1
|
Jia L, Hao H, Wang C, Wei J. Etomidate attenuates hyperoxia-induced acute lung injury in mice by modulating the Nrf2/HO-1 signaling pathway. Exp Ther Med 2021; 22:785. [PMID: 34055084 PMCID: PMC8145798 DOI: 10.3892/etm.2021.10217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to investigate the protective effects of etomidate on hyperoxia-induced acute lung injury in mice, particularly on the nuclear factor-erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) pathway. Fifty specific pathogen-free mice were randomly divided into the blank control, model, high oxygen exposure + low etomidate dose (0.3 mg·kg-1), a high oxygen exposure + moderate etomidate dose (3 mg·kg-1), and a high oxygen exposure + high etomidate dose (10 mg·kg-1) groups, with ten mice allotted per group. After 72 h, the mice were sacrificed and the lung tissues were harvested, and the wet-to-dry (W/D) ratio of the tissues was calculated. Hematoxylin-eosin staining was performed to observe the pathological changes in the lung tissues, and the lung injury score (LIS) was calculated. The mRNA and protein expression levels of Nrf2 and HO-1 were measured. The malondialdehyde (MDA), myeloperoxidase (MPO), superoxide dismutase (SOD) and catalase (CAT) levels were also measured, and interleukin (IL)-1β, IL-6, tumor necrosis factor alpha (TNF-α) and IL-10 concentrations in the bronchoalveolar lavage fluid were determined. At low and moderate doses, etomidate decreased pathological damage in the lung tissue, decreased the LIS and W/D ratio, upregulated Nrf2 and HO-1 mRNA and protein expression, decreased IL-1β, IL-6, and TNF-α concentrations, increased MPO activity and IL-10 levels, suppressed the production of the oxidation product MDA, and enhanced the activities of the antioxidant enzymes CAT and SOD. Within a certain dose range, etomidate enhanced antioxidant and anti-inflammatory effects in mice, thereby decreasing lung injury induced by the chronic inhalation of oxygen at high concentrations. Furthermore, the underlying mechanism may be associate with the upregulation of the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Liming Jia
- Department of Anesthesiology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Hongzhong Hao
- Department of Anesthesiology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Chunyu Wang
- Department of Anesthesiology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Jianfeng Wei
- Department of Anesthesiology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| |
Collapse
|
2
|
Etomidate is devoid of genotoxicty and mutagenicity in human lymphocytes and in the Salmonella typhimurium/microsomal activation test. Toxicol In Vitro 2020; 68:104946. [DOI: 10.1016/j.tiv.2020.104946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 02/07/2023]
|
3
|
Yang F, Zhao H, Zhang K, Wu X, Liu H. Research progress and treatment strategies for anesthetic neurotoxicity. Brain Res Bull 2020; 164:37-44. [PMID: 32798600 DOI: 10.1016/j.brainresbull.2020.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/20/2020] [Accepted: 08/05/2020] [Indexed: 12/23/2022]
Abstract
Every year, a large number of infants and young children worldwide are administered general anesthesia. Whether general anesthesia adversely affects the intellectual development and cognitive function of children at a later date remains controversial. Many animal experiments have shown that general anesthetics can cause nerve damage during development, affect synaptic plasticity, and induce apoptosis, and finally affect learning and memory function in adulthood. The neurotoxicity of pediatric anesthetics (PAN) has received extensive attention in the field of anesthesia, which has been listed as a potential problem affecting public health by NFDA of the United States. Previous studies on rodents and non-human primates indicate that inhalation of anesthetics early after birth can induce long-term and sustained impairment of learning and memory function, as well as changes in brain function. Many anti-oxidant drugs, dexmedetomidine, as well as a rich living environment and exercise have been proven to reduce the neurotoxicity of anesthetics. In this paper, we summarize the research progress, molecular mechanisms and current intervention measures of anesthetic neurotoxicity.
Collapse
Affiliation(s)
- Fan Yang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Sanhao Street 36, Shenyang, 110004, China.
| | - Hai Zhao
- Clinical Skills Center, Shenyang Medical College, Huanghe Street 146, Shenyang, 110034, China.
| | - Kaiyuan Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Sanhao Street 36, Shenyang, 110004, China.
| | - Xiuying Wu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Sanhao Street 36, Shenyang, 110004, China.
| | - Hongtao Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Sanhao Street 36, Shenyang, 110004, China.
| |
Collapse
|
4
|
Félix L, Coimbra AM, Valentim AM, Antunes L. Review on the use of zebrafish embryos to study the effects of anesthetics during early development. Crit Rev Toxicol 2019; 49:357-370. [PMID: 31314655 DOI: 10.1080/10408444.2019.1617236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over the years, the potential toxicity of anesthetics has raised serious concerns about its safe use during pregnancy. As evidence emerged from research in animal models, showing that some anesthetic drugs are potential teratogenic, the determination of the risk of exposures to anesthetic drugs at early life stages became mandatory. However, due to inaccessibility and ethical constrains related to experimental conditions, the use of early life stages in mammalian models is limited. In this regard, some animal and nonanimal models have been suggested to surpass mammalian use in experimentation. Among them, the zebrafish embryo test has been recognized as a promising alternative in toxicology research, as well as an inexpensive and practical test. Substantial information collected from developmental research following compounds exposure, has contributed to the application of zebrafish assays in research, although only a few studies have focused on the use of early life stages of zebrafish to evaluate the developmental effects of anesthetics. Based on the recent advances of science and technology, there is a clear potential for zebrafish early life stages to provide new insights into anesthetics teratogenicity. This review provides an overview of recent anesthesia research using zebrafish embryos, demonstrating its usefulness to the anesthesia field, discussing the recent findings on various aspects related to the effects of anesthetics during early life development and the strengths and limitations of this model system.
Collapse
Affiliation(s)
- Luís Félix
- Institute for Research and Innovation in Health, Laboratory Animal Science, Institute of Molecular and Cell Biology, University of Porto , Porto , Portugal.,Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro , Vila Real , Portugal
| | - Ana Maria Coimbra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro , Vila Real , Portugal
| | - Ana Maria Valentim
- Institute for Research and Innovation in Health, Laboratory Animal Science, Institute of Molecular and Cell Biology, University of Porto , Porto , Portugal.,Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro , Vila Real , Portugal
| | - Luís Antunes
- Institute for Research and Innovation in Health, Laboratory Animal Science, Institute of Molecular and Cell Biology, University of Porto , Porto , Portugal.,Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro , Vila Real , Portugal
| |
Collapse
|
5
|
Al-Muhtasib N, Sepulveda-Rodriguez A, Vicini S, Forcelli PA. Neonatal phenobarbital exposure disrupts GABAergic synaptic maturation in rat CA1 neurons. Epilepsia 2018; 59:333-344. [PMID: 29315524 DOI: 10.1111/epi.13990] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2017] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Phenobarbital is the most commonly utilized drug for the treatment of neonatal seizures. The use of phenobarbital continues despite growing evidence that it exerts suboptimal seizure control and is associated with long-term alterations in brain structure, function, and behavior. Alterations following neonatal phenobarbital exposure include acute induction of neuronal apoptosis, disruption of synaptic development in the striatum, and a host of behavioral deficits. These behavioral deficits include those in learning and memory mediated by the hippocampus. However, the synaptic changes caused by acute exposure to phenobarbital that lead to lasting effects on brain function and behavior remain understudied. METHODS Postnatal day (P)7 rat pups were treated with phenobarbital (75 mg/kg) or saline. On P13-14 or P29-37, acute slices were prepared and whole-cell patch-clamp recordings were made from CA1 pyramidal neurons. RESULTS At P14 we found an increase in miniature inhibitory postsynaptic current (mIPSC) frequency in the phenobarbital-exposed as compared to the saline-exposed group. In addition to this change in mIPSC frequency, the phenobarbital group displayed larger bicuculline-sensitive tonic currents, decreased capacitance and membrane time constant, and a surprising persistence of giant depolarizing potentials. At P29+, the frequency of mIPSCs in the saline-exposed group had increased significantly from the frequency at P14, typical of normal synaptic development; at this age the phenobarbital-exposed group displayed a lower mIPSC frequency than did the control group. Spontaneous inhibitory postsynaptic current (sIPSC) frequency was unaffected at either P14 or P29+. SIGNIFICANCE These neurophysiological alterations following phenobarbital exposure provide a potential mechanism by which acute phenobarbital exposure can have a long-lasting impact on brain development and behavior.
Collapse
Affiliation(s)
- Nour Al-Muhtasib
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, USA
| | - Alberto Sepulveda-Rodriguez
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, USA.,Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA
| | - Stefano Vicini
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, USA.,Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA.,Department of Neuroscience, Georgetown University, Washington, DC, USA
| | - Patrick A Forcelli
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, USA.,Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA.,Department of Neuroscience, Georgetown University, Washington, DC, USA
| |
Collapse
|
6
|
Molecular Mechanisms of Anesthetic Neurotoxicity: A Review of the Current Literature. J Neurosurg Anesthesiol 2017; 28:361-372. [PMID: 27564556 DOI: 10.1097/ana.0000000000000348] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Data from epidemiologic studies and animal models have raised a concern that exposure to anesthetic agents during early postnatal life may cause lasting impairments in cognitive function. It is hypothesized that this is due to disruptions in brain development, but the mechanism underlying this toxic effect remains unknown. Ongoing research, particularly in rodents, has begun to address this question. In this review we examine currently postulated molecular mechanisms of anesthetic toxicity in the developing brain, including effects on cell death pathways, growth factor signaling systems, NMDA and GABA receptors, mitochondria, and epigenetic factors. The level of evidence for each putative mechanism is critically evaluated, and we attempt to draw connections between them where it is possible to do so. Although there are many promising avenues of research, at this time no consensus can be reached as to a definitive mechanism of injury.
Collapse
|