER database has provided a wealth of epidemiological data for cancer clinical research, and the number of studies based on SEER and machine learning has been growing in recent years. This article reviews recent research based on SEER and machine learning and finds that the current focus of such studies is primarily on the development and validation of models using machine learning algorithms, with the main directions being lymph node metastasis prediction, distant metastasis prediction, and prognosis-related research. Compared to traditional models, machine learning algorithms have the advantage of stronger adaptability, but also suffer from disadvantages such as overfitting and poor interpretability, which need to be weighed in practical applications. At present, machine learning algorithms, as the foundation of artificial intelligence, have just begun to emerge in the field of cancer clinical research. The future development of oncology will enter a more precise era of cancer research, characterized by larger data, higher dimensions, and more frequent information exchange. Machine learning is bound to shine brightly in this field.
Collapse
Affiliation(s)
- Shujun Li
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410008, China; National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), China; Hunan Hematology Oncology Clinical Medical Research Center, China
| | - Hang Yi
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Qihao Leng
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China
| | - You Wu
- Institute for Hospital Management, School of Medicine, Tsinghua University, 30 Shuangqing Rd, Haidian District, Beijing, China; Department of Health Policy and Management, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA.
| | - Yousheng Mao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
3
|
Huang T, Le D, Yuan L, Xu S, Peng X. Machine learning for prediction of in-hospital mortality in lung cancer patients admitted to intensive care unit. PLoS One 2023; 18:e0280606. [PMID: 36701342 PMCID: PMC9879439 DOI: 10.1371/journal.pone.0280606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/04/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUNDS The in-hospital mortality in lung cancer patients admitted to intensive care unit (ICU) is extremely high. This study intended to adopt machine learning algorithm models to predict in-hospital mortality of critically ill lung cancer for providing relative information in clinical decision-making. METHODS Data were extracted from the Medical Information Mart for Intensive Care-IV (MIMIC-IV) for a training cohort and data extracted from the Medical Information Mart for eICU Collaborative Research Database (eICU-CRD) database for a validation cohort. Logistic regression, random forest, decision tree, light gradient boosting machine (LightGBM), eXtreme gradient boosting (XGBoost), and an ensemble (random forest+LightGBM+XGBoost) model were used for prediction of in-hospital mortality and important feature extraction. The AUC (area under receiver operating curve), accuracy, F1 score and recall were used to evaluate the predictive performance of each model. Shapley Additive exPlanations (SHAP) values were calculated to evaluate feature importance of each feature. RESULTS Overall, there were 653 (24.8%) in-hospital mortality in the training cohort, and 523 (21.7%) in-hospital mortality in the validation cohort. Among the six machine learning models, the ensemble model achieved the best performance. The top 5 most influential features were the sequential organ failure assessment (SOFA) score, albumin, the oxford acute severity of illness score (OASIS) score, anion gap and bilirubin in random forest and XGBoost model. The SHAP summary plot was used to illustrate the positive or negative effects of the top 15 features attributed to the XGBoost model. CONCLUSION The ensemble model performed best and might be applied to forecast in-hospital mortality of critically ill lung cancer patients, and the SOFA score was the most important feature in all models. These results might offer valuable and significant reference for ICU clinicians' decision-making in advance.
Collapse
Affiliation(s)
- Tianzhi Huang
- Department of Rehabilitation, The Second Affiliated Hospital of Jianghan University, Wuhan, China
| | - Dejin Le
- Department of Respiratory Medicine, People’s Hospital of Daye, The Second Affiliated Hospital of Hubei Polytechnic University, Daye, Hubei, China
| | - Lili Yuan
- Department of Anesthesiology, The Second Affiliated Hospital of Jianghan University, Wuhan, China
| | - Shoujia Xu
- Department of Orthopedics, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- * E-mail: (XP); (SX)
| | - Xiulan Peng
- Department of Oncology, The Second Affiliated Hospital of Jianghan University, Wuhan, China
- * E-mail: (XP); (SX)
| |
Collapse
|
4
|
Yang CQ, Wang H, Liu Z, Hueman MT, Bhaskaran A, Henson DE, Sheng L, Chen D. Integrating additional factors into the TNM staging for cutaneous melanoma by machine learning. PLoS One 2021; 16:e0257949. [PMID: 34591891 PMCID: PMC8483349 DOI: 10.1371/journal.pone.0257949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 09/14/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Integrating additional factors into the TNM staging system is needed for more accurate risk classification and survival prediction for patients with cutaneous melanoma. In the present study, we introduce machine learning as a novel tool that incorporates additional prognostic factors to improve the current TNM staging system. METHODS AND FINDINGS Cancer-specific survival data for cutaneous melanoma with at least a 5 years follow-up were extracted from the Surveillance, Epidemiology, and End Results Program of the National Cancer Institute and split into the training set (40,781 cases) and validation set (5,390 cases). Five factors were studied: the primary tumor (T), regional lymph nodes (N), distant metastasis (M), age (A), and sex (S). The Ensemble Algorithm for Clustering Cancer Data (EACCD) was applied to the training set to generate prognostic groups. Utilizing only T, N, and M, a basic prognostic system was built where patients were stratified into 10 prognostic groups with well-separated survival curves, similar to 10 AJCC stages. These 10 groups had a significantly higher accuracy in survival prediction than 10 stages (C-index = 0.7682 vs 0.7643; increase in C-index = 0.0039, 95% CI = (0.0032, 0.0047); p-value = 7.2×10-23). Nevertheless, a positive association remained between the EACCD grouping and the AJCC staging (Spearman's rank correlation coefficient = 0.8316; p-value = 4.5×10-13). With additional information from A and S, a more advanced prognostic system was established using the training data that stratified patients into 10 groups and further improved the prediction accuracy (C-index = 0.7865 vs 0.7643; increase in C-index = 0.0222, 95% CI = (0.0191, 0.0254); p-value = 8.8×10-43). Both internal validation using the training set and temporal validation using the validation set showed good stratification and a high predictive accuracy of the prognostic systems. CONCLUSIONS The EACCD allows additional factors to be integrated into the TNM to create a prognostic system that improves patient stratification and survival prediction for cutaneous melanoma. This integration separates favorable from unfavorable clinical outcomes for patients and improves both cohort selection for clinical trials and treatment management.
Collapse
Affiliation(s)
- Charles Q. Yang
- Department of Surgery, Walter Reed National Military Medical Center, Bethesda, MD, United States of America
| | - Huan Wang
- Department of Biostatistics, The George Washington University, Washington, DC, United States of America
| | - Zhenqiu Liu
- Department of Public Health Sciences, Penn State Cancer Institute, Hershey, PA, United States of America
| | - Matthew T. Hueman
- Department of Surgical Oncology, John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD, United States of America
| | - Aadya Bhaskaran
- Department of Quantitative Theory and Methods, Emory University, Atlanta, GA, United States of America
| | - Donald E. Henson
- Deceased, was with The Department of Preventive Medicine & Biostatistics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Li Sheng
- Department of Mathematics, Drexel University, Philadelphia, PA, United States of America
| | - Dechang Chen
- Department of Preventive Medicine & Biostatistics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| |
Collapse
|
5
|
Hueman M, Wang H, Liu Z, Henson D, Nguyen C, Park D, Sheng L, Chen D. Expanding TNM for lung cancer through machine learning. Thorac Cancer 2021; 12:1423-1430. [PMID: 33713568 PMCID: PMC8088955 DOI: 10.1111/1759-7714.13926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 01/05/2023] Open
Abstract
Background Expanding the tumor, lymph node, metastasis (TNM) staging system by accommodating new prognostic and predictive factors for cancer will improve patient stratification and survival prediction. Here, we introduce machine learning for incorporating additional prognostic factors into the conventional TNM for stratifying patients with lung cancer and evaluating survival. Methods Data were extracted from SEER. A total of 77 953 patients were analyzed using factors including primary tumor (T), regional lymph node (N), distant metastasis (M), age, and histology type. Ensemble algorithm for clustering cancer data (EACCD) and C‐index were applied to generate prognostic groups and expand the current staging system. Results With T, N, and M, EACCD stratified patients into 11 groups, resulting in a significantly higher accuracy in survival prediction than the 10 AJCC stages (C‐index = 0.7346 vs. 0.7247, increase in C‐index = 0.0099, 95% CI: 0.0091–0.0106, p‐value = 9.2 × 10−147). There nevertheless remained a strong association between the EACCD grouping and AJCC staging (rank correlation = 0.9289; p‐value = 6.7 × 10−22). A further analysis demonstrated that age and histological tumor could be integrated with the TNM. Data were stratified into 12 prognostic groups with an even higher prediction accuracy (C‐index = 0.7468 vs. 0.7247, increase in C‐index = 0.0221, 95% CI: 0.0212–0.0231, p‐value <5 × 10−324). Conclusions EACCD can be successfully applied to integrate additional factors with T, N, M for lung cancer patients.
Collapse
Affiliation(s)
- Matthew Hueman
- Department of Surgical Oncology, John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Huan Wang
- Department of Biostatistics, George Washington University, Washington, District of Columbia, USA
| | - Zhenqiu Liu
- Department of Public Health Sciences, Penn State Cancer Institute, Hershey, Pennsylvania, USA
| | - Donald Henson
- Department of Preventive Medicine & Biostatistics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Cuong Nguyen
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Dean Park
- Department of Hematology-Oncology, John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Li Sheng
- Department of Mathematics, Drexel University, Philadelphia, Pennsylvania, USA
| | - Dechang Chen
- Department of Preventive Medicine & Biostatistics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|