1
|
Siri Y, Sthapit N, Malla B, Raya S, Haramoto E. Comparative performance of electronegative membrane filtration and automated concentrating pipette for detection of antibiotic resistance genes and microbial markers in river water samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176109. [PMID: 39255938 DOI: 10.1016/j.scitotenv.2024.176109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
The target viral and bacterial concentrations in river water are essential for environmental monitoring and public health studies. Filtration-based methods are commonly employed, yet challenges arise due to recoverability and filter pore size. This study aimed to compare the performance of electronegative membrane filtration (EMF) and automated Concentrating Pipette (CP) Select (InnovaPrep) methods for quantifying antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and bacterial and viral markers in river water samples. Fifty-four river water samples were collected from upstream and downstream locations in a river in Japan. The CP Select method was modified by adding MgCl2 and using different tips. The recovery efficiencies for total coliforms and Escherichia coli were assessed, and class 1 integron-integrase gene (intI1), 16S rRNA, gene encoding sulfonamide resistance (sul1), cross-assembly phage (crAssphage), pepper mild mottle virus (PMMoV), and Escherichia coli gene (sfmD) were detected. CP Select showed recovery efficiencies of 45 %-63 % for total coliforms and 17 %-35 % for E. coli. The intI1, 16S rRNA, sul1, crAssphage, PMMoV, and sfmD concentrations using the modified CP Select method were 10.1 ± 0.5, 8.7 ± 0.2, 7.7 ± 0.2, 6.7 ± 0.2, 5.4 ± 0.2, and 3.5 ± 0.5 log10 copies/L, respectively. Higher intI1 and sul1 concentrations were observed downstream, with the highest contribution percentage (22 % and 21 %) using CP Select or EMF. The modified CP Select method with 0.05 μm tips yielded more quantifiable results for all target genes and greater PMMoV concentrations (p < 0.05). Positive correlations were found among bacterial, ARG/MGE, and viral markers (Spearman's ρ = 0.71 for 16S rRNA and sfmD, 0.88 for intI1 and sul1, and 0.64 for PMMoV and crAssphage). The modified CP Select method demonstrated effective recovery of bacteria and quantification of ARGs, MGEs, and microbial markers in river water. Further studies are required to validate these methods and confirm their applicability in diverse environmental contexts.
Collapse
Affiliation(s)
- Yadpiroon Siri
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Niva Sthapit
- Department of Civil and Environmental Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Bikash Malla
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Sunayana Raya
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
| |
Collapse
|
2
|
Nester GM, Suter L, Kitchener JA, Bunce M, Polanowski AM, Wasserman J, Deagle B. Long-distance Southern Ocean environmental DNA (eDNA) transect provides insights into spatial marine biota and invasion pathways for non-native species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175657. [PMID: 39173769 DOI: 10.1016/j.scitotenv.2024.175657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/04/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
The Southern Ocean surrounding Antarctica harbours some of the most pristine marine environments remaining, but is increasingly vulnerable to anthropogenic pressures, climate change, and invasion by non-native species. Monitoring biotic responses to cumulative impacts requires temporal and spatial baselines and ongoing monitoring - traditionally, this has been obtained by continuous plankton recorder (CPR) surveys. Here, we conduct one of the longest environmental DNA (eDNA) transects yet, spanning over 3000 nautical miles from Hobart (Australia) to Davis Station (Antarctica). We evaluate eDNA sampling strategies for long-term open ocean biomonitoring by comparing two water volume and filter pore size combinations: large (12 l with 20 μm) and small (2 l with 0.45 μm). Employing a broad COI metabarcoding assay, we found the large sample/pore combination was better suited to open ocean monitoring, detecting more target DNA and rare or low abundance species. Comparisons with four simultaneously conducted CPR transects revealed that eDNA detections were more diverse than CPR, with 7 (4 unique) and 4 (1 unique) phyla detections respectively. While both methods effectively delineated biodiversity patterns across the Southern Ocean, eDNA enables surveys in the presence of sea-ice where CPR cannot be conducted. Accordingly, 16 species of concern were detected along the transect using eDNA, notably in the Antarctic region (south of 60°S). These were largely attributed to hull biofouling, a recognized pathway for marine introductions into Antarctica. Given the vulnerability of Antarctic environments to potential introductions in a warming Southern Ocean, this work underscores the importance of continued biosecurity vigilance. We advocate integrating eDNA metabarcoding with long-term CPR surveys in the Southern Ocean, emphasising the urgency of its implementation. We anticipate temporal and spatial interweaving of CPR, eDNA, and biophysical data will generate a more nuanced picture of Southern Ocean ecosystems, with significant implications for the conservation and preservation of Antarctic ecosystems.
Collapse
Affiliation(s)
- Georgia M Nester
- TrEnD Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia.
| | - Leonie Suter
- Australian Antarctic Division, Department of Climate Change, Energy, the Environment and Water, Kingston, Tasmania, Australia.
| | - John A Kitchener
- Australian Antarctic Division, Department of Climate Change, Energy, the Environment and Water, Kingston, Tasmania, Australia.
| | - Michael Bunce
- TrEnD Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia; Department of Conservation, New Zealand
| | - Andrea M Polanowski
- Australian Antarctic Division, Department of Climate Change, Energy, the Environment and Water, Kingston, Tasmania, Australia.
| | - Johan Wasserman
- Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, Perth, WA 6150, Australia
| | - Bruce Deagle
- Australian National Fish Collection, National Research Collections Australia, Commonwealth Scientific and Industrial Research Organisation, Tasmania, Battery Point, Australia.
| |
Collapse
|
3
|
Zhang Y, Qiu Y, Liu K, Zhong W, Yang J, Altermatt F, Zhang X. Evaluating eDNA and eRNA metabarcoding for aquatic biodiversity assessment: From bacteria to vertebrates. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100441. [PMID: 39027464 PMCID: PMC11254946 DOI: 10.1016/j.ese.2024.100441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024]
Abstract
The monitoring and management of aquatic ecosystems depend on precise estimates of biodiversity. Metabarcoding analyses of environmental nucleic acids (eNAs), including environmental DNA (eDNA) and environmental RNA (eRNA), have garnered attention for their cost-effective and non-invasive biomonitoring capabilities. However, the accuracy of biodiversity estimates obtained through eNAs can vary among different organismal groups. Here we evaluate the performance of eDNA and eRNA metabarcoding across nine organismal groups, ranging from bacteria to terrestrial vertebrates, in three cross-sections of the Yangtze River, China. We observe robust complementarity between eDNA and eRNA data. The relative detectability of eNAs was notably influenced by major taxonomic groups and organismal sizes, with eDNA providing more robust signals for larger organisms. Both eDNA and eRNA exhibited similar cross-sectional and longitudinal patterns. However, the detectability of larger organisms declined in eRNA metabarcoding, possibly due to differential RNA release and decay among different organismal groups or sizes. While underscoring the potential of eDNA and eRNA in large river biomonitoring, we emphasize the need for differential interpretation of eDNA versus eRNA data. This highlights the importance of careful method selection and interpretation in biomonitoring studies.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Yu Qiu
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Kai Liu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Wenjun Zhong
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Jianghua Yang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Florian Altermatt
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
4
|
Miller TC, Bentlage B. Seasonal dynamics and environmental drivers of tissue and mucus microbiomes in the staghorn coral Acropora pulchra. PeerJ 2024; 12:e17421. [PMID: 38827308 PMCID: PMC11144401 DOI: 10.7717/peerj.17421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/28/2024] [Indexed: 06/04/2024] Open
Abstract
Background Rainfall-induced coastal runoff represents an important environmental impact in near-shore coral reefs that may affect coral-associated bacterial microbiomes. Shifts in microbiome community composition and function can stress corals and ultimately cause mortality and reef declines. Impacts of environmental stress may be site specific and differ between coral microbiome compartments (e.g., tissue versus mucus). Coastal runoff and associated water pollution represent a major stressor for near-shore reef-ecosystems in Guam, Micronesia. Methods Acropora pulchra colonies growing on the West Hagåtña reef flat in Guam were sampled over a period of 8 months spanning the 2021 wet and dry seasons. To examine bacterial microbiome diversity and composition, samples of A. pulchra tissue and mucus were collected during late April, early July, late September, and at the end of December. Samples were collected from populations in two different habitat zones, near the reef crest (farshore) and close to shore (nearshore). Seawater samples were collected during the same time period to evaluate microbiome dynamics of the waters surrounding coral colonies. Tissue, mucus, and seawater microbiomes were characterized using 16S DNA metabarcoding in conjunction with Illumina sequencing. In addition, water samples were collected to determine fecal indicator bacteria (FIB) concentrations as an indicator of water pollution. Water temperatures were recorded using data loggers and precipitation data obtained from a nearby rain gauge. The correlation structure of environmental parameters (temperature and rainfall), FIB concentrations, and A. pulchra microbiome diversity was evaluated using a structural equation model. Beta diversity analyses were used to investigate spatio-temporal trends of microbiome composition. Results Acropora pulchra microbiome diversity differed between tissues and mucus, with mucus microbiome diversity being similar to the surrounding seawater. Rainfall and associated fluctuations of FIB concentrations were correlated with changes in tissue and mucus microbiomes, indicating their role as drivers of A. pulchra microbiome diversity. A. pulchra tissue microbiome composition remained relatively stable throughout dry and wet seasons; tissues were dominated by Endozoicomonadaceae, coral endosymbionts and putative indicators of coral health. In nearshore A. pulchra tissue microbiomes, Simkaniaceae, putative obligate coral endosymbionts, were more abundant than in A. pulchra colonies growing near the reef crest (farshore). A. pulchra mucus microbiomes were more diverse during the wet season than the dry season, a distinction that was also associated with drastic shifts in microbiome composition. This study highlights the seasonal dynamics of coral microbiomes and demonstrates that microbiome diversity and composition may differ between coral tissues and the surface mucus layer.
Collapse
Affiliation(s)
- Therese C. Miller
- Marine Laboratory, University of Guam, Mangilao, Guam, USA
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
- Cawthron Institute, Nelson, New Zealand
| | | |
Collapse
|
5
|
Stuart J, Ryan KG, Pearman JK, Thomson-Laing J, Hampton HG, Smith KF. A comparison of two gene regions for assessing community composition of eukaryotic marine microalgae from coastal ecosystems. Sci Rep 2024; 14:6442. [PMID: 38499675 PMCID: PMC10948787 DOI: 10.1038/s41598-024-56993-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/13/2024] [Indexed: 03/20/2024] Open
Abstract
Two gene regions commonly used to characterise the diversity of eukaryotic communities using metabarcoding are the 18S ribosomal DNA V4 and V9 gene regions. We assessed the effectiveness of these two regions for characterising diverisity of coastal eukaryotic microalgae communities (EMCs) from tropical and temperate sites. We binned amplicon sequence variants (ASVs) into the high level taxonomic groups: dinoflagellates, pennate diatoms, radial centric diatoms, polar centric diatoms, chlorophytes, haptophytes and 'other microalgae'. When V4 and V9 generated ASV abundances were compared, the V9 region generated a higher number of raw reads, captured more diversity from all high level taxonomic groups and was more closely aligned with the community composition determined using light microscopy. The V4 region did resolve more ASVs to a deeper taxonomic resolution within the dinoflagellates, but did not effectively resolve other major taxonomic divisions. When characterising these communities via metabarcoding, the use of multiple gene regions is recommended, but the V9 gene region can be used in isolation to provide high-level community biodiversity to reflect relative abundances within groups. This approach reduces the cost of sequencing multiple gene regions whilst still providing important baseline ecosystem function information.
Collapse
Affiliation(s)
- Jacqui Stuart
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand.
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand.
| | - Ken G Ryan
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - John K Pearman
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
| | | | | | - Kirsty F Smith
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
| |
Collapse
|
6
|
Scriver M, von Ammon U, Youngbull C, Pochon X, Stanton JAL, Gemmell NJ, Zaiko A. Drop it all: extraction-free detection of targeted marine species through optimized direct droplet digital PCR. PeerJ 2024; 12:e16969. [PMID: 38410796 PMCID: PMC10896080 DOI: 10.7717/peerj.16969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024] Open
Abstract
Molecular biomonitoring programs increasingly use environmental DNA (eDNA) for detecting targeted species such as marine non-indigenous species (NIS) or endangered species. However, the current molecular detection workflow is cumbersome and time-demanding, and thereby can hinder management efforts and restrict the "opportunity window" for rapid management responses. Here, we describe a direct droplet digital PCR (direct-ddPCR) approach to detect species-specific free-floating extra-cellular eDNA (free-eDNA) signals, i.e., detection of species-specific eDNA without the need for filtration or DNA extraction, with seawater samples. This first proof-of-concept aquarium study was conducted with three distinct marine species: the Mediterranean fanworm Sabella spallanzanii, the ascidian clubbed tunicate Styela clava, and the brown bryozoan Bugula neritina to evaluate the detectability of free-eDNA in seawater. The detectability of targeted free-eDNA was assessed by directly analysing aquarium marine water samples using an optimized species-specific ddPCR assay. The results demonstrated the consistent detection of S. spallanzanii and B. neritina free-eDNA when these organisms were present in high abundance. Once organisms were removed, the free-eDNA signal exponentially declined, noting that free-eDNA persisted between 24-72 h. Results indicate that organism biomass, specimen characteristics (e.g., stress and viability), and species-specific biological differences may influence free-eDNA detectability. This study represents the first step in assessing the feasibility of direct-ddPCR technology for the detection of marine species. Our results provide information that could aid in the development of new technology, such as a field development of ddPCR systems, which could allow for automated continuous monitoring of targeted marine species, enabling point-of-need detection and rapid management responses.
Collapse
Affiliation(s)
- Michelle Scriver
- Biosecurity Group, Cawthron Institute, Nelson, New Zealand
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - Ulla von Ammon
- Biosecurity Group, Cawthron Institute, Nelson, New Zealand
| | - Cody Youngbull
- Nucleic Sensing Systems, LCC, Saint Paul, Minnesota, United States
| | - Xavier Pochon
- Biosecurity Group, Cawthron Institute, Nelson, New Zealand
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - Jo-Ann L Stanton
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Anastasija Zaiko
- Biosecurity Group, Cawthron Institute, Nelson, New Zealand
- Sequench Ltd, Nelson, New Zealand
| |
Collapse
|
7
|
Liu Y, Smith W, Gebrewold M, Wang X, Simpson SL, Bivins A, Ahmed W. Comparison of concentration and extraction workflows for qPCR quantification of intI1 and vanA in untreated wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166442. [PMID: 37604373 DOI: 10.1016/j.scitotenv.2023.166442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Quantitative polymerase chain reaction (qPCR) measurement of antibiotic resistance genes (ARGs) in untreated municipal wastewater may prove useful in combating the antimicrobial resistance crisis. However, harmonizing and optimizing qPCR-based workflows is essential to facilitate comparisons across studies, and includes achieving highly-effective ARG capture through efficient concentration and extraction procedures. In the current study, combinations of sample volume, membrane types and DNA extraction kits within filtration and centrifugation-based workflows were used to quantify 16S ribosomal RNA (16S rRNA), class 1 integron-integrase gene (intI1) and an ARG encoding resistance to vancomycin (vanA) in untreated wastewater sampled from three wastewater treatment plants (WWTPs). Highly abundant 16S rRNA and intI1 were detected in 100 % of samples from all three WWTPs using both 2 and 20 mL sample volumes, while lower prevalence vanA was only detected when using the 20 mL volume. When filtering 2 mL of wastewater, workflows with 0.20-/0.40-μm polycarbonate (PC) membranes generally yielded greater concentrations of the three targets than workflows with 0.22-/0.45-μm mixed cellulose ester (MCE) membranes. The improved performance was diminished when the sample volume was increased to 20 mL. Consistently greater concentrations of 16S rRNA, intI1 and vanA were yielded by filtration-based workflows using PC membranes combined with a DNeasy PowerWater (DPW) Kit, regardless of the sample volume used, and centrifugation-based workflows with DNeasy Blood & Tissue Kit for 2-mL wastewater extractions. Within the filtration-based workflows, the DPW kit yielded more detection and quantifiable results for less abundant vanA than the DNeasy PowerSoil Pro Kit and FastDNA™ SPIN Kit for Soil. These findings indicate that the performance of qPCR-based workflows for surveillance of ARGs in wastewater varies across targets, sample volumes, concentration methods and extraction kits. Workflows must be carefully considered and validated considering the target ARGs to be monitored.
Collapse
Affiliation(s)
- Yawen Liu
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Wendy Smith
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Metasebia Gebrewold
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Xinhong Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | | | - Aaron Bivins
- Department of Civil & Environmental Engineering, Louisiana State University, Baton Rouge, LA 70809, USA
| | - Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| |
Collapse
|
8
|
von Ammon U, Casanovas P, Pochon X, Zirngibl M, Leonard K, Smith A, Chetham J, Milner D, Zaiko A. Harnessing environmental DNA to reveal biogeographical patterns of non-indigenous species for improved co-governance of the marine environment in Aotearoa New Zealand. Sci Rep 2023; 13:17061. [PMID: 37816793 PMCID: PMC10564887 DOI: 10.1038/s41598-023-44258-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023] Open
Abstract
Aotearoa New Zealand's Northern region is a major gateway for the incursion and establishment of non-indigenous species (NIS) populations due to high numbers of recreational and commercial vessels. This region also holds a unique marine ecosystem, home to many taonga (treasured) species of cultural and economic importance. Regular surveillance, eradication plans and public information sharing are undertaken by local communities and governmental organizations to protect these ecosystems from the impact of NIS. Recently, considerable investments went into environmental DNA (eDNA) research, a promising approach for the early detection of NIS for complementing existing biosecurity systems. We applied eDNA metabarcoding for elucidating bioregional patterns of NIS distributions across a gradient from harbors (NIS hotspots) to open seas (spreading areas). Samples were collected during a research cruise sailing across three Aotearoa New Zealand harbors, Waitematā, Whangārei and Pēwhairangi (Bay of Islands), and their adjacent coastal waters. The small-ribosomal subunit (18S rRNA) and mitochondrial cytochrome c oxidase I (COI) genes were screened using the online Pest Alert Tool for automated detection of putative NIS sequences. Using a probabilistic modelling approach, location-dependent occupancies of NIS were investigated and related to the current information on species distribution from biosecurity surveillance programs. This study was collaboratively designed with Māori partners to initiate a model of co-governance within the existing science system.
Collapse
Affiliation(s)
| | | | - Xavier Pochon
- Cawthron Institute, Nelson, 7010, New Zealand
- Institute of Marine Science, University of Auckland, Auckland, 6011, New Zealand
| | | | - Kaeden Leonard
- Northland Regional Council, Whangārei, 9021, New Zealand
| | - Aless Smith
- Northland Regional Council, Whangārei, 9021, New Zealand
| | - Juliane Chetham
- Patuharakeke Te Iwi Trust Board, Takahiwai, 0171, New Zealand
| | - Dave Milner
- Patuharakeke Te Iwi Trust Board, Takahiwai, 0171, New Zealand
| | - Anastasija Zaiko
- Cawthron Institute, Nelson, 7010, New Zealand
- Sequench Ltd, Nelson, 7010, New Zealand
| |
Collapse
|
9
|
Jo TS. Methodological considerations for aqueous environmental RNA collection, preservation, and extraction. ANAL SCI 2023; 39:1711-1718. [PMID: 37326949 DOI: 10.1007/s44211-023-00382-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Environmental RNA (eRNA) analysis is expected to infer species' physiological information (health status, developmental stage, and environmental stress response) and their distribution and composition more correctly than environmental DNA (eDNA) analysis. With the prospect of such eRNA applications, there is an increasing need for technological development for efficient eRNA detection because of its physicochemical instability. The present study conducted a series of aquarium experiments using zebrafish (Danio rerio) and validated the methodologies for capture, preservation, and extraction of eRNA in a water sample. In the eRNA extraction experiment, an approximately 1.5-fold increase in lysis buffer volume resulted in a more than sixfold increase in target eRNA concentration. In the eRNA capture experiment, although GF/F and GF/A filters yielded similar eRNA concentrations, a GF/A filter may be capable of passing through more volume of water samples and consequently collecting more eRNA particles, given the time required for water filtration. In the eRNA preservation experiment, the use of RNA stabilization reagent (RNAlater) allowed for stably preserving target eRNA on a filter sample at - 20 and even 4 °C for 6 days at least. Altogether, the findings enable the improvement of eRNA availability from the field and easily preserve eRNA samples without deep-freezing, which will contribute to the refinement of eRNA analysis for biological and physiological monitoring in aquatic ecosystems.
Collapse
Affiliation(s)
- Toshiaki S Jo
- Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-Ku, Tokyo, 102-0083, Japan.
- Faculty of Advanced Science and Technology, Ryukoku University, 1-5, Yokotani, Oe-Cho, Seta, Otsu City, Shiga, 520-2194, Japan.
- Ryukoku Center for Biodiversity Science, 1-5, Yokotani, Oe-Cho, Seta, Otsu City, Shiga, 520-2194, Japan.
| |
Collapse
|
10
|
von Ammon U, Pochon X, Casanovas P, Trochel B, Zirngibl M, Thomas A, Witting J, Joyce P, Zaiko A. Net overboard: Comparing marine eDNA sampling methodologies at sea to unravel marine biodiversity. Mol Ecol Resour 2023; 23:440-452. [PMID: 36226834 DOI: 10.1111/1755-0998.13722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 08/09/2022] [Accepted: 09/29/2022] [Indexed: 01/04/2023]
Abstract
Environmental DNA (eDNA) analyses are powerful for describing marine biodiversity but must be optimized for their effective use in routine monitoring. To maximize eDNA detection probabilities of sparsely distributed populations, water samples are usually concentrated from larger volumes and filtered using fine-pore membranes, often a significant cost-time bottleneck in the workflow. This study aimed to streamline eDNA sampling by investigating plankton net versus bucket sampling, direct versus sequential filtration including self-preserving filters. Biodiversity was assessed using metabarcoding of the small ribosomal subunit (18S rRNA) and mitochondrial cytochrome c oxidase I (COI) genes. Multispecies detection probabilities were estimated for each workflow using a probabilistic occupancy modelling approach. Significant workflow-related differences in biodiversity metrics were reported. Highest amplicon sequence variant (ASV) richness was attained by the bucket sampling combined with self-preserving filters, comprising a large portion of microplankton. Less diversity but more metazoan taxa were captured in the net samples combined with 5 μm pore size filters. Prefiltered 1.2 μm samples yielded few or no unique ASVs. The highest average (~32%) metazoan detection probabilities in the 5 μm pore size net samples confirmed the effectiveness of preconcentration plankton for biodiversity screening. These results contribute to streamlining eDNA sampling protocols for uptake and implementation in marine biodiversity research and surveillance.
Collapse
Affiliation(s)
| | - Xavier Pochon
- Cawthron Institute, Nelson, New Zealand.,Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | | | | | | | | | - Jan Witting
- SEA Education Association, Woods Hole, Massachusetts, USA
| | - Paul Joyce
- SEA Education Association, Woods Hole, Massachusetts, USA
| | - Anastasija Zaiko
- Cawthron Institute, Nelson, New Zealand.,Institute of Marine Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
11
|
Patin NV, Goodwin KD. Capturing marine microbiomes and environmental DNA: A field sampling guide. Front Microbiol 2023; 13:1026596. [PMID: 36713215 PMCID: PMC9877356 DOI: 10.3389/fmicb.2022.1026596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/22/2022] [Indexed: 01/15/2023] Open
Abstract
The expanding interest in marine microbiome and eDNA sequence data has led to a demand for sample collection and preservation standard practices to enable comparative assessments of results across studies and facilitate meta-analyses. We support this effort by providing guidelines based on a review of published methods and field sampling experiences. The major components considered here are environmental and resource considerations, sample processing strategies, sample storage options, and eDNA extraction protocols. It is impossible to provide universal recommendations considering the wide range of eDNA applications; rather, we provide information to design fit-for-purpose protocols. To manage scope, the focus here is on sampling collection and preservation of prokaryotic and microeukaryotic eDNA. Even with a focused view, the practical utility of any approach depends on multiple factors, including habitat type, available resources, and experimental goals. We broadly recommend enacting rigorous decontamination protocols, pilot studies to guide the filtration volume needed to characterize the target(s) of interest and minimize PCR inhibitor collection, and prioritizing sample freezing over (only) the addition of preservation buffer. An annotated list of studies that test these parameters is included for more detailed investigation on specific steps. To illustrate an approach that demonstrates fit-for-purpose methodologies, we provide a protocol for eDNA sampling aboard an oceanographic vessel. These guidelines can aid the decision-making process for scientists interested in sampling and sequencing marine microbiomes and/or eDNA.
Collapse
Affiliation(s)
- Nastassia Virginia Patin
- Atlantic Oceanographic and Meteorological Laboratory, Ocean Chemistry and Ecosystems Division, National Oceanic and Atmospheric Administration, Miami, FL, United States,Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, United States,Stationed at Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, United States,*Correspondence: Nastassia Virginia Patin,
| | - Kelly D. Goodwin
- Atlantic Oceanographic and Meteorological Laboratory, Ocean Chemistry and Ecosystems Division, National Oceanic and Atmospheric Administration, Miami, FL, United States,Stationed at Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, United States
| |
Collapse
|
12
|
Picard MH, Zaiko A, Tidy AM, Kelly DJ, Thomson-Laing G, Wilkinson SP, Pochon X, Vandergoes MJ, Hawes I, Wood SA. Optimal sample type and number vary in small shallow lakes when targeting non-native fish environmental DNA. PeerJ 2023; 11:e15210. [PMID: 37151294 PMCID: PMC10162041 DOI: 10.7717/peerj.15210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 03/20/2023] [Indexed: 05/09/2023] Open
Abstract
Non-native fish have been shown to have deleterious impacts on freshwater ecosystems in New Zealand. Early detection is critical for their effective management. Traditional capture-based techniques may not detect newly introduced fish, especially if they are present in low abundance. Molecular techniques that target environmental DNA (eDNA) have been shown, in many instances, to be more sensitive, cost-effective and require lower sampling effort. However, appropriate sampling strategies are needed to ensure robust and interpretable data are obtained. In this study we used droplet digital PCR assays to investigate the presence of two non-native fish in New Zealand, the European perch (Perca fluviatilis) and rudd (Scardinius erythrophthalmus) in three small lakes. Samples were collected from water and surface sediment at near-shore and mid-lake sites. Probabilistic modelling was used to assess the occupancy of fish eDNA and develop guidance on sampling strategies. Based on the detection probability measures from the present study, at least six sites and five replicates per site are needed to reliably detect fish eDNA in sediment samples, and twelve sites with eight replicates per site for water samples. The results highlight the potential of developing monitoring and surveillance programs adapted to lakes, that include the use of assays targeting eDNA. This study focused on small shallow lakes, and it is likely that these recommendations may vary in larger, deeper, and more geomorphologically complex lakes, and this requires further research.
Collapse
Affiliation(s)
- Maïlys H.V. Picard
- School of Biological Sciences, Department of Biological Sciences, University of Waikato, Hamilton, New Zealand
- Coastal and Freshwater, Cawthron Institute, Nelson, New Zealand
| | - Anastasija Zaiko
- Coastal and Freshwater, Cawthron Institute, Nelson, New Zealand
- Institute of Marine Science, University of Auckland, Warkworth, New Zealand
| | | | - David J. Kelly
- Coastal and Freshwater, Cawthron Institute, Nelson, New Zealand
| | | | | | - Xavier Pochon
- Coastal and Freshwater, Cawthron Institute, Nelson, New Zealand
- Institute of Marine Science, University of Auckland, Warkworth, New Zealand
| | | | - Ian Hawes
- School of Biological Sciences, Department of Biological Sciences, University of Waikato, Hamilton, New Zealand
| | - Susanna A. Wood
- Coastal and Freshwater, Cawthron Institute, Nelson, New Zealand
| |
Collapse
|
13
|
McCartin LJ, Vohsen SA, Ambrose SW, Layden M, McFadden CS, Cordes EE, McDermott JM, Herrera S. Temperature Controls eDNA Persistence across Physicochemical Conditions in Seawater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8629-8639. [PMID: 35658125 PMCID: PMC9231374 DOI: 10.1021/acs.est.2c01672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 05/20/2023]
Abstract
Environmental DNA (eDNA) quantification and sequencing are emerging techniques for assessing biodiversity in marine ecosystems. Environmental DNA can be transported by ocean currents and may remain at detectable concentrations far from its source depending on how long it persist. Thus, predicting the persistence time of eDNA is crucial to defining the spatial context of the information derived from it. To investigate the physicochemical controls of eDNA persistence, we performed degradation experiments at temperature, pH, and oxygen conditions relevant to the open ocean and the deep sea. The eDNA degradation process was best explained by a model with two phases with different decay rate constants. During the initial phase, eDNA degraded rapidly, and the rate was independent of physicochemical factors. During the second phase, eDNA degraded slowly, and the rate was strongly controlled by temperature, weakly controlled by pH, and not controlled by dissolved oxygen concentration. We demonstrate that marine eDNA can persist at quantifiable concentrations for over 2 weeks at low temperatures (≤10 °C) but for a week or less at ≥20 °C. The relationship between temperature and eDNA persistence is independent of the source species. We propose a general temperature-dependent model to predict the maximum persistence time of eDNA detectable through single-species eDNA quantification methods.
Collapse
Affiliation(s)
- Luke J. McCartin
- Department
of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015-3027, United States
| | - Samuel A. Vohsen
- Department
of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015-3027, United States
| | - Susan W. Ambrose
- Department
of Earth and Environmental Sciences, Lehigh
University, Bethlehem, Pennsylvania 18015-3027, United States
| | - Michael Layden
- Department
of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015-3027, United States
| | - Catherine S. McFadden
- Department
of Biology, Harvey Mudd College, Claremont, California 91711, United States
| | - Erik E. Cordes
- Department
of Biology, Temple University, Philadelphia, Pennsylvania 19122-6008, United States
| | - Jill M. McDermott
- Department
of Earth and Environmental Sciences, Lehigh
University, Bethlehem, Pennsylvania 18015-3027, United States
| | - Santiago Herrera
- Department
of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015-3027, United States
| |
Collapse
|