1
|
Ma Z, Men Y, Liu Y, Bao Y, Liu Q, Yang X, Wang J, Deng L, Zhai Y, Bi N, Wang L, Hui Z. Preoperative CT-based radiomic prognostic index to predict the benefit of postoperative radiotherapy in patients with non-small cell lung cancer: a multicenter study. Cancer Imaging 2024; 24:61. [PMID: 38741207 PMCID: PMC11089675 DOI: 10.1186/s40644-024-00707-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND The value of postoperative radiotherapy (PORT) for patients with non-small cell lung cancer (NSCLC) remains controversial. A subset of patients may benefit from PORT. We aimed to identify patients with NSCLC who could benefit from PORT. METHODS Patients from cohorts 1 and 2 with pathological Tany N2 M0 NSCLC were included, as well as patients with non-metastatic NSCLC from cohorts 3 to 6. The radiomic prognostic index (RPI) was developed using radiomic texture features extracted from the primary lung nodule in preoperative chest CT scans in cohort 1 and validated in other cohorts. We employed a least absolute shrinkage and selection operator-Cox regularisation model for data dimension reduction, feature selection, and the construction of the RPI. We created a lymph-radiomic prognostic index (LRPI) by combining RPI and positive lymph node number (PLN). We compared the outcomes of patients who received PORT against those who did not in the subgroups determined by the LRPI. RESULTS In total, 228, 1003, 144, 422, 19, and 21 patients were eligible in cohorts 1-6. RPI predicted overall survival (OS) in all six cohorts: cohort 1 (HR = 2.31, 95% CI: 1.18-4.52), cohort 2 (HR = 1.64, 95% CI: 1.26-2.14), cohort 3 (HR = 2.53, 95% CI: 1.45-4.3), cohort 4 (HR = 1.24, 95% CI: 1.01-1.52), cohort 5 (HR = 2.56, 95% CI: 0.73-9.02), cohort 6 (HR = 2.30, 95% CI: 0.53-10.03). LRPI predicted OS (C-index: 0.68, 95% CI: 0.60-0.75) better than the pT stage (C-index: 0.57, 95% CI: 0.50-0.63), pT + PLN (C-index: 0.58, 95% CI: 0.46-0.70), and RPI (C-index: 0.65, 95% CI: 0.54-0.75). The LRPI was used to categorize individuals into three risk groups; patients in the moderate-risk group benefited from PORT (HR = 0.60, 95% CI: 0.40-0.91; p = 0.02), while patients in the low-risk and high-risk groups did not. CONCLUSIONS We developed preoperative CT-based radiomic and lymph-radiomic prognostic indexes capable of predicting OS and the benefits of PORT for patients with NSCLC.
Collapse
Affiliation(s)
- Zeliang Ma
- Department of Radiation Oncology, National Clinical Research Center for Cancer/Cancer Hospital/National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Men
- Department of VIP Medical Services, National Clinical Research Center for Cancer/Cancer Hospital/National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunsong Liu
- Department of Radiation Oncology, National Clinical Research Center for Cancer/Cancer Hospital/National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongxing Bao
- Department of Radiation Oncology, National Clinical Research Center for Cancer/Cancer Hospital/National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qian Liu
- Department of Radiation Oncology, National Clinical Research Center for Cancer/Cancer Hospital/National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu Yang
- Department of Medical Oncology, National Clinical Research Center for Cancer/Cancer Hospital/National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianyang Wang
- Department of Radiation Oncology, National Clinical Research Center for Cancer/Cancer Hospital/National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Deng
- Department of Radiation Oncology, National Clinical Research Center for Cancer/Cancer Hospital/National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yirui Zhai
- Department of Radiation Oncology, National Clinical Research Center for Cancer/Cancer Hospital/National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Bi
- Department of Radiation Oncology, National Clinical Research Center for Cancer/Cancer Hospital/National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Luhua Wang
- Department of Radiation Oncology, National Clinical Research Center for Cancer/Cancer Hospital/National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhouguang Hui
- Department of VIP Medical Services, National Clinical Research Center for Cancer/Cancer Hospital/National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Kim BH, Kim JS, Kim HJ. Exploring the past, present, and future of postoperative radiotherapy for N2 stage non-small cell lung cancer. Radiat Oncol J 2023; 41:144-153. [PMID: 37793623 PMCID: PMC10556840 DOI: 10.3857/roj.2023.00430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 10/06/2023] Open
Abstract
Despite conventionally applied postoperative radiotherapy (PORT) in pathological N2 (pN2) stage non-small cell lung cancer (NSCLC) considering high locoregional recurrence, its survival benefit has been a continuous topic of debate. Although several randomized clinical trials have been conducted, many of them have been withdrawn or analyzed without statistical significance due to slow accrual, making it difficult to determine the efficacy of PORT. Recently, the results of large-scale randomized clinical trials have been published, which showed some improvement in disease-free survival with PORT, but finally had no impact on overall survival. Based on these results, it was expected that the debate over PORT in pN2 patients with NSCLC would come to an end. However, since pN2 patients have different clinicopathologic features, it has become more important to carefully select the patient population who will benefit from PORT. In addition, given the development of systemic treatments such as molecular-targeted therapy and immunotherapy, it is crucial to evaluate whether there is any benefit to PORT in the midst of these recent changes. Therefore, determining the optimal treatment approach for NSCLC pN2 patients remains a complex issue that requires further research and evaluation.
Collapse
Affiliation(s)
- Byoung Hyuck Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea
- Department of Radiation Oncology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Sik Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Radiation Oncology, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Hak Jae Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
3
|
Zhou F, Sun J, Ye L, Jiang T, Li W, Su C, Ren S, Wu F, Zhou C, Gao G. Fibronectin promotes tumor angiogenesis and progression of non-small-cell lung cancer by elevating WISP3 expression via FAK/MAPK/ HIF-1α axis and activating wnt signaling pathway. Exp Hematol Oncol 2023; 12:61. [PMID: 37468964 DOI: 10.1186/s40164-023-00419-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 06/02/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Fibronectin, an extracellular matrix protein, has been reported to be associated with heterogeneous cancer stemness, angiogenesis and progression in multiple cancer types. However, the roles and the underlying mechanism of fibronectin on the progression NSCLC need to be further elucidated. METHODS Public dataset such as Kaplan-Meier Plotter was used to determine the prognostic significance of genes. The correlation of different protein expression in clinical and xenograft tissues was tested by immunohistochemistry experiment. Both in vitro and in vivo experiments were performed to determine the role of fibronectin on the tumor growth, metastasis, and angiogenesis in NSCLC. The activation of key signaling pathway under fibronectin was examined by WB assay. RNA-seq was applicated to screening the target gene of fibronectin. Rescue experiment was performed to confirm the role of target gene in fibronectin-mediated function in NSCLC. Finally, luciferase and CHIP assays were used to elucidate the mechanism by which fibronectin regulated the target gene. RESULTS Our results revealed that fibronectin was up-regulated in cancer tissues compared with the normal ones in NSCLC patients. Dish- coated fibronectin enhanced the tumor growth, metastasis, and angiogenesis of NSCLC in vitro and in vivo by promoting EMT and maintaining stemness of NSCLC cells. As expected, fibronectin activated FAK and its downstream MAPK/ERK signaling pathway. WISP3 was screened as a potential target gene of fibronectin. Interestingly, WISP3 effectively activated Wnt signaling pathway, and knockdown of WISP3 effectively blocked the influence of fibronectin on the migration, invasion and vascular structure formation potential of NSCLC cells. Our data also manifested that fibronectin elevated the transcription of WISP3 gene by promoting the binding of HIF-1α to the promoter region of WISP3 in NSCLC cells. CONCLUSIONS Our findings sketched the outline of the route for fibronectin exert its role in NSCLC, in which fibronectin activated downstream FAK and MAPK/ERK signaling pathways, and mediated the accumulation of HIF-1α. Then, HIF-1α enabled the transcription of WISP3, and subsequently promoted the activation of Wnt signaling pathway, and finally enhanced the tumor growth, metastasis, and angiogenesis in NSCLC.
Collapse
Affiliation(s)
- Fei Zhou
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Jianguo Sun
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, P R China
| | - Lingyun Ye
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Tao Jiang
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Wei Li
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Chunxia Su
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Shengxiang Ren
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Fengying Wu
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China.
| | - Caicun Zhou
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China.
| | - Guanghui Gao
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Bao Y, Hui Z. Postoperative radiotherapy for ypN2 non-small cell lung cancer after neoadjuvant chemotherapy and surgery warrants further evaluation. Radiother Oncol 2022; 177:249-250. [PMID: 36334692 DOI: 10.1016/j.radonc.2022.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Yongxing Bao
- Department of VIP Medical Services & Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhouguang Hui
- Department of VIP Medical Services & Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
5
|
Wang Z, Yang B, Zhan P, Wang L, Wan B. The efficacy of postoperative radiotherapy for patients with non-small cell lung cancer: An updated systematic review and meta-analysis. J Cancer Res Ther 2022; 18:1910-1918. [PMID: 36647949 DOI: 10.4103/jcrt.jcrt_167_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The controversy over the efficacy of postoperative radiotherapy (PORT) has existed for a long time. The present study reassessed the overall survival (OS) and disease-free survival (DFS) data to investigate whether PORT can improve survival in resectable non-small cell lung cancer (NSCLC) patients. The following databases were used to perform literature search: PubMed, Web of Science, China National Knowledge Infrastructure (CNKI), and Embase (from January 1, 1986 to July 5, 2021). The results of overall survival (OS) and disease-free survival (DFS) were calculated as hazard ratio (HR). Confidence intervals are chosen with 95% confidence intervals. A total of 12 RCTs and 19 retrospective cohort studies were found to meet the inclusion criteria. A significant DFS improvement was detected in the PORT group (4111 patients from 15 studies), although statistical difference was not detected for OS between the non-PORT and PORT groups (31 studies, 49,342 total patients). PORT prolonged OS in patients undergoing PORT plus postoperative chemotherapy (POCT) and in pN2 patients. Patients with a median radiation dose of 50.4 Gy and a median radiation dose of 54 Gy had a better OS after PORT. However, if the total radiotherapy dose went up to 60 Gy, PORT increased the risk of death in NSCLC patients. Significant difference in OS was not found in the results of studies with regard to treatment methods, pathologic stages, study type, radiation beam quality, and radiation dose. Patients undergoing postoperative chemoradiotherapy and pN2 patients can benefit from PORT. Patients exposed to median radiation doses of 50.4 and 54 Gy demonstrated relatively good efficacy. For patients with non-small-cell lung cancer, PORT has not been proven to extend OS, but its effect on DFS remains strong.
Collapse
Affiliation(s)
- Zexu Wang
- Department of Respiratory and Critical Care Medicine, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Baixia Yang
- Department of Radiotherapy, Nantong Tumor Hospital, Jiangsu, China
| | - Ping Zhan
- Department of Radiotherapy, Nantong Tumor Hospital, Jiangsu, China
| | - Li Wang
- Department of Respiratory and Critical Care Medicine, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Bing Wan
- Department of Respiratory and Critical Care Medicine, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|