Zheng S, Guerrero-Haughton E, Foijer F. Chromosomal Instability-Driven Cancer Progression: Interplay with the Tumour Microenvironment and Therapeutic Strategies.
Cells 2023;
12:2712. [PMID:
38067140 PMCID:
PMC10706135 DOI:
10.3390/cells12232712]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Chromosomal instability (CIN) is a prevalent characteristic of solid tumours and haematological malignancies. CIN results in an increased frequency of chromosome mis-segregation events, thus yielding numerical and structural copy number alterations, a state also known as aneuploidy. CIN is associated with increased chances of tumour recurrence, metastasis, and acquisition of resistance to therapeutic interventions, and this is a dismal prognosis. In this review, we delve into the interplay between CIN and cancer, with a focus on its impact on the tumour microenvironment-a driving force behind metastasis. We discuss the potential therapeutic avenues that have resulted from these insights and underscore their crucial role in shaping innovative strategies for cancer treatment.
Collapse