1
|
Li Y, Yu B, Liu C, Xia S, Luo Y, Zheng P, Cong G, Yu J, Luo J, Yan H, He J. Effects of dietary genistin supplementation on reproductive performance, immunity and antioxidative capacity in gestating sows. Front Vet Sci 2024; 11:1489227. [PMID: 39641093 PMCID: PMC11618539 DOI: 10.3389/fvets.2024.1489227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Genistin is an isoflavone of soybean, with estrogenic activity. This experiment was conducted to investigate its effect on reproductive performance, antioxidant capacity, and immunity in gestating sows. Seventy-two sows (Landrace × Yorkshire) were selected and randomly divided into two treatment groups (n = 36) based on their backfat thickness, parity and fed with basal diet or supplementation of 150 mg/ kg genistin to the basal diet based on DMI for the entire gestation period. Results showed that dietary genistin supplementation significantly increased the average number of live born per litter (p < 0.05), and tended to increase the number of healthy piglets per litter (p = 0.058), but decreased the average weight of live born per litter (p < 0.05). Dietary genistin supplementation significantly decreased the number of mummified and stillbirths per litter (p < 0.05). Moreover, the average daily feed intake (ADFI) and total feed intake of the gestating sows were also increased in the genistin-supplemented group (p < 0.05). Genistin significantly increased the serum concentrations of catalase (CAT), immunoglobulin A (IgA), IgG, and IgM at 35 days of gestation (p < 0.05). The serum concentrations of interleukin-10 (IL-10) and interferon-γ (IFN-γ) were also increased upon genistin supplementation (p < 0.05). However, genistin supplementation tended to decrease the serum concentrations of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and leptin at 85 days of gestation (p = 0.081 and p = 0.096, respectively). Interestingly, genistin supplementation decreased the transcript abundance of interferon-γ (IFN-γ) and placental imprinting gene H19, but significantly increased the transcript abundance of insulin-like growth factor I (IGF-I) and amino acid transporters such as the sodium-coupled neutral amino acid transporter 2 (SNTA2) and SNAT4 in the placenta (p < 0.05). These results suggested that dietary genistin supplementation during gestation can improve the reproductive performance of sows, which was probably associated with improving of antioxidant capacity and immunity, as well as changes of transcript abundance of critical functional genes in the placenta.
Collapse
Affiliation(s)
- Yuchen Li
- Institute of Animal Nutrition Sichuan Agricultural University, Chengdu, China
| | - Bing Yu
- Institute of Animal Nutrition Sichuan Agricultural University, Chengdu, China
| | - Chunxue Liu
- Anyou Biotechnology Group Co., Ltd., Taicang, China
| | | | - Yuheng Luo
- Institute of Animal Nutrition Sichuan Agricultural University, Chengdu, China
| | - Ping Zheng
- Institute of Animal Nutrition Sichuan Agricultural University, Chengdu, China
| | | | - Jie Yu
- Institute of Animal Nutrition Sichuan Agricultural University, Chengdu, China
| | - Junqiu Luo
- Institute of Animal Nutrition Sichuan Agricultural University, Chengdu, China
| | - Hui Yan
- Institute of Animal Nutrition Sichuan Agricultural University, Chengdu, China
| | - Jun He
- Institute of Animal Nutrition Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
2
|
Wang Z, Gao J, Xu C. Targeting metabolism to influence cellular senescence a promising anti-cancer therapeutic strategy. Biomed Pharmacother 2024; 177:116962. [PMID: 38936195 DOI: 10.1016/j.biopha.2024.116962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 06/29/2024] Open
Abstract
Metabolic disorders are considered the hallmarks of cancer and metabolic reprogramming is emerging as a new strategy for cancer treatment. Exogenous and endogenous stressors can induce cellular senescence; the interactions between cellular senescence and systemic metabolism are dynamic. Cellular senescence disrupts metabolic homeostasis in various tissues, which further promotes senescence, creating a vicious cycle facilitating tumor occurrence, recurrence, and altered outcomes of anticancer treatments. Therefore, the regulation of cellular senescence and related secretory phenotypes is considered a breakthrough in cancer therapy; moreover, proteins involved in the associated pathways are prospective therapeutic targets. Although studies on the association between cellular senescence and tumors have emerged in recent years, further elucidation of this complex correlation is required for comprehensive knowledge. In this paper, we review the research progress on the correlation between cell aging and metabolism, focusing on the strategies of targeting metabolism to modulate cellular senescence and the progress of relevant research in the context of anti-tumor therapy. Finally, we discuss the significance of improving the specificity and safety of anti-senescence drugs, which is a potential challenge in cancer therapy.
Collapse
Affiliation(s)
- Zehua Wang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Jianwen Gao
- College of Health Management, Shanghai Jian Qiao University, Shanghai 201306, China.
| | - Congjian Xu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China; Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai 200032, China.
| |
Collapse
|
3
|
Wang S, Zhang X, Hou Y, Zhang Y, Chen J, Gao S, Duan H, Gu S, Yu S, Cai Y. SIRT6 activates PPARα to improve doxorubicin-induced myocardial cell aging and damage. Chem Biol Interact 2024; 392:110920. [PMID: 38395252 DOI: 10.1016/j.cbi.2024.110920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/26/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
The Sirtuins family, formally known as the Silent Information Regulator Factors, constitutes a highly conserved group of histone deacetylases. Recent studies have illuminated SIRT6's role in doxorubicin (DOX)-induced oxidative stress and apoptosis within myocardial cells. Nevertheless, the extent of SIRT6's impact on DOX-triggered myocardial cell aging and damage remains uncertain, with the associated mechanisms yet to be fully understood. In our research, we examined the influence of SIRT6 on DOX-induced cardiomyocyte senescence using β-galactosidase and γ-H2AX staining. Additionally, we gauged the mRNA expression of senescence-associated genes, namely p16, p21, and p53, through Real-time PCR. Employing ELISA assay kits, MDA, and total SOD activity assay kits, we measured inflammatory factors TNF-α, IL-6, and IL-1β, alongside oxidative stress-related indicators. The results unequivocally indicated that SIRT6 overexpression robustly inhibited DOX-induced cardiomyocyte senescence. Furthermore, we established that SIRT6 overexpression suppressed the inflammatory response and oxidative stress induced by DOX in cardiomyocytes. Conversely, silencing SIRT6 exacerbated DOX-induced cardiomyocyte injury. Our investigations further unveiled that SIRT6 upregulated the expression of genes CD36, CPT1, LCAD, MCAD associated with fatty acid oxidation through its interaction with PPARα, thereby exerting anti-aging effects. In vivo, the overexpression of SIRT6 was observed to restore DOX-induced declines in EF and FS to normal levels in mice. Echocardiography and HE staining revealed the restoration of cardiomyocyte alignment, affording protection against DOX-induced myocardial senescence and injury. The findings from this study suggest that SIRT6 holds significant promise as a therapeutic target for mitigating DOX-induced cardiomyopathy.
Collapse
Affiliation(s)
- Shulin Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xuan Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Afffliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yanhong Hou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Afffliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yuliang Zhang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiamin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Afffliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shuhan Gao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Afffliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Huiying Duan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Afffliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shaoju Gu
- Laboratory Animal Centre, Guangzhou Medical University, Guangzhou, China.
| | - Shanshan Yu
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| | - Yi Cai
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Afffliated Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Chini CCS, Cordeiro HS, Tran NLK, Chini EN. NAD metabolism: Role in senescence regulation and aging. Aging Cell 2024; 23:e13920. [PMID: 37424179 PMCID: PMC10776128 DOI: 10.1111/acel.13920] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023] Open
Abstract
The geroscience hypothesis proposes that addressing the biology of aging could directly prevent the onset or mitigate the severity of multiple chronic diseases. Understanding the interplay between key aspects of the biological hallmarks of aging is essential in delivering the promises of the geroscience hypothesis. Notably, the nucleotide nicotinamide adenine dinucleotide (NAD) interfaces with several biological hallmarks of aging, including cellular senescence, and changes in NAD metabolism have been shown to be involved in the aging process. The relationship between NAD metabolism and cellular senescence appears to be complex. On the one hand, the accumulation of DNA damage and mitochondrial dysfunction induced by low NAD+ can promote the development of senescence. On the other hand, the low NAD+ state that occurs during aging may inhibit SASP development as this secretory phenotype and the development of cellular senescence are both highly metabolically demanding. However, to date, the impact of NAD+ metabolism on the progression of the cellular senescence phenotype has not been fully characterized. Therefore, to explore the implications of NAD metabolism and NAD replacement therapies, it is essential to consider their interactions with other hallmarks of aging, including cellular senescence. We propose that a comprehensive understanding of the interplay between NAD boosting strategies and senolytic agents is necessary to advance the field.
Collapse
Affiliation(s)
- Claudia Christiano Silva Chini
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineRochesterMinnesotaUSA
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineJacksonvilleFloridaUSA
| | - Heidi Soares Cordeiro
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineRochesterMinnesotaUSA
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineJacksonvilleFloridaUSA
| | - Ngan Le Kim Tran
- Center for Clinical and Translational Science and Mayo Clinic Graduate School of Biomedical SciencesMayo ClinicJacksonvilleFloridaUSA
| | - Eduardo Nunes Chini
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineRochesterMinnesotaUSA
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineJacksonvilleFloridaUSA
| |
Collapse
|
5
|
Cheng J, Keuthan CJ, Esumi N. The many faces of SIRT6 in the retina and retinal pigment epithelium. Front Cell Dev Biol 2023; 11:1244765. [PMID: 38016059 PMCID: PMC10646311 DOI: 10.3389/fcell.2023.1244765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/18/2023] [Indexed: 11/30/2023] Open
Abstract
Sirtuin 6 (SIRT6) is a member of the mammalian sirtuin family of NAD+-dependent protein deacylases, homologues of the yeast silent information regulator 2 (Sir2). SIRT6 has remarkably diverse functions and plays a key role in a variety of biological processes for maintaining cellular and organismal homeostasis. In this review, our primary aim is to summarize recent progress in understanding SIRT6's functions in the retina and retinal pigment epithelium (RPE), with the hope of further drawing interests in SIRT6 to increase efforts in exploring the therapeutic potential of this unique protein in the vision field. Before describing SIRT6's role in the eye, we first discuss SIRT6's general functions in a wide range of biological contexts. SIRT6 plays an important role in gene silencing, metabolism, DNA repair, antioxidant defense, inflammation, aging and longevity, early development, and stress response. In addition, recent studies have revealed SIRT6's role in macrophage polarization and mitochondrial homeostasis. Despite being initially understudied in the context of the eye, recent efforts have begun to elucidate the critical functions of SIRT6 in the retina and RPE. In the retina, SIRT6 is essential for adult retinal function, regulates energy metabolism by suppressing glycolysis that affects photoreceptor cell survival, protects retinal ganglion cells from oxidative stress, and plays a role in Müller cells during early neurodegenerative events in diabetic retinopathy. In the RPE, SIRT6 activates autophagy in culture and protects against oxidative stress in mice. Taken together, this review demonstrates that better understanding of SIRT6's functions and their mechanisms, both in and out of the context of the eye, holds great promise for the development of SIRT6-targeted strategies for prevention and treatment of blinding eye diseases.
Collapse
Affiliation(s)
| | | | - Noriko Esumi
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
6
|
Wang J, Wang Y, Wan L, Chen X, Zhang H, Yang S, Zhong L. Identification of lactate regulation pattern on tumor immune infiltration, therapy response, and DNA methylation in diffuse large B-cell lymphoma. Front Immunol 2023; 14:1230017. [PMID: 37790933 PMCID: PMC10542897 DOI: 10.3389/fimmu.2023.1230017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023] Open
Abstract
Background Lactate, produced through glycolytic metabolism in the tumor microenvironment (TME), is implicated in tumorigenesis and progression in diverse cancers. However, the impact of lactate on the remodeling of the TME in diffuse large B-cell lymphoma (DLBCL) and its implications for therapy options remain unclear. Method A lactate-related (LAR) scoring model was constructed in DLBCL patients using bioinformatic methods. CIBERSORT, XCELL, and ssGSEA algorithms were used to determine the correlation between LAR score and immune cell infiltration. Tumor Immune Dysfunction and Exclusion (TIDE), rituximab, cyclophosphamide, adriamycin, vincristine, and prednisone (R-CHOP) cohorts, and Genomics of Drug Sensitivity in Cancer (GDSC) were utilized to predict the therapeutic response of DLBCL patients. The impact of the hub gene STAT4 on tumor biological behavior and DNA methylation was experimentally validated or accessed by the TSIDE database. Results The LAR scoring model was developed based on 20 prognosis-related lactate genes, which enabled the division of DLBCL patients into high- and low-risk groups based on the median LAR score. Patients with high-risk DLBCL exhibited significantly worse survival outcomes in both the training cohorts (GSE181063) and the validation cohorts (GSE10846, GSE32918, and GSE69053), as indicated by statistically significant differences (all P<0.05) and area under the curve (AUC) values exceeding 0.6. Immune analyses revealed that low-risk DLBCL patients had higher levels of immune cell infiltration and antitumor immune activation compared to high-risk DLBCL patients. Furthermore, DLBCL patients with high LAR scores were associated with a lower TIDE value and poor therapeutic efficacy of the R-CHOP regimen. GDSC analysis identified 18 drugs that exhibited significant response sensitivity in low-risk DLBCL patients. Moreover, in vitro experiments demonstrated that overexpression of the lactate key gene STAT4 could suppress proliferation and migration, induce cell cycle arrest, and promote cell apoptosis in DLBCL cells. Transcriptional expression and methylation of the STAT4 gene were found to be associated with immunomodulators and chemokines. Conclusion The lactate-based gene signature effectively predicts the prognosis and regulates TME in DLBCL. Our study underscores the role of lactate gene, STAT4, as an important tumor suppressor in DLBCL. Modulating STAT4 could be a promising strategy for DLBCL in clinical practice.
Collapse
Affiliation(s)
- Jinghua Wang
- Department of Hematology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yanjun Wang
- Department of Urology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Li Wan
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xinyuan Chen
- Digestive Medicine Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Han Zhang
- Department of Gastroenterology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Shuo Yang
- Department of Gastroenterology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Liye Zhong
- Department of Hematology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Pan ZS, Chen YL, Tang KJ, Liu ZZ, Liang JL, Guan YH, Xin XY, Liu CH, Shen CP. Pachymic acid modulates sirtuin 6 activity to alleviate lipid metabolism disorders. Exp Ther Med 2023; 26:320. [PMID: 37273757 PMCID: PMC10236048 DOI: 10.3892/etm.2023.12019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/01/2023] [Indexed: 06/06/2023] Open
Abstract
Pachymic acid (Pac), a major bioactive constituent of Poria cocos, is an antioxidant that inhibits triglyceride (TG) accumulation. To the best of our knowledge, the present study investigated for the first time whether Pac activated sirtuin 6 (SIRT6) signaling to alleviate oleic acid (OA)-palmitic acid (PA)-induced lipid metabolism disorders in mouse primary hepatocytes (MPHs). In the present study, MPHs challenged with Pac were used to test the effects of Pac on intracellular lipid metabolism. Molecular docking studies were performed to explore the potential targets of Pac in defending against lipid deposition. MPHs isolated from liver-specific SIRT6-deficient mice were subjected to OA + PA incubation and treated with Pac to determine the function and detailed mechanism. It was revealed that Pac activated SIRT6 by increasing its expression and deacetylase activity. Pa prevented OA + PA-induced lipid deposition in MPHs in a dose-dependent manner. Pac (50 µM) administration significantly reduced TG accumulation and increased fatty acid oxidation rate in OA + PA-incubated MPHs. Meanwhile, as per the results of molecular docking and relative mRNA levels, Pac activated SIRT6 and increased SIRT6 deacetylation levels. Furthermore, SIRT6 deletions in MPHs abolished the protective effects of Pac against OA + PA-induced hepatocyte lipid metabolism disorders. The present study demonstrated that Pac alleviates OA + PA-induced hepatocyte lipid metabolism disorders by activating SIRT6 signaling. Overall, SIRT6 signaling increases oxidative stress burden and promotes hepatocyte lipolysis.
Collapse
Affiliation(s)
- Zhi-Sen Pan
- Department of Traditional Chinese Medicine, The First People's Hospital of Kashgar Prefecture, Kashgar, Xinjiang Uyghur Autonomous Region 844000, P.R. China
- Department of Endocrinology, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Yan-Ling Chen
- Department of Endocrinology, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Kai-Jia Tang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Zhang-Zhou Liu
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Jia-Li Liang
- Department of Endocrinology, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Yan-Hao Guan
- Department of Endocrinology, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Xiao-Yi Xin
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830011, P.R. China
| | - Chang-Hui Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Chuang-Peng Shen
- Department of Traditional Chinese Medicine, The First People's Hospital of Kashgar Prefecture, Kashgar, Xinjiang Uyghur Autonomous Region 844000, P.R. China
- Department of Endocrinology, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830011, P.R. China
| |
Collapse
|
8
|
Yang Y, Reid MA, Hanse EA, Li H, Li Y, Ruiz BI, Fan Q, Kong M. SAPS3 subunit of protein phosphatase 6 is an AMPK inhibitor and controls metabolic homeostasis upon dietary challenge in male mice. Nat Commun 2023; 14:1368. [PMID: 36914647 PMCID: PMC10011557 DOI: 10.1038/s41467-023-36809-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/17/2023] [Indexed: 03/16/2023] Open
Abstract
Inhibition of AMPK is tightly associated with metabolic perturbations upon over nutrition, yet the molecular mechanisms underlying are not clear. Here, we demonstrate the serine/threonine-protein phosphatase 6 regulatory subunit 3, SAPS3, is a negative regulator of AMPK. SAPS3 is induced under high fat diet (HFD) and recruits the PP6 catalytic subunit to deactivate phosphorylated-AMPK, thereby inhibiting AMPK-controlled metabolic pathways. Either whole-body or liver-specific deletion of SAPS3 protects male mice against HFD-induced detrimental consequences and reverses HFD-induced metabolic and transcriptional alterations while loss of SAPS3 has no effects on mice under balanced diets. Furthermore, genetic inhibition of AMPK is sufficient to block the protective phenotype in SAPS3 knockout mice under HFD. Together, our results reveal that SAPS3 is a negative regulator of AMPK and suppression of SAPS3 functions as a guardian when metabolism is perturbed and represents a potential therapeutic strategy to treat metabolic syndromes.
Collapse
Affiliation(s)
- Ying Yang
- Department of Molecular Biology and Biochemistry; School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA
| | - Michael A Reid
- Department of Cancer Biology, Beckman Research Institute of City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Eric A Hanse
- Department of Molecular Biology and Biochemistry; School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA
| | - Haiqing Li
- Integrative Genomics Core, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Yuanding Li
- Department of Molecular Biology and Biochemistry; School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA
| | - Bryan I Ruiz
- Department of Molecular Biology and Biochemistry; School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA
| | - Qi Fan
- Department of Molecular Biology and Biochemistry; School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA
| | - Mei Kong
- Department of Molecular Biology and Biochemistry; School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
9
|
Xu K, Guo Y, Wang Y, Ren Y, Low V, Cho S, Ping L, Peng K, Li X, Qiu Y, Liu Q, Li Z, Wang Z. Decreased Enterobacteriaceae translocation due to gut microbiota remodeling mediates the alleviation of premature aging by a high-fat diet. Aging Cell 2022; 22:e13760. [PMID: 36567449 PMCID: PMC9924944 DOI: 10.1111/acel.13760] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 10/24/2022] [Accepted: 12/05/2022] [Indexed: 12/27/2022] Open
Abstract
Aging-associated microbial dysbiosis exacerbates various disorders and dysfunctions, and is a major contributor to morbidity and mortality in the elderly, but the underlying cause of this aging-related syndrome is confusing. SIRT6 knockout (SIRT6 KO) mice undergo premature aging and succumb to death by 4 weeks, and are therefore useful as a premature aging research model. Here, fecal microbiota transplantation from SIRT6 KO mice into wild-type (WT) mice phenocopies the gut dysbiosis and premature aging observed in SIRT6 KO mice. Conversely, an expanded lifespan was observed in SIRT6 KO mice when transplanted with microbiota from WT mice. Antibiotic cocktail treatment attenuated inflammation and cell senescence in KO mice, directly suggesting that gut dysbiosis contributes to the premature aging of SIRT6 KO mice. Increased Enterobacteriaceae translocation, driven by the overgrowth of Escherichia coli, is the likely mechanism for the premature aging effects of microbiome dysregulation, which could be reversed by a high-fat diet. Our results provide a mechanism for the causal link between gut dysbiosis and aging, and support a beneficial effect of a high-fat diet for correcting gut dysbiosis and alleviating premature aging. This study provides a rationale for the integration of microbiome-based high-fat diets into therapeutic interventions against aging-associated diseases.
Collapse
Affiliation(s)
- Kang Xu
- Protein Science Key Laboratory of the Ministry of EducationSchool of Pharmaceutical SciencesTsinghua UniversityBeijingChina,School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Yannan Guo
- Protein Science Key Laboratory of the Ministry of EducationSchool of Pharmaceutical SciencesTsinghua UniversityBeijingChina
| | - Yida Wang
- Protein Science Key Laboratory of the Ministry of EducationSchool of Pharmaceutical SciencesTsinghua UniversityBeijingChina
| | - Yu Ren
- Protein Science Key Laboratory of the Ministry of EducationSchool of Pharmaceutical SciencesTsinghua UniversityBeijingChina
| | - Vivien Low
- Department of PharmacologyWeill Cornell MedicineNew YorkNew YorkUSA
| | - Sungyun Cho
- Department of PharmacologyWeill Cornell MedicineNew YorkNew YorkUSA
| | - Lu Ping
- Peking Union Medical CollegeBeijingChina
| | - Kezheng Peng
- Protein Science Key Laboratory of the Ministry of EducationSchool of Pharmaceutical SciencesTsinghua UniversityBeijingChina
| | - Xue Li
- School of MedicineTsinghua UniversityBeijingChina
| | - Ying Qiu
- School of MedicineTsinghua UniversityBeijingChina
| | - Qingfei Liu
- Protein Science Key Laboratory of the Ministry of EducationSchool of Pharmaceutical SciencesTsinghua UniversityBeijingChina
| | - Zhongchi Li
- Protein Science Key Laboratory of the Ministry of EducationSchool of Pharmaceutical SciencesTsinghua UniversityBeijingChina,Department of PharmacologyWeill Cornell MedicineNew YorkNew YorkUSA
| | - Zhao Wang
- Protein Science Key Laboratory of the Ministry of EducationSchool of Pharmaceutical SciencesTsinghua UniversityBeijingChina,Lead Contract
| |
Collapse
|
10
|
Nutrition Strategies Promoting Healthy Aging: From Improvement of Cardiovascular and Brain Health to Prevention of Age-Associated Diseases. Nutrients 2022; 15:nu15010047. [PMID: 36615705 PMCID: PMC9824801 DOI: 10.3390/nu15010047] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND An increasing number of studies suggest that diet plays an important role in regulating aging processes and modulates the development of the most important age-related diseases. OBJECTIVE The aim of this review is to provide an overview of the relationship between nutrition and critical age-associated diseases. METHODS A literature review was conducted to survey recent pre-clinical and clinical findings related to the role of nutritional factors in modulation of fundamental cellular and molecular mechanisms of aging and their role in prevention of the genesis of the diseases of aging. RESULTS Studies show that the development of cardiovascular and cerebrovascular diseases, neurodegenerative diseases, cognitive impairment and dementia can be slowed down or prevented by certain diets with anti-aging action. The protective effects of diets, at least in part, may be mediated by their beneficial macro- (protein, fat, carbohydrate) and micronutrient (vitamins, minerals) composition. CONCLUSIONS Certain diets, such as the Mediterranean diet, may play a significant role in healthy aging by preventing the onset of certain diseases and by improving the aging process itself. This latter can be strengthened by incorporating fasting elements into the diet. As dietary recommendations change with age, this should be taken into consideration as well, when developing a diet tailored to the needs of elderly individuals. Future and ongoing clinical studies on complex anti-aging dietary interventions translating the results of preclinical investigations are expected to lead to novel nutritional guidelines for older adults in the near future.
Collapse
|
11
|
Li A, Wang J, Wang Y, Zhang B, Chen Z, Zhu J, Wang X, Wang S. Tartary Buckwheat (Fagopyrum tataricum) Ameliorates Lipid Metabolism Disorders and Gut Microbiota Dysbiosis in High-Fat Diet-Fed Mice. Foods 2022; 11:foods11193028. [PMID: 36230104 PMCID: PMC9563051 DOI: 10.3390/foods11193028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Jinqiao II, a newly cultivated variety of tartary buckwheat (Fagopyrum tataricum), has been reported to exhibit a higher yield and elevated levels of functional compounds compared to traditional native breeds. We aimed to investigate the potential of Jinqiao II tartary buckwheat to alleviate lipid metabolism disorders by detecting serum biochemistry, pathological symptoms, gene expression profiling, and gut microbial diversity. C57BL/6J mice were provided with either a normal diet; a high-fat diet (HFD); or HFD containing 5%, 10%, and 20% buckwheat for 8 weeks. Our results indicate that Jinqiao II tartary buckwheat attenuated HFD-induced hyperlipidemia, fat accumulation, hepatic damage, endotoxemia, inflammation, abnormal hormonal profiles, and differential lipid-metabolism-related gene expression at mRNA and protein levels in response to the dosages, and high-dose tartary buckwheat exerted optimal outcomes. Gut microbiota sequencing also revealed that the Jinqiao II tartary buckwheat elevated the level of microbial diversity and the abundance of advantageous microbes (Alistipes and Alloprevotella), lowered the abundance of opportunistic pathogens (Ruminococcaceae, Blautia, Ruminiclostridium, Bilophila, and Oscillibacter), and altered the intestinal microbiota structure in mice fed with HFD. These findings suggest that Jinqiao II tartary buckwheat might serve as a competitive candidate in the development of functional food to prevent lipid metabolic abnormalities.
Collapse
Affiliation(s)
- Ang Li
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| | - Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| | - Yuanyifei Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| | - Bowei Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| | - Zhenjia Chen
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Junling Zhu
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Xiaowen Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
- Institute of Medicinal Plant, Shanxi Agricultural University, Jinzhong 030801, China
| | - Shuo Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
- Correspondence: ; Tel.: +86-22-8535-8445
| |
Collapse
|
12
|
Kawakami S, Yoshitane H, Morimura T, Kimura W, Fukada Y. Diurnal shift of mouse activity by the deficiency of an aging-related gene Lmna. J Biochem 2022; 171:509-518. [PMID: 35137145 DOI: 10.1093/jb/mvac015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
Nuclear lamina is a fundamental structure of the cell nucleus and regulates a wide range of molecular pathways. Defects of components of the nuclear lamina cause aging-like physiological disorders, called laminopathy. Generally, aging and diseases are often associated with perturbation of various time-of-day-dependent regulations, but it remains still elusive whether laminopathy induces any changes of the circadian clock and physiological rhythms. Here we demonstrated that deficiency of Lmna gene in mice caused an obvious shift of locomotor activities to the daytime. The abnormal activity profile was accompanied by a remarkable change in phase-angle between the central clock in the suprachiasmatic nucleus (SCN) and lung peripheral clocks, leaving the phase of the SCN clock unaffected by the mutation. These observations suggest that Lmna deficiency causes a change of the habitat from nocturnal to diurnal behaviors. On the other hand, molecular oscillation and its phase resetting mechanism were intact in both the Lmna-deficient cells and progeria-mimicking cells. Intriguingly, high-fat diet feeding extended the short lifespan and ameliorated the abnormalities of the behaviors and the phase of the peripheral clock in the Lmna-deficient mice. The present study supports the important contribution of the energy conditions to a shift between the diurnal and nocturnal activities.
Collapse
Affiliation(s)
- Satoshi Kawakami
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.,Circadian Clock Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo 156-8506, Japan
| | - Hikari Yoshitane
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.,Circadian Clock Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo 156-8506, Japan
| | - Taiki Morimura
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.,Circadian Clock Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo 156-8506, Japan
| | - Wataru Kimura
- RIKEN Center for Biosystems Dynamics Research, Minatojima-minamimachi 2-2-3, Chuo-ku, Kobe, Hyogo 650-0043, Japan
| | - Yoshitaka Fukada
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.,Circadian Clock Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo 156-8506, Japan.,Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
13
|
Chen H, Hu K, Liang Y, Gao Y, Zeng C, Xu K, Shi X, Li L, Yin Y, Qiao Y, Qiu Y, Liu Q, Wang Z. Ample dietary fat reduced the risk of primary vesical calculi by inducing macrophages to engulf budding crystals in mice. Acta Pharm Sin B 2022; 12:747-758. [PMID: 35256944 PMCID: PMC8897024 DOI: 10.1016/j.apsb.2021.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/11/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
Although primary vesical calculi is an ancient disease, the mechanism of calculi formation remains unclear. In this study, we established a novel primary vesical calculi model with d,l-choline tartrate in mice. Compared with commonly used melamine and ethylene glycol models, our model was the only approach that induced vesical calculi without causing kidney injury. Previous studies suggest that proteins in the daily diet are the main contributors to the prevention of vesical calculi, yet the effect of fat is overlooked. To assay the relationship of dietary fat with the formation of primary vesical calculi, d,l-choline tartrate-treated mice were fed a high-fat, low-fat, or normal-fat diet. Genetic changes in the mouse bladder were detected with transcriptome analysis. A high-fat diet remarkably reduced the morbidity of primary vesical calculi. Higher fatty acid levels in serum and urine were observed in the high-fat diet group, and more intact epithelia in bladder were observed in the same group compared with the normal- and low-fat diet groups, suggesting the protective effect of fatty acids on bladder epithelia to maintain its normal histological structure. Transcriptome analysis revealed that the macrophage differentiation-related gene C–X–C motif chemokine ligand 14 (Cxcl14) was upregulated in the bladders of high-fat diet-fed mice compared with those of normal- or low-fat diet-fed mice, which was consistent with histological observations. The expression of CXCL14 significantly increased in the bladder in the high-fat diet group. CXCL14 enhanced the recruitment of macrophages to the crystal nucleus and induced the transformation of M2 macrophages, which led to phagocytosis of budding crystals and prevented accumulation of calculi. In human bladder epithelia (HCV-29) cells, high fatty acid supplementation significantly increased the expression of CXCL14. Dietary fat is essential for the maintenance of physiological functions of the bladder and for the prevention of primary vesical calculi, which provides new ideas for the reduction of morbidity of primary vesical calculi.
Collapse
|
14
|
Yang X, Feng J, Liang W, Zhu Z, Chen Z, Hu J, Yang D, Ding G. Roles of SIRT6 in kidney disease: a novel therapeutic target. Cell Mol Life Sci 2021; 79:53. [PMID: 34950960 PMCID: PMC11072764 DOI: 10.1007/s00018-021-04061-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022]
Abstract
SIRT6 is an NAD+ dependent deacetylase that belongs to the mammalian sirtuin family. SIRT6 is mainly located in the nucleus and regulates chromatin remodeling, genome stability, and gene transcription. SIRT6 extensively participates in various physiological activities such as DNA repair, energy metabolism, oxidative stress, inflammation, and fibrosis. In recent years, the role of epigenetics such as acetylation modification in renal disease has gradually received widespread attention. SIRT6 reduces oxidative stress, inflammation, and renal fibrosis, which is of great importance in maintaining cellular homeostasis and delaying the chronic progression of kidney disease. Here, we review the structure and biological function of SIRT6 and summarize the regulatory mechanisms of SIRT6 in kidney disease. Moreover, the role of SIRT6 as a potential therapeutic target for the progression of kidney disease will be discussed. SIRT6 plays an important role in kidney disease. SIRT6 regulates mitochondrial dynamics and mitochondrial biogenesis, induces G2/M cycle arrest, and plays an antioxidant role in nephrotoxicity, IR, obstructive nephropathy, and sepsis-induced AKI. SIRT6 prevents and delays progressive CKD induced by hyperglycemia, kidney senescence, hypertension, and lipid accumulation by regulating mitochondrial biogenesis, and has antioxidant, anti-inflammatory, and antifibrosis effects. Additionally, hypoxia, inflammation, and fibrosis are the main mechanisms of the AKI-to-CKD transition. SIRT6 plays a critical role in the AKI-to-CKD transition and kidney repair through anti-inflammatory, antifibrotic, and mitochondrial quality control mechanisms. AKI Acute kidney injury, CKD Chronic kidney disease.
Collapse
Affiliation(s)
- Xueyan Yang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Jun Feng
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Wei Liang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Zijing Zhu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Jijia Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Dingping Yang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
- Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
15
|
Li Y, He G, Chen D, Yu B, Yu J, Zheng P, Huang Z, Luo Y, Luo J, Mao X, Yan H, He J. Supplementing daidzein in diets improves the reproductive performance, endocrine hormones and antioxidant capacity of multiparous sows. ACTA ACUST UNITED AC 2021; 7:1052-1060. [PMID: 34738035 PMCID: PMC8546373 DOI: 10.1016/j.aninu.2021.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 08/30/2021] [Accepted: 09/14/2021] [Indexed: 11/24/2022]
Abstract
Certain hormones play important roles in modulating mammalian reproductive behaviour. Daidzein is a well-known isoflavonic phytoestrogen that possesses oestrogenic activity. This study was conducted to probe the effects of daidzein supplementation in gestation diets on the reproductive performance in sows. A total of 120 multiparous sows (Landrace × Yorkshire) were randomly assigned to 2 groups (n = 60) and fed either a base diet (control) or one containing 200 mg/kg daidzein during gestation. We discovered that daidzein supplementation significantly increased the total number of piglets born per litter and number of piglets born alive per litter (P < 0.05), decreased the farrowing time (P < 0.05) and increased the serum oestrogen and progesterone concentrations (P < 0.05) at 35 d of gestation. Moreover, serum immunoglobulin G (IgG) concentration and superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities were higher in the daidzein-treated group than in the control group at 35 d of gestation (P < 0.05). Daidzein increased the serum SOD activity and total anti-oxidative capacity (T-AOC) at 85 d of gestation (P < 0.05). Interestingly, daidzein elevated the expression levels of the sodium-coupled neutral amino acid transporter 1 (SLC38A1) and insulin-like growth factor 1 (IGF-1) genes in the placenta (P < 0.05). These results suggest that daidzein ingestion could improve sow reproductive performance by changing serum hormones, elevating anti-oxidative capacity and up-regulating critical functional genes in the placenta.
Collapse
Affiliation(s)
- Yan Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China
| | | | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China
| |
Collapse
|
16
|
Valencia AP, Nagaraj N, Osman DH, Rabinovitch PS, Marcinek DJ. Are fat and sugar just as detrimental in old age? GeroScience 2021; 43:1615-1625. [PMID: 34101101 DOI: 10.1007/s11357-021-00390-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/20/2021] [Indexed: 12/17/2022] Open
Abstract
Aging and poor nutrition are independent risk factors for the development of chronic disease. When young animals are given diets high in fat or sugar, they exhibit hallmarks of aging like mitochondrial dysfunction and inflammation, and also develop a greater risk for age-related disease. The same mitochondrial dysfunction and inflammation that progress with aging may also further predispose older individuals to dietary insults by fat and sugar. The purpose of this work is to review the most recent studies that address the impact of fat and sugar consumption on hallmarks of aging (mitochondrial dysfunction and inflammation). Findings from these studies show that obesogenic, high-fat diets can exacerbate age-related disease and hallmarks of aging in young animals, but high-fat diets that are non-obesogenic may play a beneficial role in old age. In contrast, high-sugar diets do not require an obesogenic effect to induce mitochondrial dysfunction or inflammation in young rodents. Currently, there is a lack of experimental studies addressing the impact of sugar in the context of aging, even though empirical evidence points to the detrimental effect of sugar in aging by contributing to a variety of age-related diseases. Fig. 1 Mitochondrial dysfunction and altered cellular communication (e.g. inflammation) progress with advancing age and increase the risk for age-related disease (ARD). Given the physiological changes that occur with age, the impact of high-fat (HFD) and high-sugar diets (HSD) may differ in later and earlier stages of life. HFD can promote the development of hallmarks of aging in young animals and can also exacerbate the risk for ARD when consumed at an old age. However, non-obesogenic high-fat diets may also reduce the risk for ARD in old age by acting on these hallmarks of aging. On the other hand, HSD promotes mitochondrial dysfunction and inflammation without necessarily inducing weight gain in young animals. Empirical evidence points to sugar as a major contributor to age-related disease and more experimental studies are needed to clarify whether aged individuals are more susceptible to its effects.
Collapse
Affiliation(s)
- Ana P Valencia
- Department of Radiology, University of Washington, Seattle, WA, 98109, USA
| | - Nitin Nagaraj
- Department of Radiology, University of Washington, Seattle, WA, 98109, USA
| | - Deena H Osman
- Department of Radiology, University of Washington, Seattle, WA, 98109, USA
| | - Peter S Rabinovitch
- Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - David J Marcinek
- Department of Radiology, University of Washington, Seattle, WA, 98109, USA. .,University of Washington School of Medicine, Brotman 140, 850 Republican St, Seattle, WA, 98109, USA.
| |
Collapse
|
17
|
Akter R, Afrose A, Rahman MR, Chowdhury R, Nirzhor SSR, Khan RI, Kabir MT. A Comprehensive Analysis into the Therapeutic Application of Natural Products as SIRT6 Modulators in Alzheimer's Disease, Aging, Cancer, Inflammation, and Diabetes. Int J Mol Sci 2021; 22:4180. [PMID: 33920726 PMCID: PMC8073883 DOI: 10.3390/ijms22084180] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Natural products have long been used as drugs to treat a wide array of human diseases. The lead compounds discovered from natural sources are used as novel templates for developing more potent and safer drugs. Natural products produce biological activity by binding with biological macromolecules, since natural products complement the protein-binding sites and natural product-protein interactions are already optimized in nature. Sirtuin 6 (SIRT6) is an NAD+ dependent histone deacetylase enzyme and a unique Sirtuin family member. It plays a crucial role in different molecular pathways linked to DNA repair, tumorigenesis, glycolysis, gluconeogenesis, neurodegeneration, cardiac hypertrophic responses, etc. Thus, it has emerged as an exciting target of several diseases such as cancer, neurodegenerative diseases, aging, diabetes, metabolic disorder, and heart disease. Recent studies have shown that natural compounds can act as modulators of SIRT6. In the current review, a list of natural products, their sources, and their mechanisms of SIRT6 activity modulation has been compiled. The potential application of these naturally occurring SIRT6 modulators in the amelioration of major human diseases such as Alzheimer's disease, aging, diabetes, inflammation, and cancer has also been delineated. Natural products such as isoquercetin, luteolin, and cyanidin act as SIRT6 activators, whereas vitexin, catechin, scutellarin, fucoidan, etc. work as SIRT6 inhibitors. It is noteworthy to mention that quercetin acts as both SIRT6 activator and inhibitor depending on its concentration used. Although none of them were found as highly selective and potent modulators of SIRT6, they could serve as the starting point for developing selective and highly potent scaffolds for SIRT6.
Collapse
Affiliation(s)
- Raushanara Akter
- Department of Pharmacy, Brac University, Dhaka 1212, Bangladesh; (A.A.); (R.C.); (M.T.K.)
| | - Afrina Afrose
- Department of Pharmacy, Brac University, Dhaka 1212, Bangladesh; (A.A.); (R.C.); (M.T.K.)
| | - Md. Rashidur Rahman
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh;
| | - Rakhi Chowdhury
- Department of Pharmacy, Brac University, Dhaka 1212, Bangladesh; (A.A.); (R.C.); (M.T.K.)
| | - Saif Shahriar Rahman Nirzhor
- Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA;
| | - Rubayat Islam Khan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Md. Tanvir Kabir
- Department of Pharmacy, Brac University, Dhaka 1212, Bangladesh; (A.A.); (R.C.); (M.T.K.)
| |
Collapse
|
18
|
Li Z, Xu K, Zhao S, Guo Y, Chen H, Ni J, Liu Q, Wang Z. SPATA4 improves aging-induced metabolic dysfunction through promotion of preadipocyte differentiation and adipose tissue expansion. Aging Cell 2021; 20:e13282. [PMID: 33314576 PMCID: PMC7811838 DOI: 10.1111/acel.13282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022] Open
Abstract
Spermatogenesis‐associated protein 4 (SPATA4) is conserved across multiple species. However, the function of this gene remains largely unknown. In this study, we generated Spata4 transgenic mice to explore tissue‐specific function of SPATA4. Spata4 overexpression mice displayed increased subcutaneous fat tissue compared with wild‐type littermates at an old age, while this difference was not observed in younger mice. Aging‐induced ectopic fat distribution, inflammation, and insulin resistance were also significantly attenuated by SPATA4. In vitro, SPATA4 promoted preadipocyte differentiation through activation of the ERK1/2 and C/EBPβ pathway and increased the expression of adipokines. These data suggest SPATA4 can regulate lipid accumulation in a tissue‐specific manner and improve aging‐induced dysmetabolic syndromes. Clarifying the mechanism of SPATA4 functioning in lipid metabolism might provide novel therapeutic targets for disease interventions.
Collapse
Affiliation(s)
- Zhongchi Li
- Protein Science Key Laboratory of the Ministry of Education School of Pharmaceutical Sciences Tsinghua University Beijing China
| | - Kang Xu
- Protein Science Key Laboratory of the Ministry of Education School of Pharmaceutical Sciences Tsinghua University Beijing China
| | - Sen Zhao
- Key Laboratory of Big Data for Spinal Deformities Peking Union Medical College Hospital Beijing China
| | - Yannan Guo
- Protein Science Key Laboratory of the Ministry of Education School of Pharmaceutical Sciences Tsinghua University Beijing China
| | - Huiling Chen
- Protein Science Key Laboratory of the Ministry of Education School of Pharmaceutical Sciences Tsinghua University Beijing China
| | - Jianquan Ni
- School of Medicine Tsinghua University Beijing China
| | - Qingfei Liu
- Protein Science Key Laboratory of the Ministry of Education School of Pharmaceutical Sciences Tsinghua University Beijing China
| | - Zhao Wang
- Protein Science Key Laboratory of the Ministry of Education School of Pharmaceutical Sciences Tsinghua University Beijing China
| |
Collapse
|
19
|
Li Z, Xu K, Guo Y, Ping L, Gao Y, Qiu Y, Ni J, Liu Q, Wang Z. A high-fat diet reverses metabolic disorders and premature aging by modulating insulin and IGF1 signaling in SIRT6 knockout mice. Aging Cell 2020; 19:e13104. [PMID: 31967391 PMCID: PMC7059164 DOI: 10.1111/acel.13104] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 12/04/2019] [Accepted: 12/30/2019] [Indexed: 12/26/2022] Open
Abstract
Mammalian sirtuin 6 (SIRT6) is involved in the regulation of many essential processes, especially metabolic homeostasis. SIRT6 knockout mice undergo premature aging and die at age ~4 weeks. Severe glycometabolic disorders have been found in SIRT6 knockout mice, and whether a dietary intervention can rescue SIRT6 knockout mice remains unknown. In our study, we found that at the same calorie intake, a high‐fat diet dramatically increased the lifespan of SIRT6 knockout mice to 26 weeks (males) and 37 weeks (females), reversed multi‐organ atrophy, and reduced body weight, hypoglycemia, and premature aging. Furthermore, the high‐fat diet partially but significantly normalized the global gene expression profile in SIRT6 knockout mice. Regarding the mechanism, excessive glucose uptake and glycolysis induced by the SIRT6 deficiency were attenuated in skeletal muscle through inhibition of insulin and IGF1 signaling by the high‐fat diet. Similarly, fatty acids but not ketone bodies inhibited glucose uptake, glycolysis, and senescence in SIRT6 knockout fibroblasts, whereas PI3K inhibition antagonized the effects of a high‐fatty‐acid medium in vitro. Overall, the high‐fat diet dramatically reverses numerous consequences of SIRT6 deficiency through modulation of insulin and IGF1 signaling, providing a new basis for elucidation of SIRT6 and fatty‐acid functions and supporting novel therapeutic approaches against metabolic disorders and aging‐related diseases.
Collapse
Affiliation(s)
- Zhongchi Li
- Protein Science Key Laboratory of the Ministry of Education School of Pharmaceutical Sciences Tsinghua University Beijing China
| | - Kang Xu
- Protein Science Key Laboratory of the Ministry of Education School of Pharmaceutical Sciences Tsinghua University Beijing China
| | - Yannan Guo
- Protein Science Key Laboratory of the Ministry of Education School of Pharmaceutical Sciences Tsinghua University Beijing China
| | - Lu Ping
- 8‐year MD Program Peking Union Medical College Beijing China
| | - Yuqi Gao
- Protein Science Key Laboratory of the Ministry of Education School of Pharmaceutical Sciences Tsinghua University Beijing China
| | - Ying Qiu
- School of Medicine Tsinghua University Beijing China
| | - Jianquan Ni
- School of Medicine Tsinghua University Beijing China
| | - Qingfei Liu
- Protein Science Key Laboratory of the Ministry of Education School of Pharmaceutical Sciences Tsinghua University Beijing China
| | - Zhao Wang
- Protein Science Key Laboratory of the Ministry of Education School of Pharmaceutical Sciences Tsinghua University Beijing China
| |
Collapse
|