1
|
Hashemi M, Khosroshahi EM, Daneii P, Hassanpoor A, Eslami M, Koohpar ZK, Asadi S, Zabihi A, Jamali B, Ghorbani A, Nabavi N, Memarkashani MR, Salimimoghadam S, Taheriazam A, Tan SC, Entezari M, Farahani N, Hushmandi K. Emerging roles of CircRNA-miRNA networks in cancer development and therapeutic response. Noncoding RNA Res 2025; 10:98-115. [PMID: 39351450 PMCID: PMC11440256 DOI: 10.1016/j.ncrna.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/18/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
The complex interplay of epigenetic factors is essential in regulating the hallmarks of cancer and orchestrating intricate molecular interactions during tumor progression. Circular RNAs (circRNAs), known for their covalently closed loop structures, are non-coding RNA molecules exceptionally resistant to enzymatic degradation, which enhances their stability and regulatory functions in cancer. Similarly, microRNAs (miRNAs) are endogenous non-coding RNAs with linear structures that regulate cellular biological processes akin to circRNAs. Both miRNAs and circRNAs exhibit aberrant expressions in various cancers. Notably, circRNAs can function as sponges for miRNAs, influencing their activity. The circRNA/miRNA interaction plays a pivotal role in the regulation of cancer progression, including in brain, gastrointestinal, gynecological, and urological cancers, influencing key processes such as proliferation, apoptosis, invasion, autophagy, epithelial-mesenchymal transition (EMT), and more. Additionally, this interaction impacts the response of tumor cells to radiotherapy and chemotherapy and contributes to immune evasion, a significant challenge in cancer therapy. Both circRNAs and miRNAs hold potential as biomarkers for cancer prognosis and diagnosis. In this review, we delve into the circRNA-miRNA circuit within human cancers, emphasizing their role in regulating cancer hallmarks and treatment responses. This discussion aims to provide insights for future research to better understand their functions and potentially guide targeted treatments for cancer patients using circRNA/miRNA-based strategies.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Aria Hassanpoor
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maedeh Eslami
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abbas Zabihi
- Department of Biology, Faculty of Basic Sciences, Islamic Azad University, Hamedan Branch, Hamedan, Iran
| | - Behdokht Jamali
- Department of Microbiology and Genetics, Kherad Institute of Higher Education, Bushehr, Iran
| | - Amin Ghorbani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, V8V 1P7, Canada
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
2
|
Mohammadi F, Nejatollahi M, Sheikhnia F, Ebrahimi Y, Mohammadi M, Rashidi V, Alizadeh-Fanalou S, Azizzadeh B, Majidinia M. MiRNAs: main players of cancer drug resistance target ABC transporters. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03719-y. [PMID: 39808313 DOI: 10.1007/s00210-024-03719-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/08/2024] [Indexed: 01/16/2025]
Abstract
Chemotherapy remains the cornerstone of cancer treatment; however, its efficacy is frequently compromised by the development of chemoresistance. Multidrug resistance (MDR), characterized by the refractoriness of cancer cells to a wide array of chemotherapeutic agents, presents a significant barrier to achieving successful and sustained cancer remission. One critical factor contributing to this chemoresistance is the overexpression of ATP-binding cassette (ABC) transporters. Furthermore, additional mechanisms, such as the malfunctioning of apoptosis, alterations in DNA repair systems, and resistance mechanisms inherent to cancer stem cells, exacerbate the issue. Intriguingly, microRNAs (miRNAs) have demonstrated potential in modulating chemoresistance by specifically targeting ABC transporters, thereby offering promising new avenues for overcoming drug resistance. This narrative review aims to elucidate the molecular underpinnings of drug resistance, with a particular focus on the roles of ABC transporters and the regulatory influence of miRNAs on these transporters.
Collapse
Affiliation(s)
- Forogh Mohammadi
- Department of Veterinary, Agriculture Faculty, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Masoumeh Nejatollahi
- Research Center for High School Students, Education System Zanjan Province, Zanjan, Iran
| | - Farhad Sheikhnia
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yaser Ebrahimi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahya Mohammadi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Rashidi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Shahin Alizadeh-Fanalou
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Bita Azizzadeh
- Department of Biochemistry, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
3
|
Wu S, Luo T, Lei X, Yang X. Emerging role of competing endogenous RNA in lung cancer drug resistance. J Chemother 2024; 36:546-565. [PMID: 38124356 DOI: 10.1080/1120009x.2023.2294582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
Lung cancer remains one of the most common malignant cancers worldwide, and its survival rate is extremely low. Chemotherapy, the mainstay of lung cancer treatment, is not as effective as it could be due to the development of cellular resistance. The molecular mechanisms of drug resistance in lung cancer remain to be elucidated. Accumulating evidence suggests that ceRNAs are involved in various carcinogenesis and development. CeRNA is a transcript that regulates each other through competition with miRNA. However, the relationship between ceRNAs and chemoresistance in lung cancer remains unclear. In this narrative review, we provided a summary of treatment approaches that focus on ceRNA networks to overcome drug resistance.
Collapse
Affiliation(s)
- Shijie Wu
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, People's Republic of China
| | - Ting Luo
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, People's Republic of China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, People's Republic of China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, People's Republic of China
| |
Collapse
|
4
|
Liu W, Sun Y, Huo Y, Zhang L, Zhang N, Yang M. Circular RNAs in lung cancer: implications for preventing therapeutic resistance. EBioMedicine 2024; 107:105309. [PMID: 39191172 PMCID: PMC11445705 DOI: 10.1016/j.ebiom.2024.105309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
LC is one of the most common malignant tumours that often presents with no distinct symptoms in the early stages, leading to late diagnoses when patients are at an advanced stage and no longer suitable for surgical treatment. Although adjuvant treatments are available, patients frequently develop tolerance to these treatments over time, resulting in poor prognoses for patients with advanced LC. Recently, circular RNAs (circRNAs), a type of non-coding RNA, have gained significant attention in LC research. Owing to their unique circular structure, circRNAs are highly stable within cells. This review systematically summarises the expression, characteristics, biological functions, and molecular regulatory mechanisms of circRNAs involved in therapy resistance as well as the potential applications in early diagnosis and gene targeting therapy in LC.
Collapse
Affiliation(s)
- Wenjuan Liu
- Shandong Provincial Key Laboratory of Precision Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China; School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271021, Shandong Province, China
| | - Yawen Sun
- Department of Scientific Research and Education, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Yanfei Huo
- Shandong Provincial Key Laboratory of Precision Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Long Zhang
- Shandong Provincial Key Laboratory of Precision Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong Province, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Ming Yang
- Shandong Provincial Key Laboratory of Precision Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China; School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271021, Shandong Province, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
5
|
Zhang F, Lei X, Yang X. Emerging roles of ncRNAs regulating ABCC1 on chemotherapy resistance of cancer - a review. J Chemother 2024; 36:1-10. [PMID: 38263773 DOI: 10.1080/1120009x.2023.2247202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/20/2023] [Indexed: 01/25/2024]
Abstract
In the process of chemotherapy, drug resistance of cancer cells is a common and difficult problem of chemotherapy failure, and it is also the main cause of cancer recurrence and metastasis. Non-coding RNAs (ncRNAs) refer to the RNA that does not encode proteins, including microRNA (miRNA), long non-coding RNA (lncRNA) and circularRNA (circRNA), etc. NcRNAs are involved in a series of important life processes and further regulate the expression of ABCC1 by directly or indirectly up-regulating or down-regulating the expression of targeted mRNAs, making cancer cells more susceptible to drug resistance. A growing number of studies have shown that ncRNAs have effects on cancer cell proliferation, invasion, metastasis, and drug sensitivity, by regulating the expression of ABCC1. In this review, we will discuss the emerging roles of ncRNAs regulating ABCC1 in chemotherapy resistance and mechanisms to reverse drug resistance as well as provide potential targets for future cancer treatment.
Collapse
Affiliation(s)
- Feng Zhang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, People's Republic of China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, People's Republic of China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, People's Republic of China
| |
Collapse
|
6
|
Ning J, Luo Y, Chen L, Xiao G, Tanzhu G, Zhou R. CircRNAs and lung cancer: Insight into their roles in metastasis. Biomed Pharmacother 2023; 166:115260. [PMID: 37633056 DOI: 10.1016/j.biopha.2023.115260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/28/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. A major contributing factor to the poor survival rates in lung cancer is the high prevalence of metastasis at the time of diagnosis. To address this critical issue, it is imperative to investigate the mechanisms underlying lung cancer metastasis. Circular RNAs (circRNAs), a distinct type of ribonucleic acid characterized by their unique circular structure, have been implicated in the progression of various diseases. Recent studies have highlighted the close association between circRNAs and the occurrence and development of lung cancer, particularly in relation to metastasis. In this review, we provide a concise overview of the expression patterns and prognostic significance of circRNAs in lung cancer. Additionally, we summarized the current understanding of the clinical relevance of circRNAs in lung cancer metastasis. Furthermore, we systematically focused on the roles of circRNAs in each step of lung cancer metastasis, reflecting the sequential progression of this process. Notably, circRNAs exhibit dual functionality in lung cancer metastasis, acting both as facilitators and inhibitors of metastatic processes. Given their potential, circRNAs hold promise as novel biomarkers and therapeutic targets for lung cancer metastasis, warranting further investigation.
Collapse
Affiliation(s)
- Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yi Luo
- Department of Geriatric Medicine, Center of Coronary Circulation, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
| | - Liu Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China.
| |
Collapse
|
7
|
Rezaee A, Tehrany PM, Tirabadi FJ, Sanadgol N, Karimi AS, Ajdari A, Eydivandi S, Etemad S, Rajabi R, Rahmanian P, Khorrami R, Nabavi N, Aref AR, Fan X, Zou R, Rashidi M, Zandieh MA, Hushmandi K. Epigenetic regulation of temozolomide resistance in human cancers with an emphasis on brain tumors: Function of non-coding RNAs. Biomed Pharmacother 2023; 165:115187. [PMID: 37499452 DOI: 10.1016/j.biopha.2023.115187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Brain tumors, which are highly malignant, pose a significant threat to health and often result in substantial rates of mortality and morbidity worldwide. The brain cancer therapy has been challenging due to obstacles such as the BBB, which hinders effective delivery of therapeutic agents. Additionally, the emergence of drug resistance further complicates the management of brain tumors. TMZ is utilized in brain cancer removal, but resistance is a drawback. ncRNAs are implicated in various diseases, and their involvement in the cancer is particularly noteworthy. The focus of the current manuscript is to explore the involvement of ncRNAs in controlling drug resistance, specifically in the context of resistance to the chemotherapy drug TMZ. The review emphasizes the function of ncRNAs, particularly miRNAs, in modulating the growth and invasion of brain tumors, which significantly influences their response to TMZ treatment. Through their interactions with various molecular pathways, miRNAs are modulators of TMZ response. Similarly, lncRNAs also associate with molecular pathways and miRNAs, affecting the efficacy of TMZ chemotherapy. Given their functional properties, lncRNAs can either induce or suppress TMZ resistance in brain tumors. Furthermore, circRNAs, which are cancer controllers, regulate miRNAs by acting as sponges, thereby impacting the response to TMZ chemotherapy. The review explores the correlation between ncRNAs and TMZ chemotherapy, shedding light on the underlying molecular pathways involved in this process.
Collapse
Affiliation(s)
- Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | | | - Farimah Jafari Tirabadi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Negin Sanadgol
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Asal Sadat Karimi
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Atra Ajdari
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sepideh Eydivandi
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sara Etemad
- Faculty of Veterinary Medicine, Islamic Azad University, Garmsar Branch, Semnan, Iran.
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada.
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc. 6, Tide Street, Boston, MA 02210, USA.
| | - Xiaoping Fan
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China.
| | - Rongjun Zou
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
8
|
Yang H, Liu Y, Chen L, Zhao J, Guo M, Zhao X, Wen Z, He Z, Chen C, Xu L. MiRNA-Based Therapies for Lung Cancer: Opportunities and Challenges? Biomolecules 2023; 13:877. [PMID: 37371458 DOI: 10.3390/biom13060877] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Lung cancer is a commonly diagnosed cancer and the leading cause of cancer-related deaths, posing a serious health risk. Despite new advances in immune checkpoint and targeted therapies in recent years, the prognosis for lung cancer patients, especially those in advanced stages, remains poor. MicroRNAs (miRNAs) have been shown to modulate tumor development at multiple levels, and as such, miRNA mimics and molecules aimed at regulating miRNAs have shown promise in preclinical development. More importantly, miRNA-based therapies can also complement conventional chemoradiotherapy, immunotherapy, and targeted therapies to reverse drug resistance and increase the sensitivity of lung cancer cells. Furthermore, small interfering RNA (siRNA) and miRNA-based therapies have entered clinical trials and have shown favorable development prospects. Therefore, in this paper, we review recent advances in miRNA-based therapies in lung cancer treatment as well as adjuvant therapy and present the current state of clinical lung cancer treatment. We also discuss the challenges facing miRNA-based therapies in the clinical application of lung cancer treatment to provide new ideas for the development of novel lung cancer therapies.
Collapse
Affiliation(s)
- Han Yang
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Yufang Liu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Longqing Chen
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Xu Zhao
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Zhenke Wen
- Institute of Biomedical Research, Soochow University, Soochow 563000, China
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi 563000, China
| | - Chao Chen
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Lin Xu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
9
|
Yan T, Tian X, Liu F, Liu Q, Sheng Q, Wu J, Jiang S. The emerging role of circular RNAs in drug resistance of non-small cell lung cancer. Front Oncol 2022; 12:1003230. [PMID: 36303840 PMCID: PMC9592927 DOI: 10.3389/fonc.2022.1003230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Due to the characteristics of aggressiveness and high risk of postoperative recurrence, non-small cell lung cancer (NSCLC) is a serious hazard to human health, accounting for 85% of all lung cancer cases. Drug therapies, including chemotherapy, targeted therapy and immunotherapy, are effective treatments for NSCLC in clinics. However, most patients ultimately develop drug resistance, which is also the leading cause of treatment failure in cancer. To date, the mechanisms of drug resistance have yet to be fully elucidated, thus original strategies are developed to overcome this issue. Emerging studies have illustrated that circular RNAs (circRNAs) participate in the generation of therapeutic resistance in NSCLC. CircRNAs mediate the modulations of immune cells, cytokines, autophagy, ferroptosis and metabolism in the tumor microenvironment (TME), which play essential roles in the generation of drug resistance of NSCLC. More importantly, circRNAs function as miRNAs sponges to affect specific signaling pathways, directly leading to the generation of drug resistance. Consequently, this review highlights the mechanisms underlying the relationship between circRNAs and drug resistance in NSCLC. Additionally, several therapeutic drugs associated with circRNAs are summarized, aiming to provide references for circRNAs serving as potential therapeutic targets in overcoming drug resistance in NSCLC.
Collapse
Affiliation(s)
- Tinghao Yan
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinchen Tian
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fen Liu
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Qingbin Liu
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Qing Sheng
- School of Architecture and Fine Art, Dalian University of Technology, Dalian, China
| | - Jianlin Wu
- School of Basic Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Jianlin Wu, ; Shulong Jiang,
| | - Shulong Jiang
- Cheeloo College of Medicine, Shandong University, Jinan, China
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
- *Correspondence: Jianlin Wu, ; Shulong Jiang,
| |
Collapse
|
10
|
Li D, Liu X, Jiang N, Ke D, Guo Q, Zhai K, Han H, Xiao X, Fan T. Interfering with ITGB1-DT expression delays cancer progression and promotes cell sensitivity of NSCLC to cisplatin by inhibiting the MAPK/ERK pathway. Am J Cancer Res 2022; 12:2966-2988. [PMID: 35968342 PMCID: PMC9360236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023] Open
Abstract
Long non-coding RNA ITGB1-DT is involved in the regulation of cancer growth and metastasis. However, the roles of ITGB1-DT in non-small cell lung cancer (NSCLC) progression and sensitivity to cisplatin has not been elucidated. ITGB1-DT expression in NSCLC tissues, and the relationship between ITGB1-DT expression with NSCLC diagnosis, prognosis, clinicopathological features, and immune cell infiltration were investigated in The Cancer Gene Atlas (TCGA) database. The roles and mechanisms of ITGB1-DT in cell growth, migration, and drug sensitivity of NSCLC cells were explored in the cell model. The prognostic nomograms of ITGB1-DT-related genes were evaluated using bioinformatics. ITGB1-DT was overexpressed in NSCLC. Elevated ITGB1-DT expression was related to the late T stage, N stage, M stage, short overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) of NSCLC patients. ITGB1-DT was the independent risk factors for poor prognosis, and had diagnostic value for NSCLC patients. Interfering with the ITGB1-DT expression can inhibit the proliferation, migration, and invasion of A549, H1299, and drug-resistant A549/DDP, possibly due to the inhibition of p38 MAPK and ERK phosphorylation levels. ITGB1-DT expression was correlated with the levels of NSCLC immune infiltration cells, such as the TReg, Th, and NK cells. ITGB1-DT-related gene nomograms were associated with the prognosis, and were expected to evaluate the prognosis of NSCLC patients. In conclusion, inhibition of ITGB1-DT expression delayed the growth and metastasis of NSCLC using the MAPK/ERK signaling mechanism and enhanced the sensitivity of NSCLC to cisplatin drugs. These results indicate that ITGB1-DT might be a biomarker for evaluating the diagnosis and prognosis of NSCLC patients.
Collapse
Affiliation(s)
- Dan Li
- Department of General Medicine, Affiliated Hospital of Zunyi Medical UniversityZunyi 563003, Guizhou, China
- Department of Oncology, Huanggang Central HospitalHuanggang 438000, Hubei, China
| | - Xiaoli Liu
- Department of General Medicine, Affiliated Hospital of Zunyi Medical UniversityZunyi 563003, Guizhou, China
- Department of Ultrasound, The Peoples’ Hospital of Jianyang CityJianyang 641400, Sichuan, China
| | - Ni Jiang
- Cancer Laboratory, Affiliated Hospital of Zunyi Medical UniversityZunyi 563003, Guizhou, China
| | - Di Ke
- Department of General Medicine, Affiliated Hospital of Zunyi Medical UniversityZunyi 563003, Guizhou, China
- Department of Radiology, Affiliated Hospital of Zunyi Medical UniversityZunyi 563003, Guizhou, China
| | - Qiang Guo
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical UniversityZunyi 563003, Guizhou, China
| | - Kui Zhai
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical UniversityZunyi 563003, Guizhou, China
| | - Hao Han
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical UniversityZunyi 563003, Guizhou, China
| | - Xue Xiao
- Department of General Medicine, Affiliated Hospital of Zunyi Medical UniversityZunyi 563003, Guizhou, China
| | - Tengyang Fan
- Department of General Medicine, Affiliated Hospital of Zunyi Medical UniversityZunyi 563003, Guizhou, China
| |
Collapse
|
11
|
Cui X, Zhang B, Li B, Li X. Circular RNA circ_0002360 regulates the Taxol resistance and malignant behaviors of Taxol-resistant non-small cell lung cancer cells by microRNA-585-3p-dependent modulation of G protein regulated inducer of neurite outgrowth 1. Bioengineered 2022; 13:9070-9085. [PMID: 35293280 PMCID: PMC9162002 DOI: 10.1080/21655979.2022.2053803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Drug resistance has become the major obstacle for the treatment of non-small cell lung cancer (NSCLC). Circular RNAs (circRNAs) are tightly linked to the development of drug resistance of NSCLC. Herein, we tested the function of circ_0002360 in the Taxol resistance of NSCLC. Circ_0002360, microRNA (miR)-585-3p and G protein regulated inducer of neurite outgrowth 1 (GPRIN1) were quantified by quantitative real-time PCR (qRT-PCR). To identify the circular structure of circ_0002360, RNase R digestion was applied. To detect cell proliferation, colony formation and 5-ethynyl-2’-deoxyuridine (EdU) assays were used. For assessment of cell apoptosis, flow cytometry was adopted. For motility and invasion analyses, transwell assay was employed. Our data showed that circ_0002360 was mainly located in the cytoplasm and was highly expressed in the Taxol-resistant NSCLC. Silencing of circ_0002360 inhibited cell Taxol resistance, proliferation, motility, and invasiveness and induced apoptosis in vitro. MiR-585-3p was underexpressed in Taxol-resistant NSCLC and was targeted by circ_0002360. MiR-585-3p knockdown alleviated the influence of circ_0002360 silence on Taxol-resistant cells. GPRIN1 was directly targeted by miR-585-3p. The influence of miR-585-3p on cell Taxol resistance and functional behaviors was reversed by GPRIN1 overexpression. Moreover, circ_0002360 modulated GPRIN1 through miR-585-3p. Additionally, silencing of circ_0002360 weakened the growth of xenografts in vivo. Our study demonstrated that silencing of circ_0002360 enhanced the Taxol sensitivity and suppressed the malignant behaviors of Taxol-resistant NSCLC cells by miR-585-3p/GPRIN1 axis, providing novel targets for improving the anti-tumor efficacy of Taxol in NSCLC.
Collapse
Affiliation(s)
- Xiaohai Cui
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, 710061, Shaanxi, China
| | - Boxiang Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, 710061, Shaanxi, China
| | - Baocheng Li
- Department of Thoracic Surgery, the First Hospital of Weinan City, Weinan City, 714000, Shaanxi Province
| | - Xinju Li
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, 710061, Shaanxi, China
| |
Collapse
|
12
|
Chu D, Li P, Li Y, Shi J, Huang S, Jiao P. Identification of circ_0058357 as a regulator in non-small cell lung cancer cells resistant to cisplatin by miR-361-3p/ABCC1 axis. Thorac Cancer 2021; 12:2894-2906. [PMID: 34523261 PMCID: PMC8563160 DOI: 10.1111/1759-7714.14150] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
Background Drug resistance is a major clinical drawback behind the failure of chemotherapy in non‐small cell lung cancer (NSCLC). In this study, we undertook to identify the precise role of circular RNA (circRNA) circ_0058357 in the functional properties of DDP‐resistant NSCLC cells. Methods Circ_0058357, miR‐361‐3p and ATP‐binding cassette (ABC) subfamily C member 1 (ABCC1) were quantified by qRT‐PCR and western blot. Cell survival and viability were gauged by MTT assay. Cell proliferation, apoptosis, invasion and migration were measured by EdU, flow cytometry, transwell and wound‐healing assays, respectively. The direct relationship between miR‐361‐3p and circ_0058357 or ABCC1 was validated by dual‐luciferase reporter assay. Results Our data showed that circ_0058357 was highly expressed in DDP‐resistant NSCLC tissues and cells. Inhibition of circ_0058357 repressed cell growth, invasion, migration, and promoted DDP sensitivity and cell apoptosis of H1299/DDP and A549/DDP cells in vitro. Moreover, inhibition of circ_0058357 diminished the growth of A549/DDP cells and sensitized them to the cytotoxic effect of DDP in vivo. Mechanistically, circ_0058357 contained a miR‐361‐3p binding site and miR‐361‐3p was identified as a molecular mediator of circ_0058357 regulation. MiR‐361‐3p suppressed ABCC1 expression by binding to ABCC1 3′UTR, and miR‐361‐3p‐mediated inhibition of ABCC1 affected the growth, invasion, migration, apoptosis and DDP sensitivity of H1299/DDP and A549/DDP cells. Furthermore, circ_0058357 regulated ABCC1 expression by competitively binding to shared miR‐361‐3p. Conclusions Our findings identified that inhibition of circ_0058357 suppresses the growth and metastasis of H1299/DDP and A549/DDP cells and sensitizes them to DDP therapy partially by targeting the miR‐361‐3p/ABCC1 axis.
Collapse
Affiliation(s)
- Dan Chu
- Department of Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengpeng Li
- Cancer Gamma Knife Center, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yameng Li
- Department of Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiang Shi
- Department of Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Siyuan Huang
- Department of Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengfei Jiao
- Department of Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|