1
|
Thomson-Laing G, Howarth JD, Atalah J, Vandergoes MJ, Li X, Pearman JK, Fitzsimons S, Moy C, Moody A, Shepherd C, McKay N, Wood SA. Sedimentary ancient DNA reveals the impact of anthropogenic land use disturbance and ecological shifts on fish community structure in small lowland lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171266. [PMID: 38417515 DOI: 10.1016/j.scitotenv.2024.171266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/29/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
Freshwater fish biodiversity and abundance are decreasing globally. The drivers of decline are primarily anthropogenic; however, the causative links between disturbances and fish community change are complex and challenging to investigate. We used a suite of sedimentary DNA methods (droplet digital PCR and metabarcoding) and traditional paleolimnological approaches, including pollen and trace metal analysis, ITRAX X-ray fluorescence and hyperspectral core scanning to explore changes in fish abundance and drivers over 1390 years in a small lake. This period captured a disturbance trajectory from pre-human settlement through subsistence living to intensive agriculture. Generalized additive mixed models explored the relationships between catchment inputs, internal drivers, and fish community structure. Fish community composition distinctly shifted around 1350 CE, with the decline of a sensitive Galaxias species concomitant with early land use changes. Total fish abundance significantly declined around 1950 CE related to increases in ruminant bacterial DNA (a proxy for ruminant abundance) and cadmium flux (a proxy for phosphate fertilizers), implicating land use intensification as a key driver. Concurrent shifts in phytoplankton and zooplankton suggested that fish communities were likely impacted by food web dynamics. This study highlights the potential of sedDNA to elucidate the long-term disturbance impacts on biological communities in lakes.
Collapse
Affiliation(s)
- Georgia Thomson-Laing
- Cawthron Institute, 98 Halifax Street, The Wood, Nelson 7010, New Zealand; School of Geography, Environment and Earth Sciences, Victoria University of Wellington, PO Box 600, Wellington 6012, New Zealand.
| | - Jamie D Howarth
- School of Geography, Environment and Earth Sciences, Victoria University of Wellington, PO Box 600, Wellington 6012, New Zealand
| | - Javier Atalah
- Cawthron Institute, 98 Halifax Street, The Wood, Nelson 7010, New Zealand
| | | | - Xun Li
- GNS Science, 1 Fairway Drive, Avalon, Lower Hutt 5011, New Zealand
| | - John K Pearman
- School of Geography, Environment and Earth Sciences, Victoria University of Wellington, PO Box 600, Wellington 6012, New Zealand
| | - Sean Fitzsimons
- School of Geography, University of Otago, 360 Leith Street, North Dunedin, Dunedin 9054, New Zealand
| | - Chris Moy
- Department of Geology, University of Otago, 360 Leith Street, North Dunedin, Dunedin 9054, New Zealand
| | - Adelaine Moody
- School of Geography, Environment and Earth Sciences, Victoria University of Wellington, PO Box 600, Wellington 6012, New Zealand
| | - Claire Shepherd
- GNS Science, 1 Fairway Drive, Avalon, Lower Hutt 5011, New Zealand
| | - Nicholas McKay
- School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ, USA
| | - Susanna A Wood
- Cawthron Institute, 98 Halifax Street, The Wood, Nelson 7010, New Zealand
| |
Collapse
|
2
|
Thomson-Laing G, Schallenberg L, Kelly D, Howarth JD, Wood SA. An integrative approach to assess the impact of disturbance on native fish in lakes. Biol Rev Camb Philos Soc 2024; 99:85-109. [PMID: 37621123 DOI: 10.1111/brv.13013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
Freshwater fish are in a perilous state with more than 30% of species considered critically endangered. Yet significant ecological and methodological complexities constrain our ability to determine how disturbances are impacting native fish communities. We review current methods used to assess the responses of fish communities, especially native fish, to disturbances, with a focus on lakes. These methods include contemporary population surveys, manipulative experimental approaches, paleolimnological approaches and Indigenous Knowledge and social histories. We identify knowledge gaps, such as a lack of baseline data for native fish, an inability to assess the impact of historical disturbances, stressor response dynamics in contemporary multi-stressor environments, and natural disturbance regimes. Our assessment of the current methods highlights challenges to filling these knowledge gaps using the reviewed methods. We advocate strongly for the implementation of an integrative approach that combines emerging technologies (i.e. molecular-based techniques in contemporary surveys and paleolimnology) and underutilised knowledge streams (i.e. Indigenous Knowledge and social histories) which should be used in concert with conventional methods. This integrative approach will allow researchers to determine the key drivers of decline and the degree of change, which will enable more informed and successful management actions.
Collapse
Affiliation(s)
- Georgia Thomson-Laing
- Cawthron Institute, 98 Halifax Street, The Wood, Nelson, 7010, New Zealand
- Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | | | - David Kelly
- Cawthron Institute, 98 Halifax Street, The Wood, Nelson, 7010, New Zealand
| | - Jamie D Howarth
- Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Susanna A Wood
- Cawthron Institute, 98 Halifax Street, The Wood, Nelson, 7010, New Zealand
| |
Collapse
|
3
|
Leroy B, Bellard C, Dias MS, Hugueny B, Jézéquel C, Leprieur F, Oberdorff T, Robuchon M, Tedesco PA. Major shifts in biogeographic regions of freshwater fishes as evidence of the Anthropocene epoch. SCIENCE ADVANCES 2023; 9:eadi5502. [PMID: 37976358 PMCID: PMC10656075 DOI: 10.1126/sciadv.adi5502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/17/2023] [Indexed: 11/19/2023]
Abstract
Animals and plants worldwide are structured in global biogeographic regions, which were shaped by major geologic forces during Earth history. Recently, humans have changed the course of events by multiplying global pathways of introduction for nonindigenous species and propagating local species extirpations. Here, we report on how introductions and extirpations have changed the distributions of freshwater fishes worldwide and how it affected their natural biogeographic regions. We found major shifts in natural regions, with the emergence of an intercontinental region arising from the fusion of multiple faunas, which we named Pan-Anthropocenian Global North and East Asia (PAGNEA). The PAGNEA region is evocative of the Pangea supercontinent, as flows of introductions show that dispersal has become possible again across multiple continents, suggesting that human activities have superseded natural geological forces. Our results constitute evidence on the expected modification of biostratigraphic boundaries based on freshwater fish, which are abundant in the fossil record, thereby supporting the concept of the Anthropocene epoch.
Collapse
Affiliation(s)
- Boris Leroy
- Unité Biologie des Organismes et Ecosystèmes Aquatiques (BOREA, UMR 8067), Muséum national d’Histoire naturelle, Sorbonne Université, Université de Caen Normandie, CNRS, IRD, Université des Antilles, Paris, France
| | - Céline Bellard
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Gif-sur-Yvette, France
| | - Murilo S. Dias
- Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade de Brasília (UnB), Brasília-DF, Brazil
| | - Bernard Hugueny
- UMR5174 EDB (Laboratoire Evolution et Diversité Biologique), CNRS, IRD, UPS, Université Paul Sabatier, F-31062 Toulouse, France
| | - Céline Jézéquel
- UMR5174 EDB (Laboratoire Evolution et Diversité Biologique), CNRS, IRD, UPS, Université Paul Sabatier, F-31062 Toulouse, France
| | - Fabien Leprieur
- MARBEC, Univ Montpellier, IRD, CNRS, IFREMER, Montpellier, France
| | - Thierry Oberdorff
- UMR5174 EDB (Laboratoire Evolution et Diversité Biologique), CNRS, IRD, UPS, Université Paul Sabatier, F-31062 Toulouse, France
| | - Marine Robuchon
- Joint Research Centre (JRC) of the European Commission, Directorate for Sustainable Resources, 21027 Ispra (VA), Italy
| | - Pablo A. Tedesco
- UMR5174 EDB (Laboratoire Evolution et Diversité Biologique), CNRS, IRD, UPS, Université Paul Sabatier, F-31062 Toulouse, France
| |
Collapse
|
4
|
Frossard V, Sabatier P, Bruel R, Vagnon C, Tissot N, Curt-Grand-Gaudin N, Perga ME. Intense touristic activities exceed climate change to shape aquatic communities in a mountain lake. AQUATIC SCIENCES 2023; 85:71. [PMID: 37192889 PMCID: PMC10157129 DOI: 10.1007/s00027-023-00968-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/10/2023] [Indexed: 05/18/2023]
Abstract
Mountain lakes are especially vulnerable to climate change, but are also increasingly exposed to local anthropogenic development through winter and summer tourism. In this study, we aimed to tease apart the influence of tourism from that of climate in a mountain lake located within one of the largest French ski resorts, by combining paleolimnological and present ecological data. The reconstructed long-term ecological dynamics highlighted an increase in lake biological production from the end of the Little Ice Age up to the 1950s, suggesting a historical dominance of climate control. Afterward, a major drop in pelagic production occurred at the same time as the watershed erosion increased and peaked in the 1990s, concomitant with massive digging for the ski resort expansion. The benthic invertebrates collapsed in the 1980s, concomitantly with the onset of massive salmonid stocking and recent warming. Stable isotope analyses identified benthic invertebrates as the major salmonid diet resource and suggested a possible direct impact of salmonid stocking on benthic invertebrates. However, habitat use may differ among salmonid species as suggested by the way fish DNA was preserved in surficial sediment. The high abundances of macrozooplankton further confirmed the limited reliance of salmonids on pelagic resources. The variable thermal tolerance of benthic invertebrates suggested that the recent warming may mostly affect littoral habitats. Our results indicate that winter and summer tourism may differently affect the biodiversity of mountain lakes and could collectively interfere with the ecological impacts of recent warming, making local management of primary importance to preserve their ecological integrity. Supplementary Information The online version contains supplementary material available at 10.1007/s00027-023-00968-6.
Collapse
Affiliation(s)
- Victor Frossard
- UMR42 CARRTEL Université Savoie Mont Blanc, INRAE, Thonon-les-Bains, France
| | - Pierre Sabatier
- UMR 5204 EDYTEM, Université Savoie Mont Blanc, CNRS, 73376 Le Bourget du lac, France
| | - Rosalie Bruel
- UMR42 CARRTEL Université Savoie Mont Blanc, INRAE, Thonon-les-Bains, France
- OFB, Pôle ECLA, Aix-en-Provence, France
| | - Chloé Vagnon
- UMR42 CARRTEL Université Savoie Mont Blanc, INRAE, Thonon-les-Bains, France
| | - Nathalie Tissot
- UMR42 CARRTEL Université Savoie Mont Blanc, INRAE, Thonon-les-Bains, France
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France
| | | | - Marie-Elodie Perga
- Faculty of Geosciences and Environment, Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Yao M, Zhang S, Lu Q, Chen X, Zhang SY, Kong Y, Zhao J. Fishing for fish environmental DNA: Ecological applications, methodological considerations, surveying designs, and ways forward. Mol Ecol 2022; 31:5132-5164. [PMID: 35972241 DOI: 10.1111/mec.16659] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 12/15/2022]
Abstract
Vast global declines of freshwater and marine fish diversity and population abundance pose serious threats to both ecosystem sustainability and human livelihoods. Environmental DNA (eDNA)-based biomonitoring provides robust, efficient, and cost-effective assessment of species occurrences and population trends in diverse aquatic environments. Thus, it holds great potential for improving conventional surveillance frameworks to facilitate fish conservation and fisheries management. However, the many technical considerations and rapid developments underway in the eDNA arena can overwhelm researchers and practitioners new to the field. Here, we systematically analysed 416 fish eDNA studies to summarize research trends in terms of investigated targets, research aims, and study systems, and reviewed the applications, rationales, methodological considerations, and limitations of eDNA methods with an emphasis on fish and fisheries research. We highlighted how eDNA technology may advance our knowledge of fish behaviour, species distributions, population genetics, community structures, and ecological interactions. We also synthesized the current knowledge of several important methodological concerns, including the qualitative and quantitative power eDNA has to recover fish biodiversity and abundance, and the spatial and temporal representations of eDNA with respect to its sources. To facilitate ecological applications implementing fish eDNA techniques, recent literature was summarized to generate guidelines for effective sampling in lentic, lotic, and marine habitats. Finally, we identified current gaps and limitations, and pointed out newly emerging research avenues for fish eDNA. As methodological optimization and standardization improve, eDNA technology should revolutionize fish monitoring and promote biodiversity conservation and fisheries management that transcends geographic and temporal boundaries.
Collapse
Affiliation(s)
- Meng Yao
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Shan Zhang
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Qi Lu
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Xiaoyu Chen
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Si-Yu Zhang
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Yueqiao Kong
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Jindong Zhao
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
6
|
Cuenca-Cambronero M, Courtney-Mustaphi CJ, Greenway R, Heiri O, Hudson CM, King L, Lemmen KD, Moosmann M, Muschick M, Ngoepe N, Seehausen O, Matthews B. An integrative paleolimnological approach for studying evolutionary processes. Trends Ecol Evol 2022; 37:488-496. [DOI: 10.1016/j.tree.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 10/19/2022]
|
7
|
Thomson-Laing G, Parai R, Kelly LT, Pochon X, Newnham R, Vandergoes MJ, Howarth JD, Wood SA. Development of droplet digital Polymerase Chain Reaction assays for the detection of long-finned ( Anguilla dieffenbachii) and short-finned ( Anguilla australis) eels in environmental samples. PeerJ 2021; 9:e12157. [PMID: 34692247 PMCID: PMC8483004 DOI: 10.7717/peerj.12157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/24/2021] [Indexed: 01/04/2023] Open
Abstract
Freshwater eels are ecologically, and culturally important worldwide. The New Zealand long-finned eel (Anguilla dieffenbachii) and short-finned eel (Anguilla australis) are apex predators, playing an important role in ecosystem functioning of rivers and lakes. Recently, there has been a national decline in their populations due to habitat destruction and commercial harvest. The emergence of targeted environmental DNA detection methodologies provides an opportunity to enhance information about their past and present distributions. In this study we successfully developed species-specific droplet digital Polymerase Chain Reaction (ddPCR) assays to detect A. dieffenbachii and A. australis DNA in water and sediment samples. Assays utilized primers and probes designed for regions of the mitochondrial cytochrome b and 16S ribosomal RNA genes in A. dieffenbachii and A. australis, respectively. River water samples (n = 27) were analyzed using metabarcoding of fish taxa and were compared with the ddPCR assays. The presence of A. dieffenbachii and A. australis DNA was detected in a greater number of water samples using ddPCR in comparison to metabarcoding. There was a strong and positive correlation between gene copies (ddPCR analyses) and relative eel sequence reads (metabarcoding analyses) when compared to eel biomass. These ddPCR assays provide a new method for assessing spatial distributions of A. dieffenbachii and A. australis in a range of environments and sample types.
Collapse
Affiliation(s)
| | | | | | - Xavier Pochon
- Cawthron Institute, Nelson, New Zealand
- Institute of Marine Science, University of Auckland, Warkworth, New Zealand
| | - Rewi Newnham
- Victoria University of Wellington, Wellington, New Zealand
| | | | | | | |
Collapse
|
8
|
Veilleux HD, Misutka MD, Glover CN. Environmental DNA and environmental RNA: Current and prospective applications for biological monitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146891. [PMID: 33848866 DOI: 10.1016/j.scitotenv.2021.146891] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/22/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
Traditional environmental biomonitoring approaches have limitations in terms of species detectability and their capacity to account for spatial and temporal variation. Furthermore, as invasive techniques they can be harmful to individual organisms, populations and habitats. The application of non-invasive sampling methods that extract, isolate and identify nucleic acid sequences (i.e. DNA, RNA) from environmental matrices have significant potential for complementing, or even ultimately replacing, current methods of biological environmental assessment. These environmental DNA (eDNA) and environmental RNA (eRNA) techniques increase spatial and temporal acuity of monitoring, and in the case of the latter, may provide functional information regarding the health of individuals, and thus ecosystems. However, these assessments require robust analysis of factors such as the detectability and specificity of the developed assays. The presented work highlights the current and future uses of nucleic acid-based biomonitoring regimes, with a focus on fish and aquatic invertebrates and their utility for water quality, biodiversity and species-specific monitoring. These techniques are compared to traditional approaches, with a particular emphasis on the potential insights that could be provided by eRNA analysis, including the benefits of microRNAs as assay targets.
Collapse
Affiliation(s)
- Heather D Veilleux
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | - Melissa D Misutka
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; Faculty of Science and Technology and Athabasca River Basin Research Institute, Athabasca University, Athabasca, Alberta, Canada
| | - Chris N Glover
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; Faculty of Science and Technology and Athabasca River Basin Research Institute, Athabasca University, Athabasca, Alberta, Canada
| |
Collapse
|
9
|
Lake Sedimentary DNA Research on Past Terrestrial and Aquatic Biodiversity: Overview and Recommendations. QUATERNARY 2021. [DOI: 10.3390/quat4010006] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The use of lake sedimentary DNA to track the long-term changes in both terrestrial and aquatic biota is a rapidly advancing field in paleoecological research. Although largely applied nowadays, knowledge gaps remain in this field and there is therefore still research to be conducted to ensure the reliability of the sedimentary DNA signal. Building on the most recent literature and seven original case studies, we synthesize the state-of-the-art analytical procedures for effective sampling, extraction, amplification, quantification and/or generation of DNA inventories from sedimentary ancient DNA (sedaDNA) via high-throughput sequencing technologies. We provide recommendations based on current knowledge and best practises.
Collapse
|
10
|
McClintock BT, Langrock R, Gimenez O, Cam E, Borchers DL, Glennie R, Patterson TA. Uncovering ecological state dynamics with hidden Markov models. Ecol Lett 2020; 23:1878-1903. [PMID: 33073921 PMCID: PMC7702077 DOI: 10.1111/ele.13610] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/13/2020] [Accepted: 08/25/2020] [Indexed: 01/03/2023]
Abstract
Ecological systems can often be characterised by changes among a finite set of underlying states pertaining to individuals, populations, communities or entire ecosystems through time. Owing to the inherent difficulty of empirical field studies, ecological state dynamics operating at any level of this hierarchy can often be unobservable or 'hidden'. Ecologists must therefore often contend with incomplete or indirect observations that are somehow related to these underlying processes. By formally disentangling state and observation processes based on simple yet powerful mathematical properties that can be used to describe many ecological phenomena, hidden Markov models (HMMs) can facilitate inferences about complex system state dynamics that might otherwise be intractable. However, HMMs have only recently begun to gain traction within the broader ecological community. We provide a gentle introduction to HMMs, establish some common terminology, review the immense scope of HMMs for applied ecological research and provide a tutorial on implementation and interpretation. By illustrating how practitioners can use a simple conceptual template to customise HMMs for their specific systems of interest, revealing methodological links between existing applications, and highlighting some practical considerations and limitations of these approaches, our goal is to help establish HMMs as a fundamental inferential tool for ecologists.
Collapse
Affiliation(s)
| | - Roland Langrock
- Department of Business Administration and EconomicsBielefeld UniversityBielefeldGermany
| | - Olivier Gimenez
- CNRS Centre d'Ecologie Fonctionnelle et EvolutiveMontpellierFrance
| | - Emmanuelle Cam
- Laboratoire des Sciences de l'Environnement MarinInstitut Universitaire Européen de la MerUniv. BrestCNRS, IRDIfremerFrance
| | - David L. Borchers
- School of Mathematics and StatisticsUniversity of St AndrewsSt AndrewsUK
| | - Richard Glennie
- School of Mathematics and StatisticsUniversity of St AndrewsSt AndrewsUK
| | | |
Collapse
|
11
|
Dead or alive: sediment DNA archives as tools for tracking aquatic evolution and adaptation. Commun Biol 2020; 3:169. [PMID: 32265485 PMCID: PMC7138834 DOI: 10.1038/s42003-020-0899-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/10/2020] [Indexed: 12/18/2022] Open
Abstract
DNA can be preserved in marine and freshwater sediments both in bulk sediment and in intact, viable resting stages. Here, we assess the potential for combined use of ancient, environmental, DNA and timeseries of resurrected long-term dormant organisms, to reconstruct trophic interactions and evolutionary adaptation to changing environments. These new methods, coupled with independent evidence of biotic and abiotic forcing factors, can provide a holistic view of past ecosystems beyond that offered by standard palaeoecology, help us assess implications of ecological and molecular change for contemporary ecosystem functioning and services, and improve our ability to predict adaptation to environmental stress. Ellegaard et al. discuss the potential for using ancient environmental DNA (eDNA), combined with resurrection ecology, to analyse trophic interactions and evolutionary adaptation to changing environments. Their Review suggests that these techniques will improve our ability to predict genetic and phenotypic adaptation to environmental stress.
Collapse
|
12
|
van Bochove K, Bakker FT, Beentjes KK, Hemerik L, Vos RA, Gravendeel B. Organic matter reduces the amount of detectable environmental DNA in freshwater. Ecol Evol 2020; 10:3647-3654. [PMID: 32313624 PMCID: PMC7160167 DOI: 10.1002/ece3.6123] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 02/04/2020] [Indexed: 11/24/2022] Open
Abstract
Environmental DNA (eDNA) is used for monitoring the occurrence of freshwater organisms. Various studies show a relation between the amount of eDNA detected and target organism abundance, thus providing a potential proxy for reconstructing population densities. However, environmental factors such as water temperature and microbial activity are known to affect the amount of eDNA present as well. In this study, we use controlled aquarium experiments using Gammarus pulex L. (Amphipoda) to investigate the relationship between the amount of detectable eDNA through time, pH, and levels of organic material. We found eDNA to degrade faster when organic material was added to the aquarium water, but that pH had no significant effect. We infer that eDNA contained inside cells and mitochondria is extra resilient against degradation, though this may not reflect actual presence of target species. These results indicate that, although estimation of population density might be possible using eDNA, measured eDNA concentration could, in the future, be corrected for local environmental conditions in order to ensure accurate comparisons.
Collapse
Affiliation(s)
- Kees van Bochove
- Biosystematics GroupWageningen UniversityWageningenThe Netherlands
- Naturalis Biodiversity CenterLeidenThe Netherlands
| | - Freek T. Bakker
- Biosystematics GroupWageningen UniversityWageningenThe Netherlands
| | - Kevin K. Beentjes
- Naturalis Biodiversity CenterLeidenThe Netherlands
- Institute of Biology LeidenLeiden UniversityLeidenThe Netherlands
| | - Lia Hemerik
- BiometrisWageningen UniversityWageningenThe Netherlands
| | | | - Barbara Gravendeel
- Naturalis Biodiversity CenterLeidenThe Netherlands
- Institute of Biology LeidenLeiden UniversityLeidenThe Netherlands
- Institute for Water and Wetland ResearchRadboud UniversityNijmegenThe Netherlands
| |
Collapse
|
13
|
Englund G, Öhlund G, Olajos F, Finstad A, Bellard C, Hugueny B. Holocene extinctions of a top predator-Effects of time, habitat area and habitat subdivision. J Anim Ecol 2020; 89:1202-1215. [PMID: 31943165 DOI: 10.1111/1365-2656.13174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/21/2019] [Indexed: 11/27/2022]
Abstract
Loss of habitat and changes in the spatial configuration of habitats are major drivers of species extinctions, but the responses to these drivers differ between organisms. To advance theory on how extinction risk from different types of habitat alteration relates to species-specific traits, there is a need for studies of the long-term extinction dynamic of individual species. The goal of this study was to quantify how habitat area and the spatial configuration of habitats affect extinction rate of an aquatic top predator, the northern pike Esox lucius L. We recorded the presence/absence of northern pike in 398 isolated habitat fragments, each one consisting of a number of interconnected lakes. Time since isolation of the habitat fragments, caused by cut-off from the main dispersal source in the Baltic Sea, varied between 0 and 10,000 years. Using survival regression, we analysed how pike population survival was affected by time since isolation, habitat size and habitat subdivision. The approach builds on the assumptions that pike colonized all fragments before isolation and that current absences result from extinctions. We verified these assumptions by testing (a) if pike was present in the region throughout the entire time period when the lakes formed and (b) if pike typically colonize lakes that are formed today. We also addressed the likelihood that unrecorded anthropogenic introductions could bias our estimates of extinction rate. Our results supported the interpretation that current patterns of presence/absence in our study system are shaped by extinctions. Further, we found that time since isolation and fragment area had strong effects on pike population survival. In contrast, spatial habitat subdivision (i.e. if a fragment contained few large lakes or many small lakes) and other environmental covariates describing climate and productivity were unrelated to pike survival. Over all, extinction rate was high in young fragments and decreased sharply with increasing fragment age. Our study demonstrates how the link between extinction rate and habitat size and spatial structure can be quantified. More similar studies may help us find generalizations that can guide management of habitat size and connectivity.
Collapse
Affiliation(s)
- Göran Englund
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Gunnar Öhlund
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Fredrik Olajos
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Anders Finstad
- Department of Natural History, Centre for Biodiversity Dynamics, NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Celine Bellard
- Unité Biologie des organismes et écosystèmes aquatiques (BOREA UMR 7208) Muséum national d'Histoire naturelle, Université Pierre et Marie Curie, Université de Caen Normandie, Université des Antilles, CNRS, IRD, Sorbonne Universités, Paris, France.,Laboratoire Ecologie, Systématique & Evolution, UMR 8079-Université Paris-Sud/CNRS/AgroParisTech, Université Paris-Saclay, Orsay Cedex, France
| | - Bernard Hugueny
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), Université de Toulouse Midi-Pyrénées, CNRS, IRD, Toulouse cedex 9, France
| |
Collapse
|
14
|
Giguet-Covex C, Ficetola GF, Walsh K, Poulenard J, Bajard M, Fouinat L, Sabatier P, Gielly L, Messager E, Develle AL, David F, Taberlet P, Brisset E, Guiter F, Sinet R, Arnaud F. New insights on lake sediment DNA from the catchment: importance of taphonomic and analytical issues on the record quality. Sci Rep 2019; 9:14676. [PMID: 31604959 PMCID: PMC6789010 DOI: 10.1038/s41598-019-50339-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/12/2019] [Indexed: 11/09/2022] Open
Abstract
Over the last decade, an increasing number of studies have used lake sediment DNA to trace past landscape changes, agricultural activities or human presence. However, the processes responsible for lake sediment formation and sediment properties might affect DNA records via taphonomic and analytical processes. It is crucial to understand these processes to ensure reliable interpretations for “palaeo” studies. Here, we combined plant and mammal DNA metabarcoding analyses with sedimentological and geochemical analyses from three lake-catchment systems that are characterised by different erosion dynamics. The new insights derived from this approach elucidate and assess issues relating to DNA sources and transfer processes. The sources of eroded materials strongly affect the “catchment-DNA” concentration in the sediments. For instance, erosion of upper organic and organo-mineral soil horizons provides a higher amount of plant DNA in lake sediments than deep horizons, bare soils or glacial flours. Moreover, high erosion rates, along with a well-developed hydrographic network, are proposed as factors positively affecting the representation of the catchment flora. The development of open and agricultural landscapes, which favour the erosion, could thus bias the reconstructed landscape trajectory but help the record of these human activities. Regarding domestic animals, pastoral practices and animal behaviour might affect their DNA record because they control the type of source of DNA (“point” vs. “diffuse”).
Collapse
Affiliation(s)
- C Giguet-Covex
- BioArch-Department of Archaeology, University of York, York, YO10 5DD, UK. .,EDYTEM, UMR 5204 CNRS, Univ. Savoie Mont Blanc, Pôle Montagne, 73376, Le Bourget du Lac, France.
| | - G F Ficetola
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.,Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - K Walsh
- BioArch-Department of Archaeology, University of York, York, YO10 5DD, UK
| | - J Poulenard
- EDYTEM, UMR 5204 CNRS, Univ. Savoie Mont Blanc, Pôle Montagne, 73376, Le Bourget du Lac, France
| | - M Bajard
- EDYTEM, UMR 5204 CNRS, Univ. Savoie Mont Blanc, Pôle Montagne, 73376, Le Bourget du Lac, France
| | - L Fouinat
- EDYTEM, UMR 5204 CNRS, Univ. Savoie Mont Blanc, Pôle Montagne, 73376, Le Bourget du Lac, France
| | - P Sabatier
- EDYTEM, UMR 5204 CNRS, Univ. Savoie Mont Blanc, Pôle Montagne, 73376, Le Bourget du Lac, France
| | - L Gielly
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France
| | - E Messager
- EDYTEM, UMR 5204 CNRS, Univ. Savoie Mont Blanc, Pôle Montagne, 73376, Le Bourget du Lac, France
| | - A L Develle
- EDYTEM, UMR 5204 CNRS, Univ. Savoie Mont Blanc, Pôle Montagne, 73376, Le Bourget du Lac, France
| | - F David
- CEREGE, UMR CNRS 7330, IRD 161-Marseille Université, Technopôle de l'Arbois Méditerranée, BP 80, 13545, Aix en Provence cedex 4, France
| | - P Taberlet
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France
| | - E Brisset
- Aix-Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Aix-en-Provence, France.,Institut Català de Paleoecologia Humana i Evolució Social (IPHES), Tarragona, Spain.,Àrea de Prehistòria, Universitat Rovira i Virgili, Tarragona, Spain
| | - F Guiter
- Aix-Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Aix-en-Provence, France
| | - R Sinet
- Aix-Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Aix-en-Provence, France
| | - F Arnaud
- EDYTEM, UMR 5204 CNRS, Univ. Savoie Mont Blanc, Pôle Montagne, 73376, Le Bourget du Lac, France
| |
Collapse
|
15
|
Forsdyke DR. When acting as a reproductive barrier for sympatric speciation, hybrid sterility can only be primary. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractAnimal gametes unite to form a zygote that develops into an adult with gonads that, in turn, produce gametes. Interruption of this germinal cycle by prezygotic or postzygotic reproductive barriers can result in two cycles, each with the potential to evolve into a new species. When the speciation process is complete, members of each species are fully reproductively isolated from those of the other. During speciation a primary barrier may be supported and eventually superceded by a later-appearing secondary barrier. For those holding certain cases of prezygotic isolation to be primary (e.g. elephant cannot copulate with mouse), the onus is to show that they had not been preceded over evolutionary time by periods of postzygotic hybrid inviability (genically determined) or sterility (genically or chromosomally determined). Likewise, the onus is upon those holding cases of hybrid inviability to be primary (e.g. Dobzhansky–Muller epistatic incompatibilities) to show that they had not been preceded by periods, however brief, of hybrid sterility. The latter, when acting as a sympatric barrier causing reproductive isolation, can only be primary. In many cases, hybrid sterility may result from incompatibilities between parental chromosomes that attempt to pair during meiosis in the gonad of their offspring (Winge-Crowther-Bateson incompatibilities). While such incompatibilities have long been observed on a microscopic scale, there is growing evidence for a role of dispersed finer DNA sequence differences (i.e. in base k-mers).
Collapse
Affiliation(s)
- Donald R Forsdyke
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L3N6, Canada
| |
Collapse
|
16
|
Affiliation(s)
- Andrew M. Edwards
- Pacific Biological StationFisheries and Oceans Canada Nanaimo British Columbia Canada
- Department of BiologyUniversity of Victoria Victoria British Columbia Canada
| | - Marie Auger‐Méthé
- Department of StatisticsUniversity of British Columbia Vancouver British Columbia Canada
- Institute for the Oceans & FisheriesUniversity of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
17
|
Bálint M, Pfenninger M, Grossart HP, Taberlet P, Vellend M, Leibold MA, Englund G, Bowler D. Environmental DNA Time Series in Ecology. Trends Ecol Evol 2018; 33:945-957. [DOI: 10.1016/j.tree.2018.09.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/28/2018] [Accepted: 09/05/2018] [Indexed: 12/13/2022]
|
18
|
Chen W, Ficetola GF. Conditionally autoregressive models improve occupancy analyses of autocorrelated data: An example with environmental DNA. Mol Ecol Resour 2018; 19:163-175. [DOI: 10.1111/1755-0998.12949] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Wentao Chen
- Laboratoire d’Écologie Alpine (LECA) CNRS Univ. Grenoble Alpes Grenoble France
| | - Gentile Francesco Ficetola
- Laboratoire d’Écologie Alpine (LECA) CNRS Univ. Grenoble Alpes Grenoble France
- Department of Environmental Science and Policy Università degli Studi di Milano Milano Italy
| |
Collapse
|