1
|
Cao F, Li M, Wang W, Yi Y, Chen Y, Liu H. A coumarin-furoxan hybrid as novel nitric oxide donor induced cell apoptosis and ferroptosis in NSCLC by promoting S-nitrosylation of STAT3 and negative regulation of JAK2-STAT3 pathway. Biochem Pharmacol 2024; 222:116068. [PMID: 38387529 DOI: 10.1016/j.bcp.2024.116068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/20/2023] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Non-small cell lung cancer (NSCLC) still lacks effective treatment because of its extensive mutation diversity and frequent drug resistance. Therefore, it is urgent to develop new therapeutic strategies for NSCLC. In this study, we evaluated the inhibitory effect of a new coumarin-furoxan hybrid compound 9, a nitric oxide (NO) donor drug, on NSCLC proliferation and its mechanism. Our results show that compound 9 can inhibit the growth of four NSCLC cell lines and H1975 xenograft model in a dose-dependent manner. Compound 9 effectively releases high concentrations of NO within the mitochondria, leading to cellular oxidative stress, mitochondrial dysfunction, and apoptosis. Moreover, compound 9 inhibits JAK2/STAT3 protein phosphorylation and induces S-nitrosylation modification of STAT3, ultimately resulting in endogenous apoptosis in NSCLC. Additionally, compound 9 significantly induces NSCLC ferroptosis by depleting intracellular GSH, elevating MDA levels, inhibiting SLC7A11/GSH protein expression, and negatively regulating the JAK2/STAT3 pathway. In summary, this study elucidates the inhibitory effects of compound 9 on NSCLC proliferation and provides insights into the underlying mechanisms, offering new possibilities for NSCLC treatment strategies.
Collapse
Affiliation(s)
- Fan Cao
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Mengru Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Weijie Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yi Yi
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Ying Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Hongrui Liu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
2
|
Xue J, Yan X, Ding Q, Li N, Wu M, Song J. Effect of neoadjuvant chemotherapy on the immune microenvironment of gynaecological tumours. Ann Med 2023; 55:2282181. [PMID: 37983527 PMCID: PMC10836282 DOI: 10.1080/07853890.2023.2282181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
Abstract
Purpose: To assess the impact of neoadjuvant chemotherapy (NACT) on the tumor immune microenvironment (TIME) in gynaecological tumors, with a focus on understanding the potential for enhanced combination therapies.Methods: We systematically queried the PubMed, Embase, and Cochrane databases, encompassing reviews, clinical trials, and case studies, to undertake a thorough analysis of the impact of NACT on the TIME of gynaecological tumors.Results: NACT induces diverse immune microenvironment changes in gynaecological tumors. In cervical cancer, NACT boosts immune-promoting cells, enhancing tumor clearance. Ovarian cancer studies yield variable outcomes, influenced by patient-specific factors and treatment regimens. Limited research exists on NACT's impact on endometrial cancer's immune microenvironment, warranting further exploration. In summary, NACT-induced immune microenvironment changes display variability. Clinical trials highlight personalized immunotherapy's positive impact on gynaecological tumor prognosis, suggesting potential avenues for future cancer treatments. However, rigorous investigation is needed to determine the exact efficacy and safety of combining NACT with immunotherapy.Conclusion: This review provides a solid foundation for the development of late-stage immunotherapy and highlights the importance of therapeutic strategies targeting immune cells in TIME in anti-tumor therapy.
Collapse
Affiliation(s)
- Jing Xue
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, PR China
- Shanxi Medical University, Taiyuan, Shanxi Province, PR China
| | - Xia Yan
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, PR China
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan, Shanxi Province, PR China
| | - Qin Ding
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, PR China
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan, Shanxi Province, PR China
| | - Nan Li
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, PR China
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan, Shanxi Province, PR China
| | - Menghan Wu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, PR China
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan, Shanxi Province, PR China
| | - Jianbo Song
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, PR China
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan, Shanxi Province, PR China
| |
Collapse
|
3
|
Guo Y, Gao F, Ahmed A, Rafiq M, Yu B, Cong H, Shen Y. Immunotherapy: cancer immunotherapy and its combination with nanomaterials and other therapies. J Mater Chem B 2023; 11:8586-8604. [PMID: 37614168 DOI: 10.1039/d3tb01358h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Immunotherapy is a new type of tumor treatment after surgery, radiotherapy and chemotherapy, and can be used to manage and destroy tumor cells through activating or strengthening the immune response. Immunotherapy has the benefits of a low recurrence rate and high specificity compared to traditional treatment methods. Immunotherapy has developed rapidly in recent years and has become a research hotspot. Currently, chimeric antigen receptor T-cell immunotherapy and immune checkpoint inhibitors are the most effective tumor immunotherapies in clinical practice. While tumor immunotherapy brings hope to patients, it also faces some challenges and still requires continuous research and progress. Combination therapy is the future direction of anti-tumor treatment. In this review, the main focus is on an overview of the research progress of immune checkpoint inhibitors, cellular therapies, tumor vaccines, small molecule inhibitors and oncolytic virotherapy in tumor treatment, as well as the combination of immunotherapy with other treatments.
Collapse
Affiliation(s)
- Yuanyuan Guo
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Fengyuan Gao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Adeel Ahmed
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Muhammad Rafiq
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|