1
|
Clink DJ, Kier I, Ahmad AH, Klinck H. A workflow for the automated detection and classification of female gibbon calls from long-term acoustic recordings. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1071640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Passive acoustic monitoring (PAM) allows for the study of vocal animals on temporal and spatial scales difficult to achieve using only human observers. Recent improvements in recording technology, data storage, and battery capacity have led to increased use of PAM. One of the main obstacles in implementing wide-scale PAM programs is the lack of open-source programs that efficiently process terabytes of sound recordings and do not require large amounts of training data. Here we describe a workflow for detecting, classifying, and visualizing female Northern grey gibbon calls in Sabah, Malaysia. Our approach detects sound events using band-limited energy summation and does binary classification of these events (gibbon female or not) using machine learning algorithms (support vector machine and random forest). We then applied an unsupervised approach (affinity propagation clustering) to see if we could further differentiate between true and false positives or the number of gibbon females in our dataset. We used this workflow to address three questions: (1) does this automated approach provide reliable estimates of temporal patterns of gibbon calling activity; (2) can unsupervised approaches be applied as a post-processing step to improve the performance of the system; and (3) can unsupervised approaches be used to estimate how many female individuals (or clusters) there are in our study area? We found that performance plateaued with >160 clips of training data for each of our two classes. Using optimized settings, our automated approach achieved a satisfactory performance (F1 score ~ 80%). The unsupervised approach did not effectively differentiate between true and false positives or return clusters that appear to correspond to the number of females in our study area. Our results indicate that more work needs to be done before unsupervised approaches can be reliably used to estimate the number of individual animals occupying an area from PAM data. Future work applying these methods across sites and different gibbon species and comparisons to deep learning approaches will be crucial for future gibbon conservation initiatives across Southeast Asia.
Collapse
|
2
|
Remote Ecological Monitoring with Smartphones and Tasker. JOURNAL OF FISH AND WILDLIFE MANAGEMENT 2021. [DOI: 10.3996/jfwm-20-071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Abstract
Researchers have increasingly used autonomous monitoring units to record animal sounds, track phenology with timed photographs, and snap images when triggered by motion. We piloted the use of smartphones to monitor wildlife in the Riverside East Solar Energy Zone (California) and at Indiana Dunes National Park (Indiana). For both efforts, we established remote autonomous monitoring stations in which we housed an Android smartphone in a weather-proof box mounted to a pole and powered by solar panels. We connected each smartphone to a Google account, and the smartphone received its recording/photo schedule daily via a Google Calendar connection when in data transmission mode. Phones were automated by Tasker, an Android application for automating cell phone tasks. We describe a simple approach that could be adopted by others who wish to use nonproprietary methods of data collection and analysis.
Collapse
|