1
|
Kaipa BR, Kasetti R, Sundaresan Y, Li L, Yacoub S, Millar C, Cho W, Skowronska-Krawczyk D, Maddineni P, Palczewski K, Zode G. Impaired axonal transport at the optic nerve head contributes to neurodegeneration in a novel Cre-inducible mouse model of myocilin glaucoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613712. [PMID: 39345520 PMCID: PMC11429981 DOI: 10.1101/2024.09.18.613712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Elevation of intraocular pressure (IOP) due to trabecular meshwork (TM) dysfunction, leading to neurodegeneration, is the pathological hallmark of primary open-angle glaucoma (POAG). Impaired axonal transport is an early and critical feature of glaucomatous neurodegeneration. However, a robust mouse model that replicates these human POAG features accurately has been lacking. We report the development and characterization of a novel Cre-inducible mouse model expressing a DsRed-tagged Y437H mutant of human myocilin (Tg.CreMYOCY437H). A single intravitreal injection of HAd5-Cre induced selective MYOC expression in the TM, causing TM dysfunction, reducing outflow facility, and progressively elevating IOP in Tg.CreMYOCY437H mice. Sustained IOP elevation resulted in significant retinal ganglion cell (RGC) loss and progressive axonal degeneration in Cre-induced Tg.CreMYOCY437H mice. Notably, impaired anterograde axonal transport was observed at the optic nerve head before RGC degeneration, independent of age, indicating that impaired axonal transport contributes to RGC degeneration in Tg.CreMYOCY437H mice. In contrast, axonal transport remained intact in ocular hypertensive mice injected with microbeads, despite significant RGC loss. Our findings indicate that Cre-inducible Tg.CreMYOCY437H mice replicate all glaucoma phenotypes, providing an ideal model for studying early events of TM dysfunction and neuronal loss in POAG.
Collapse
|
2
|
Reinehr S, Rahim Pamuk M, Fuchshofer R, Burkhard Dick H, Joachim SC. Increased inflammation in older high-pressure glaucoma mice. Neurobiol Aging 2024; 145:55-64. [PMID: 39481321 DOI: 10.1016/j.neurobiolaging.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024]
Abstract
Besides an elevated intraocular pressure (IOP), advanced age is one of the most crucial risk factors for developing glaucoma. βB1-Connective Tissue Growth Factor (βB1-CTGF) high-pressure glaucoma mice were used in this study to assess whether glaucoma mice display more inflammatory and aging processes than age-matched controls. Therefore, 20-month-old βB1-CTGF and corresponding wildtype (WT) controls were examined. After IOP measurements, retinas were processed for (immuno-)histological and quantitative real-time PCR analyses. A significantly higher IOP and diminished retinal ganglion cell numbers were noted in βB1-CTGF mice compared to WT. An enhanced macrogliosis as well as an increased number of microglia/macrophages and microglia was detected in retinas of old glaucoma mice. Interleukin (IL)-1β, IL-6, tumor necrosis factor-α, and transforming growth factor-β2 were upregulated, suggesting an ongoing inflammation. Moreover, βB1-CTGF retinas displayed an increased senescence-associated β-galactosidase staining accompanied by a downregulation of Lmnb1 (laminin-B1) mRNA levels. Our results provide a deeper insight into the association between inflammation and high-pressure glaucoma and thus might help to develop new therapy strategies.
Collapse
Affiliation(s)
- Sabrina Reinehr
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, Bochum 44892, Germany.
| | - M Rahim Pamuk
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, Bochum 44892, Germany
| | - Rudolf Fuchshofer
- Institute of Human Anatomy and Embryology, University Regensburg, Universitätsstraße 31, Regensburg 93053, Germany
| | - H Burkhard Dick
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, Bochum 44892, Germany
| | - Stephanie C Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, Bochum 44892, Germany
| |
Collapse
|
3
|
Girkin CA, Strickland RG, Somerville MM, Anne Garner M, Grossman GH, Blake A, Kumar N, Ianov L, Fazio MA, Clark ME, Gross AK. Acute ocular hypertension in the living human eye: Model description and initial cellular responses to elevated intraocular pressure. Vision Res 2024; 223:108465. [PMID: 39173459 PMCID: PMC11444249 DOI: 10.1016/j.visres.2024.108465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/24/2024]
Abstract
This initial methods study presents the initial immunohistochemical and transcriptomic changes in the optic nerve head and retina from three research-consented brain-dead organ donors following prolonged and transient intraocular pressure (IOP) elevation. In this initial study, research-consented brain-dead organ donors were exposed to unilateral elevation of IOP for 7.5 h (Donor 1), 30 h (Donor 2), and 1 h (Donor 3) prior to organ procurement. Optic nerve tissue and retinal tissue was obtained following organ procurement for immunohistological and transcriptomic analysis. Optic nerve sections in Donor 1 exposed to 7.5-hours of unilateral sub-ischemic IOP elevation demonstrated higher levels of protein expression of the astrocytic marker, glial fibrillary acidic protein (GFAP), within the lamina cribrosa with greatest expression inferior temporally in the treated eye compared to control. Spatial transcriptomic analysis performed on optic nerve head tissues from Donor 2 exposed to 30 h of unilateral IOP elevation demonstrated differential transcription of mRNA across laminar and scleral regions. Immunohistochemistry of retinal sections from Donor 2 exhibited higher GFAP and IBA1 expression in the treated eye compared with control, but this was not observed in Donor 3, which was exposed to only 1-hour of IOP elevation. While there were no differences in GFAP protein expression in the retina following the 1-hour IOP elevation in Donor 3, there were higher levels of transcription of GFAP in the inner nuclear layer, and CD44 in the retinal ganglion cell layer, indicative of astrocytic and Müller glial reactivity as well as an early inflammatory response, respectively. We found that transcriptomic differences can be observed across treated and control eyes following unilateral elevation of IOP in brain dead organ donors. The continued development of this model affords the unique opportunity to define the acute mechanotranscriptomic response of the optic nerve head, evaluate the injury and repair mechanisms in the retina in response to IOP elevation, and enable correlation of in vivo imaging and functional testing with ex vivo cellular responses for the first time in the living human eye.
Collapse
Affiliation(s)
- Christopher A Girkin
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ryan G Strickland
- Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - McKenna M Somerville
- Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mary Anne Garner
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Alan Blake
- Advancing Sight Network, Birmingham, AL, USA
| | - Nilesh Kumar
- IRCP-Biological Data Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lara Ianov
- Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; IRCP-Biological Data Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Massimo A Fazio
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mark E Clark
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alecia K Gross
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
4
|
Chen J, Yuan XL, Zhou X, Xu J, Zhang X, Duan X. Mendelian randomization implicates causal association between epigenetic age acceleration and age-related eye diseases or glaucoma endophenotypes. Clin Epigenetics 2024; 16:106. [PMID: 39143611 PMCID: PMC11325616 DOI: 10.1186/s13148-024-01723-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Age-related eye diseases (AREDs) have become increasingly prevalent with the aging population, serving as the leading causes of visual impairment worldwide. Epigenetic clocks are generated based on DNA methylation (DNAm) levels and are considered one of the most promising predictors of biological age. This study aimed to investigate the bidirectional causal association between epigenetic clocks and common AREDs or glaucoma endophenotypes. METHODS Instrumental variables for epigenetic clocks, AREDs, and glaucoma endophenotypes were obtained from corresponding genome-wide association study data of European descent. Bidirectional two-sample Mendelian randomization (MR) was employed to explore the causal relationship between epigenetic clocks and AREDs or glaucoma endophenotypes. Multivariable MR (MVMR) was used to determine whether glaucoma endophenotypes mediated the association of epigenetic clocks with glaucoma. Multiple sensitivity analyses were conducted to confirm the robustness of MR estimates. RESULTS The results showed that an increased intrinsic epigenetic age acceleration (HorvathAge) was significantly associated with an increased risk of primary open-angle glaucoma (OR = 1.04, 95% CI 1.02 to 1.06, P = 6.1E-04). The epigenetic age acceleration (EEA) of HannumAge was related to a decreased risk of primary angle-closure glaucoma (OR = 0.92, 95% CI 0.86 to 0.99, P = 0.035). Reverse MR analysis showed that age-related cataract was linked to decreased HannumAge (β = -0.190 year, 95% CI -0.374 to -0.008, P = 0.041). The EEA of HannumAge (β = -0.85 μm, 95% CI -1.57 to -0.14, P = 0.019) and HorvathAge (β = -0.63 μm, 95% CI -1.18 to -0.08, P = 0.024) were associated with decreased central corneal thickness (CCT). PhenoAge was related to an increased retinal nerve fiber layer thickness (β = 0.06 μm, 95% CI 0.01 to 0.11, P = 0.027). MVMR analysis found no mediation effect of CCT in the association of HannumAge and HorvathAge with glaucoma. DNAm-based granulocyte proportions were significantly associated with presbyopia, rhegmatogenous retinal detachment, and intraocular pressure (P < 0.05). DNAm-based plasminogen activator inhibitor-1 levels were significantly related to age-related macular degeneration and intraocular pressure (P < 0.05). CONCLUSION The present study revealed a causal association between epigenetic clocks and AREDs. More research is warranted to clarify the potential mechanisms of the biological aging process in AREDs.
Collapse
Affiliation(s)
- Jiawei Chen
- Aier Academy of Ophthalmology, Central South University, Changsha, 410015, Hunan Province, People's Republic of China
- Changsha Aier Eye Hospital, Changsha, 410015, Hunan Province, People's Republic of China
| | - Xiang-Ling Yuan
- Aier Academy of Ophthalmology, Central South University, Changsha, 410015, Hunan Province, People's Republic of China
- Aier Eye Institute, Changsha, 410015, Hunan Province, People's Republic of China
| | - Xiaoyu Zhou
- Changsha Aier Eye Hospital, Changsha, 410015, Hunan Province, People's Republic of China
- Aier Glaucoma Institute, Hunan Engineering Research Center for Glaucoma With Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Aier Eye Hospital, Changsha, No. 188 South Furong Road, Changsha, 410015, Hunan Province, People's Republic of China
| | - Jiahao Xu
- Changsha Aier Eye Hospital, Changsha, 410015, Hunan Province, People's Republic of China
- Aier Glaucoma Institute, Hunan Engineering Research Center for Glaucoma With Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Aier Eye Hospital, Changsha, No. 188 South Furong Road, Changsha, 410015, Hunan Province, People's Republic of China
| | - Xinyue Zhang
- Changsha Aier Eye Hospital, Changsha, 410015, Hunan Province, People's Republic of China
- Aier Glaucoma Institute, Hunan Engineering Research Center for Glaucoma With Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Aier Eye Hospital, Changsha, No. 188 South Furong Road, Changsha, 410015, Hunan Province, People's Republic of China
| | - Xuanchu Duan
- Aier Academy of Ophthalmology, Central South University, Changsha, 410015, Hunan Province, People's Republic of China.
- Changsha Aier Eye Hospital, Changsha, 410015, Hunan Province, People's Republic of China.
- Aier Glaucoma Institute, Hunan Engineering Research Center for Glaucoma With Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Aier Eye Hospital, Changsha, No. 188 South Furong Road, Changsha, 410015, Hunan Province, People's Republic of China.
| |
Collapse
|
5
|
Bergmans S, Noel NCL, Masin L, Harding EG, Krzywańska AM, De Schutter JD, Ayana R, Hu C, Arckens L, Ruzycki PA, MacDonald RB, Clark BS, Moons L. Age-related dysregulation of the retinal transcriptome in African turquoise killifish. Aging Cell 2024; 23:e14192. [PMID: 38742929 PMCID: PMC11320354 DOI: 10.1111/acel.14192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024] Open
Abstract
Age-related vision loss caused by retinal neurodegenerative pathologies is becoming more prevalent in our ageing society. To understand the physiological and molecular impact of ageing on retinal homeostasis, we used the short-lived African turquoise killifish, a model known to naturally develop central nervous system (CNS) ageing hallmarks and vision loss. Bulk and single-cell RNA-sequencing (scRNAseq) of three age groups (6-, 12-, and 18-week-old) identified transcriptional ageing fingerprints in the killifish retina, unveiling pathways also identified in the aged brain, including oxidative stress, gliosis, and inflammageing. These findings were comparable to observations in the ageing mouse retina. Additionally, transcriptional changes in genes related to retinal diseases, such as glaucoma and age-related macular degeneration, were observed. The cellular heterogeneity in the killifish retina was characterized, confirming the presence of all typical vertebrate retinal cell types. Data integration from age-matched samples between the bulk and scRNAseq experiments revealed a loss of cellular specificity in gene expression upon ageing, suggesting potential disruption in transcriptional homeostasis. Differential expression analysis within the identified cell types highlighted the role of glial/immune cells as important stress regulators during ageing. Our work emphasizes the value of the fast-ageing killifish in elucidating molecular signatures in age-associated retinal disease and vision decline. This study contributes to the understanding of how age-related changes in molecular pathways may impact CNS health, providing insights that may inform future therapeutic strategies for age-related pathologies.
Collapse
Affiliation(s)
- Steven Bergmans
- Department of Biology, Animal Physiology and Neurobiology Division, Neural Circuit Development & Regeneration Research GroupKU Leuven, Leuven Brain InstituteLeuvenBelgium
| | | | - Luca Masin
- Department of Biology, Animal Physiology and Neurobiology Division, Neural Circuit Development & Regeneration Research GroupKU Leuven, Leuven Brain InstituteLeuvenBelgium
| | - Ellen G. Harding
- John F Hardesty, MD Department of Ophthalmology and Visual SciencesWashington University School of MedicineSaint LouisMissouriUSA
| | | | - Julie D. De Schutter
- Department of Biology, Animal Physiology and Neurobiology Division, Neural Circuit Development & Regeneration Research GroupKU Leuven, Leuven Brain InstituteLeuvenBelgium
| | - Rajagopal Ayana
- Department of Biology, Animal Physiology and Neurobiology Section, Laboratory of Neuroplasticity and NeuroproteomicsKU Leuven, Leuven Brain InstituteLeuvenBelgium
| | - Chi‐Kuo Hu
- Department of Biochemistry and Cell BiologyStony Brook UniversityStony BrookUSA
| | - Lut Arckens
- Department of Biology, Animal Physiology and Neurobiology Section, Laboratory of Neuroplasticity and NeuroproteomicsKU Leuven, Leuven Brain InstituteLeuvenBelgium
| | - Philip A. Ruzycki
- John F Hardesty, MD Department of Ophthalmology and Visual SciencesWashington University School of MedicineSaint LouisMissouriUSA
- Department of GeneticsWashington University School of MedicineSaint LouisMissouriUSA
| | | | - Brian S. Clark
- John F Hardesty, MD Department of Ophthalmology and Visual SciencesWashington University School of MedicineSaint LouisMissouriUSA
- Department of Developmental BiologyWashington University School of MedicineSaint LouisMissouriUSA
- Center of Regenerative MedicineCenter of Regenerative Medicine, Washington University School of MedicineSaint LouisMissouriUSA
| | - Lieve Moons
- Department of Biology, Animal Physiology and Neurobiology Division, Neural Circuit Development & Regeneration Research GroupKU Leuven, Leuven Brain InstituteLeuvenBelgium
| |
Collapse
|
6
|
Mondal AK, Gaur M, Advani J, Swaroop A. Epigenome-metabolism nexus in the retina: implications for aging and disease. Trends Genet 2024; 40:718-729. [PMID: 38782642 PMCID: PMC11303112 DOI: 10.1016/j.tig.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
Intimate links between epigenome modifications and metabolites allude to a crucial role of cellular metabolism in transcriptional regulation. Retina, being a highly metabolic tissue, adapts by integrating inputs from genetic, epigenetic, and extracellular signals. Precise global epigenomic signatures guide development and homeostasis of the intricate retinal structure and function. Epigenomic and metabolic realignment are hallmarks of aging and highlight a link of the epigenome-metabolism nexus with aging-associated multifactorial traits affecting the retina, including age-related macular degeneration and glaucoma. Here, we focus on emerging principles of epigenomic and metabolic control of retinal gene regulation, with emphasis on their contribution to human disease. In addition, we discuss potential mitigation strategies involving lifestyle changes that target the epigenome-metabolome relationship for maintaining retinal function.
Collapse
Affiliation(s)
- Anupam K Mondal
- Neurobiology, Neurodegeneration, and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mohita Gaur
- Neurobiology, Neurodegeneration, and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jayshree Advani
- Neurobiology, Neurodegeneration, and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration, and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
7
|
Shahraki K, Suh DW. An Update to Biomechanical and Biochemical Principles of Retinal Injury in Child Abuse. CHILDREN (BASEL, SWITZERLAND) 2024; 11:586. [PMID: 38790581 PMCID: PMC11119297 DOI: 10.3390/children11050586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
Abusive head trauma (AHT) is an extreme form of physical child abuse, a subset of which is shaken baby syndrome (SBS). While traumatic injury in children is most readily observed as marks of contusion on the body, AHT/SBS may result in internal injuries that can put the life of the child in danger. One pivotal sign associated with AHT/SBS that cannot be spotted with the naked eye is retinal injury (RI), an early sign of which is retinal hemorrhage (RH) in cases with rupture of the retinal vasculature. If not addressed, RI can lead to irreversible outcomes, such as visual loss. It is widely assumed that the major cause of RI is acceleration-deceleration forces that are repeatedly imposed on the patient during abusive shaking. Still, due to the controversial nature of this type of injury, few investigations have ever sought to delve into its biomechanical and/or biochemical features using realistic models. As such, our knowledge regarding AHT-/SBS-induced RI is significantly lacking. In this mini-review, we aim to provide an up-to-date account of the traumatology of AHT-/SBS-induced RI, as well as its biomechanical and biochemical features, while focusing on some of the experimental models that have been developed in recent years for studying retinal hemorrhage in the context of AHT/SBS.
Collapse
Affiliation(s)
| | - Donny W. Suh
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine School of Medicine, Irvine, CA 92697, USA;
| |
Collapse
|
8
|
Becker S, L'Ecuyer Z, Jones BW, Zouache MA, McDonnell FS, Vinberg F. Modeling complex age-related eye disease. Prog Retin Eye Res 2024; 100:101247. [PMID: 38365085 PMCID: PMC11268458 DOI: 10.1016/j.preteyeres.2024.101247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/18/2024]
Abstract
Modeling complex eye diseases like age-related macular degeneration (AMD) and glaucoma poses significant challenges, since these conditions depend highly on age-related changes that occur over several decades, with many contributing factors remaining unknown. Although both diseases exhibit a relatively high heritability of >50%, a large proportion of individuals carrying AMD- or glaucoma-associated genetic risk variants will never develop these diseases. Furthermore, several environmental and lifestyle factors contribute to and modulate the pathogenesis and progression of AMD and glaucoma. Several strategies replicate the impact of genetic risk variants, pathobiological pathways and environmental and lifestyle factors in AMD and glaucoma in mice and other species. In this review we will primarily discuss the most commonly available mouse models, which have and will likely continue to improve our understanding of the pathobiology of age-related eye diseases. Uncertainties persist whether small animal models can truly recapitulate disease progression and vision loss in patients, raising doubts regarding their usefulness when testing novel gene or drug therapies. We will elaborate on concerns that relate to shorter lifespan, body size and allometries, lack of macula and a true lamina cribrosa, as well as absence and sequence disparities of certain genes and differences in their chromosomal location in mice. Since biological, rather than chronological, age likely predisposes an organism for both glaucoma and AMD, more rapidly aging organisms like small rodents may open up possibilities that will make research of these diseases more timely and financially feasible. On the other hand, due to the above-mentioned anatomical and physiological features, as well as pharmacokinetic and -dynamic differences small animal models are not ideal to study the natural progression of vision loss or the efficacy and safety of novel therapies. In this context, we will also discuss the advantages and pitfalls of alternative models that include larger species, such as non-human primates and rabbits, patient-derived retinal organoids, and human organ donor eyes.
Collapse
Affiliation(s)
- Silke Becker
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Zia L'Ecuyer
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Bryan W Jones
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Moussa A Zouache
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Fiona S McDonnell
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA; Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Frans Vinberg
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA; Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
9
|
Liu Y, Liu X, Chen X, Yang Z, Chen J, Zhu W, Li Y, Wen Y, Deng C, Gu C, Lv J, Ju R, Zhuo Y, Su W. Senolytic and senomorphic agent procyanidin C1 alleviates structural and functional decline in the aged retina. Proc Natl Acad Sci U S A 2024; 121:e2311028121. [PMID: 38657052 PMCID: PMC11067450 DOI: 10.1073/pnas.2311028121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Increased cellular senescence burden contributes in part to age-related organ dysfunction and pathologies. In our study, using mouse models of natural aging, we observed structural and functional decline in the aged retina, which was accompanied by the accumulation of senescent cells and senescence-associated secretory phenotype factors. We further validated the senolytic and senomorphic properties of procyanidin C1 (PCC1) both in vitro and in vivo, the long-term treatment of which ameliorated age-related retinal impairment. Through high-throughput single-cell RNA sequencing (scRNA-seq), we comprehensively characterized the retinal landscape after PCC1 administration and deciphered the molecular basis underlying the senescence burden increment and elimination. By exploring the scRNA-seq database of age-related retinal disorders, we revealed the role of cellular senescence and the therapeutic potential of PCC1 in these pathologies. Overall, these results indicate the therapeutic effects of PCC1 on the aged retina and its potential use for treating age-related retinal disorders.
Collapse
Affiliation(s)
- Yidan Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Xiuxing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Xuhao Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Zhenlan Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Jianqi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Weining Zhu
- Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou510060, People’s Republic of China
| | - Yangyang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Yuwen Wen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Caibin Deng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Chenyang Gu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Jianjie Lv
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Rong Ju
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| |
Collapse
|
10
|
Wallis M, Xu Q, Krawczyk M, Skowronska-Krawczyk D. Evolution of the enhancer-rich regulatory region of the gene for the cell-type specific transcription factor POU1F1. Heliyon 2024; 10:e28640. [PMID: 38590853 PMCID: PMC10999999 DOI: 10.1016/j.heliyon.2024.e28640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/10/2024] Open
Abstract
Precise spatio-temporal expression of genes in organogenesis is regulated by the coordinated interplay of DNA elements such as promoter and enhancers present in the regulatory region of a given locus. POU1F1 transcription factor plays a crucial role in the development of somatotrophs, lactotrophs and thyrotrophs in the anterior pituitary gland, and in maintaining high expression of growth hormone, prolactin and TSH. In mouse, expression of POU1F1 is controlled by a region fenced by two CTCF sites, containing 5 upstream enhancer elements, designated E-A (5' to 3'). Elements C, B and A correspond to elements shown previously to play a role in pituitary development and hormonal expression; functional roles for elements E and D have not been reported. We performed comparative sequence analysis of this regulatory region and discovered that three elements, B, C and E, are present in all vertebrate groups except Agnatha. One very long (>2 kb) element (A) is unique to mammals suggesting a specific change in regulation of the gene in this group. Using DNA accessibility assay (ATAC-seq) we showed that conserved elements in anterior pituitary of four non-mammals are open, suggesting functionality as regulatory elements. We showed that, in many non-mammalian vertebrates, an additional upstream exon closely follows element E, leading to alternatively spliced transcripts. Here, element E functions as an alternative promoter, but in mammals this feature is lost, suggesting conversion of alternative promoter to enhancer. Our work shows that regulation of POU1F1 changed markedly during the course of vertebrate evolution, use of a low number of enhancer elements combined with alternative promoters in non-mammalian vertebrates being replaced by use of a unique combination of regulatory units in mammals. Most importantly, our work suggests that evolutionary conversion of alternate promoter to enhancer could be one of the evolutionary mechanisms of enhancer birth.
Collapse
Affiliation(s)
- Michael Wallis
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Qianlan Xu
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, University of California, Irvine, CA, USA
| | - Michal Krawczyk
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, University of California, Irvine, CA, USA
| | - Dorota Skowronska-Krawczyk
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
11
|
Zhang Y, Huang S, Xie B, Zhong Y. Aging, Cellular Senescence, and Glaucoma. Aging Dis 2024; 15:546-564. [PMID: 37725658 PMCID: PMC10917531 DOI: 10.14336/ad.2023.0630-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/30/2023] [Indexed: 09/21/2023] Open
Abstract
Aging is one of the most serious risk factors for glaucoma, and according to age-standardized prevalence, glaucoma is the second leading cause of legal blindness worldwide. Cellular senescence is a hallmark of aging that is defined by a stable exit from the cell cycle in response to cellular damage and stress. The potential mechanisms underlying glaucomatous cellular senescence include oxidative stress, DNA damage, mitochondrial dysfunction, defective autophagy/mitophagy, and epigenetic modifications. These phenotypes interact and generate a sufficiently stable network to maintain the cell senescent state. Senescent trabecular meshwork (TM) cells, retinal ganglion cells (RGCs) and vascular endothelial cells reportedly accumulate with age and stress and may contribute to glaucoma pathologies. Therapies targeting the suppression or elimination of senescent cells have been found to ameliorate RGC death and improve vision in glaucoma models, suggesting the pivotal role of cellular senescence in the pathophysiology of glaucoma. In this review, we explore the biological links between aging and glaucoma, specifically delving into cellular senescence. Moreover, we summarize the current data on cellular senescence in key target cells associated with the development and clinical phenotypes of glaucoma. Finally, we discuss the therapeutic potential of targeting cellular senescence for the management of glaucoma.
Collapse
Affiliation(s)
- Yumeng Zhang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai 200025, China
| | - Shouyue Huang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai 200025, China
| | - Bing Xie
- Correspondence should be addressed to: Dr. Yisheng Zhong () and Bing Xie (), Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai 200025, China
| | - Yisheng Zhong
- Correspondence should be addressed to: Dr. Yisheng Zhong () and Bing Xie (), Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai 200025, China
| |
Collapse
|
12
|
Bergmans S, Noel NCL, Masin L, Harding EG, Krzywańska AM, De Schutter JD, Ayana R, Hu CK, Arckens L, Ruzycki PA, MacDonald RB, Clark BS, Moons L. Age-related dysregulation of the retinal transcriptome in African turquoise killifish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.21.581372. [PMID: 38559206 PMCID: PMC10979842 DOI: 10.1101/2024.02.21.581372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Age-related vision loss caused by retinal neurodegenerative pathologies is becoming more prevalent in our ageing society. To understand the physiological and molecular impact of ageing on retinal homeostasis, we used the short-lived African turquoise killifish, a model known to naturally develop central nervous system (CNS) ageing hallmarks and vision loss. Bulk and single-cell RNA-sequencing (scRNA-seq) of three age groups (6-, 12-, and 18-week-old) identified transcriptional ageing fingerprints in the killifish retina, unveiling pathways also identified in the aged brain, including oxidative stress, gliosis, and inflammageing. These findings were comparable to observations in ageing mouse retina. Additionally, transcriptional changes in genes related to retinal diseases, such as glaucoma and age-related macular degeneration, were observed. The cellular heterogeneity in the killifish retina was characterised, confirming the presence of all typical vertebrate retinal cell types. Data integration from age-matched samples between the bulk and scRNA-seq experiments revealed a loss of cellular specificity in gene expression upon ageing, suggesting potential disruption in transcriptional homeostasis. Differential expression analysis within the identified cell types highlighted the role of glial/immune cells as important stress regulators during ageing. Our work emphasises the value of the fast-ageing killifish in elucidating molecular signatures in age-associated retinal disease and vision decline. This study contributes to the understanding of how age-related changes in molecular pathways may impact CNS health, providing insights that may inform future therapeutic strategies for age-related pathologies.
Collapse
Affiliation(s)
- Steven Bergmans
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology division, Neural circuit development & regeneration research group, 3000 Leuven, Belgium
| | - Nicole C L Noel
- University College London, Institute of Ophthalmology, London, UK, EC1V 9EL
| | - Luca Masin
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology division, Neural circuit development & regeneration research group, 3000 Leuven, Belgium
| | - Ellen G Harding
- Washington University School of Medicine, John F Hardesty, MD Department of Ophthalmology and Visual Sciences, Saint Louis, Missouri, 63110 United States of America
| | | | - Julie D De Schutter
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology division, Neural circuit development & regeneration research group, 3000 Leuven, Belgium
| | - Rajagopal Ayana
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology section, Laboratory of Neuroplasticity and Neuroproteomics, 3000 Leuven, Belgium
| | - Chi-Kuo Hu
- Stony Brook University, Department of Biochemistry and Cell Biology, 11790 Stony Brook, United States of America
| | - Lut Arckens
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology section, Laboratory of Neuroplasticity and Neuroproteomics, 3000 Leuven, Belgium
| | - Philip A Ruzycki
- Washington University School of Medicine, John F Hardesty, MD Department of Ophthalmology and Visual Sciences, Saint Louis, Missouri, 63110 United States of America
- Washington University School of Medicine, Department of Genetics, Saint Louis, Missouri, 63110 United States of America
| | - Ryan B MacDonald
- University College London, Institute of Ophthalmology, London, UK, EC1V 9EL
| | - Brian S Clark
- Washington University School of Medicine, John F Hardesty, MD Department of Ophthalmology and Visual Sciences, Saint Louis, Missouri, 63110 United States of America
- Washington University School of Medicine, Department of Developmental Biology, Saint Louis, Missouri, 63110 United States of America
- Washington University School of Medicine, Center of Regenerative Medicine, Saint Louis, Missouri, 63110 United States of America
| | - Lieve Moons
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology division, Neural circuit development & regeneration research group, 3000 Leuven, Belgium
| |
Collapse
|
13
|
Rizzo JF, Shah MP, Krasniqi D, Lu YR, Sinclair DA, Ksander BR. The Role of Epigenetics in Accelerated Aging: A Reconsideration of Later-Life Visual Loss After Early Optic Neuropathy. J Neuroophthalmol 2024; 44:16-21. [PMID: 37938114 DOI: 10.1097/wno.0000000000002041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
BACKGROUND In 2005, we reported 3 patients with bilateral optic nerve damage early in life. These patients had stable vision for decades but then experienced significant bilateral vision loss with no obvious cause. Our hypothesis, novel at that time, was that the late decline of vision was due to age-related attrition of retinal ganglion cells superimposed on a reduced neuronal population due to the earlier injury. EVIDENCE ACQUISITION The field of epigenetics provides a new paradigm with which to consider the normal aging process and the impact of neuronal injury, which has been shown to accelerate aging. Late-in-life decline in function after early neuronal injury occurs in multiple sclerosis due to dysregulated inflammation and postpolio syndrome. Recent studies by our group in mice have also demonstrated the possibility of partial reversal of cellular aging and the potential to mitigate anatomical damage after injury and even improve visual function. RESULTS The results in mice and nonhuman primates published elsewhere have shown enhanced neuronal survival and visual function after partial epigenetic reprogramming. CONCLUSIONS Injury promotes epigenetic aging , and this finding can be observed in several clinically relevant scenarios. An understanding of the epigenetic mechanisms at play opens the opportunity to restore function in the nervous system and elsewhere with cellular rejuvenation therapies. Our earlier cases exemplify how reconsideration of previously established concepts can motivate inquiry of new paradigms.
Collapse
Affiliation(s)
- Joseph F Rizzo
- Department of Ophthalmology and the Neuro-Ophthalmology Service (JFR), Massachusetts Eye and Ear and the Harvard Medical School, Boston, Massachusetts; Avedisian and Chobanian School of Medicine (MPS), Boston University, Boston, Massachusetts; Department of Ophthalmology (MPS, DK, BRK), Harvard Medical School, Schepens Eye Research Institute of Mass Eye & Ear, Boston, Massachusetts; Department of Biology (YRL), Whitehead Institute for Biomedical Sciences, MIT, Cambridge, Massachusetts; and Paul F. Glenn Center for Biology of Aging Research (DAS), Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | | |
Collapse
|
14
|
Ju WK, Ha Y, Choi S, Kim KY, Bastola T, Kim J, Weinreb RN, Zhang W, Miller YI, Choi SH. Restoring AIBP expression in the retina provides neuroprotection in glaucoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562633. [PMID: 37905114 PMCID: PMC10614877 DOI: 10.1101/2023.10.16.562633] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Glaucoma is a neurodegenerative disease manifested in retinal ganglion cell (RGC) death and irreversible blindness. While lowering intraocular pressure (IOP) is the only proven therapeutic strategy in glaucoma, it is insufficient for preventing disease progression, thus justifying the recent focus on targeting retinal neuroinflammation and preserving RGCs. We have identified apolipoprotein A-I binding protein (AIBP) as the protein regulating several mechanisms of retinal neurodegeneration. AIBP controls excessive cholesterol accumulation via upregulating the cholesterol transporter ATP-binding cassette transporter 1 (ABCA1) and reduces inflammatory signaling via toll-like receptor 4 (TLR4) and mitochondrial dysfunction. ABCA1, TLR4 and oxidative phosphorylation components are genetically linked to primary open-angle glaucoma. Here we demonstrated that AIBP and ABCA1 expression was decreased, while TLR4, interleukin 1 beta (IL-1 beta), and the cholesterol content increased in the retina of patients with glaucoma and in mouse models of glaucoma. Restoring AIBP expression by a single intravitreal injection of adeno-associated virus (AAV)-AIBP protected RGCs in glaucomatous DBA/2J mice, in mice with microbead-induced chronic IOP elevation, and optic nerve crush. In addition, AIBP expression attenuated TLR4 and IL-1 beta expression, localization of TLR4 to lipid rafts, reduced cholesterol accumulation, and ameliorated visual dysfunction. These studies collectively indicate that restoring AIBP expression in the glaucomatous retina reduces neuroinflammation and protects RGCs and Muller glia, suggesting the therapeutic potential of AAV-AIBP in human glaucoma.
Collapse
|
15
|
Wang W, Wang H. Understanding the complex genetics and molecular mechanisms underlying glaucoma. Mol Aspects Med 2023; 94:101220. [PMID: 37856931 DOI: 10.1016/j.mam.2023.101220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
Glaucoma is the leading cause of irreversible blindness worldwide. Currently the only effective treatment for glaucoma is to reduce the intraocular pressure, which can halt the progression of the disease. Highlighting the importance of identifying individuals at risk of developing glaucoma and those with early-stage glaucoma will help patients receive treatment before sight loss. However, some cases of glaucoma do not have raised intraocular pressure. In fact, glaucoma is caused by a variety of different mechanisms and has a wide range of different subtypes. Understanding other risk factors, the underlying mechanisms, and the pathology of glaucoma might lead to novel treatments and treatment of underlying diseases. In this review we present the latest research into glaucoma including the genetics and molecular basis of the disease.
Collapse
Affiliation(s)
- Weiwei Wang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital, Northwest University, Xi'an, 710004, Shaanxi Province, China.
| | - Huaizhou Wang
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| |
Collapse
|
16
|
Lu YR, Tian X, Sinclair DA. The Information Theory of Aging. NATURE AGING 2023; 3:1486-1499. [PMID: 38102202 DOI: 10.1038/s43587-023-00527-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/02/2023] [Indexed: 12/17/2023]
Abstract
Information storage and retrieval is essential for all life. In biology, information is primarily stored in two distinct ways: the genome, comprising nucleic acids, acts as a foundational blueprint and the epigenome, consisting of chemical modifications to DNA and histone proteins, regulates gene expression patterns and endows cells with specific identities and functions. Unlike the stable, digital nature of genetic information, epigenetic information is stored in a digital-analog format, susceptible to alterations induced by diverse environmental signals and cellular damage. The Information Theory of Aging (ITOA) states that the aging process is driven by the progressive loss of youthful epigenetic information, the retrieval of which via epigenetic reprogramming can improve the function of damaged and aged tissues by catalyzing age reversal.
Collapse
Affiliation(s)
- Yuancheng Ryan Lu
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xiao Tian
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - David A Sinclair
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Karg MM, Lu YR, Refaian N, Cameron J, Hoffmann E, Hoppe C, Shirahama S, Shah M, Krasniqi D, Krishnan A, Shrestha M, Guo Y, Cermak JM, Walthier M, Broniowska K, Rosenzweig-Lipson S, Gregory-Ksander M, Sinclair DA, Ksander BR. Sustained Vision Recovery by OSK Gene Therapy in a Mouse Model of Glaucoma. Cell Reprogram 2023; 25:288-299. [PMID: 38060815 PMCID: PMC10739681 DOI: 10.1089/cell.2023.0074] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Glaucoma, a chronic neurodegenerative disease, is a leading cause of age-related blindness worldwide and characterized by the progressive loss of retinal ganglion cells (RGCs) and their axons. Previously, we developed a novel epigenetic rejuvenation therapy, based on the expression of the three transcription factors Oct4, Sox2, and Klf4 (OSK), which safely rejuvenates RGCs without altering cell identity in glaucomatous and old mice after 1 month of treatment. In the current year-long study, mice with continuous or cyclic OSK expression induced after glaucoma-induced vision damage had occurred were tracked for efficacy, duration, and safety. Surprisingly, only 2 months of OSK fully restored impaired vision, with a restoration of vision for 11 months with prolonged expression. In RGCs, transcription from the doxycycline (DOX)-inducible Tet-On AAV system, returned to baseline 4 weeks after DOX withdrawal. Significant vision improvements remained for 1 month post switching off OSK, after which the vision benefit gradually diminished but remained better than baseline. Notably, no adverse effects on retinal structure or body weight were observed in glaucomatous mice with OSK continuously expressed for 21 months providing compelling evidence of efficacy and safety. This work highlights the tremendous therapeutic potential of rejuvenating gene therapies using OSK, not only for glaucoma but also for other ocular and systemic injuries and age-related diseases.
Collapse
Affiliation(s)
- Margarete M. Karg
- Schepens Eye Research Institute of Mass Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Yuancheng Ryan Lu
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
- Whitehead Institute for Biomedical Research, Department of Biology, MIT, Cambridge, Massachusetts, USA
| | - Nasrin Refaian
- Schepens Eye Research Institute of Mass Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - James Cameron
- Whitehead Institute for Biomedical Research, Department of Biology, MIT, Cambridge, Massachusetts, USA
| | - Emma Hoffmann
- Schepens Eye Research Institute of Mass Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Cindy Hoppe
- Schepens Eye Research Institute of Mass Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Shintaro Shirahama
- Schepens Eye Research Institute of Mass Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Madhura Shah
- Schepens Eye Research Institute of Mass Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Drenushe Krasniqi
- Schepens Eye Research Institute of Mass Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Anitha Krishnan
- Schepens Eye Research Institute of Mass Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Maleeka Shrestha
- Schepens Eye Research Institute of Mass Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Yinjie Guo
- Schepens Eye Research Institute of Mass Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | - Meredith Gregory-Ksander
- Schepens Eye Research Institute of Mass Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - David A. Sinclair
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Bruce R. Ksander
- Schepens Eye Research Institute of Mass Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Feng L, Wang C, Zhang C, Zhang W, Song W. Role of epigenetic regulation in glaucoma. Biomed Pharmacother 2023; 168:115633. [PMID: 37806089 DOI: 10.1016/j.biopha.2023.115633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023] Open
Abstract
Glaucoma is the world's leading irreversible blinding eye disease. Lowering intraocular pressure is currently the only effective clinical treatment. However, there is a lack of long-acting IOP-lowering drugs, and some patients still experience retinal ganglion cell loss even with good intraocular pressure control. Currently, there is no effective method for neuroprotection and regeneration in clinical practice for glaucoma. In recent years, epigenetics has been widely researched and reported for its role in glaucoma's neuroprotection and regeneration. This article reviews the changes in histone modifications, DNA methylation, non-coding RNA, and m6A methylation in glaucoma, aiming to provide new perspectives for glaucoma management, protection of retinal ganglion cells, and axon regeneration by understanding epigenetic alterations.
Collapse
Affiliation(s)
- Lemeng Feng
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Chao Wang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Cheng Zhang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Wulong Zhang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Weitao Song
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China.
| |
Collapse
|
19
|
Spurlock M, An W, Reshetnikova G, Wen R, Wang H, Braha M, Solis G, Kurtenbach S, Galindez OJ, de Rivero Vaccari JP, Chou TH, Porciatti V, Shestopalov VI. The Inflammasome-Dependent Dysfunction and Death of Retinal Ganglion Cells after Repetitive Intraocular Pressure Spikes. Cells 2023; 12:2626. [PMID: 37998361 PMCID: PMC10670000 DOI: 10.3390/cells12222626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
The dysfunction and selective loss of retinal ganglion cells (RGCs) is a known cause of vision loss in glaucoma and other neuropathies, where ocular hypertension (OHT) is the major risk factor. We investigated the impact of transient non-ischemic OHT spikes (spOHT) on RGC function and viability in vivo to identify cellular pathways linking low-grade repetitive mechanical stress to RGC pathology. We found that repetitive spOHT had an unexpectedly high impact on intraocular homeostasis and RGC viability, while exposure to steady OHT (stOHT) of a similar intensity and duration failed to induce pathology. The repetitive spOHT induced the rapid activation of the inflammasome, marked by the upregulation of NLRP1, NLRP3, AIM2, caspases -1, -3/7, -8, and Gasdermin D (GSDMD), and the release of interleukin-1β (IL-1β) and other cytokines into the vitreous. Similar effects were also detected after 5 weeks of exposure to chronic OHT in an induced glaucoma model. The onset of these immune responses in both spOHT and glaucoma models preceded a 50% deficit in pattern electroretinogram (PERG) amplitude and a significant loss of RGCs 7 days post-injury. The inactivation of inflammasome complexes in Nlrp1-/-, Casp1-/-, and GsdmD-/- knockout animals significantly suppressed the spOHT-induced inflammatory response and protected RGCs. Our results demonstrate that mechanical stress produced by acute repetitive spOHT or chronic OHT is mechanistically linked to inflammasome activation, which leads to RGC dysfunction and death.
Collapse
Affiliation(s)
- Markus Spurlock
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Weijun An
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Galina Reshetnikova
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Rong Wen
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Hua Wang
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Michelle Braha
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Gabriela Solis
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Stefan Kurtenbach
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Orlando J. Galindez
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Juan Pablo de Rivero Vaccari
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Tsung-Han Chou
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Vittorio Porciatti
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Valery I. Shestopalov
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
20
|
Erb C, Reinehr S, Theiss C, Dick HB, Joachim SC. HSP27 induced glaucomatous damage in mice of young and advanced age. Front Cell Neurosci 2023; 17:1257297. [PMID: 37744880 PMCID: PMC10513106 DOI: 10.3389/fncel.2023.1257297] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Age-related diseases such as glaucoma, a leading cause of blindness, are having an upward trend due to an aging society. In glaucoma, some patients display altered antibody profiles and increased antibody titers, for example against heat shock protein 27 (HSP27). An intravitreal injection of HSP27 leads to glaucoma-like damage in rats. We now aimed to investigate if aged mice are more prone to this damage than younger ones. Methods We intravitreally injected HSP27 into young (1-2 months) and aged (7-8 months) mice to compare glaucomatous damage. Respective age-matched controls received PBS. Not injected eyes served as naive controls. Results Optical coherence tomography 4 weeks after injection showed no changes in retinal thickness in all groups at both ages. Cell counts and RT-qPCR revealed a significant reduction in RGC numbers in HSP27 mice at both ages. Comparing aged and young HSP27 mice, no differences in Rbpms and Pou4f1 (RGCs) expression was detected, while the Tubb3 expression (neuronal cells) was significantly upregulated in aged HSP27 animals. Neither microglia/macrophages nor (resident) microglia counts revealed significant differences in HSP27 mice at both ages. Nevertheless, increased relative Iba1 and Tmem119 expression was detected in young and aged HSP27 mice. Aged HSP27 mice displayed a significantly lower Iba1 expression than young ones, whereas Cd68 levels were upregulated. A larger GFAP+ area and an upregulation of GFAP expression in HSP27 animals of both ages indicated a macrogliosis. Also, elevated Il1b and Nos2 expression levels were observed in young and aged HSP27 mice. However, only Il1b levels were upregulated when comparing 7-8 months to 1-2 months old animals. A larger HSP25+ area was seen in aged HSP27 animals, while Hspb2 expression levels were downregulated in both HSP27 groups. The aged HSP27 group displayed an upregulated Hspb2 expression compared to young mice. Furthermore, a higher optic nerve degeneration score was noted in young and aged HSP27 groups. Discussion These findings indicate that an intravitreal injection of HSP27 led to RGC loss accompanied by inflammation. Age-dependent effects (7-8 months vs. 1-2 months) were not very prominent. The results suggest a potential role of extracellular HSP27 in the development of glaucoma.
Collapse
Affiliation(s)
- Clivia Erb
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Sabrina Reinehr
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Carsten Theiss
- Institute of Anatomy, Department of Cytology, Ruhr-University Bochum, Bochum, Germany
| | - H. Burkhard Dick
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Stephanie C. Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
21
|
Zhu Y, Wang R, Pappas AC, Seifert P, Savol A, Sadreyev RI, Sun D, Jakobs TC. Astrocytes in the Optic Nerve Are Heterogeneous in Their Reactivity to Glaucomatous Injury. Cells 2023; 12:2131. [PMID: 37681863 PMCID: PMC10486930 DOI: 10.3390/cells12172131] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 07/14/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
The optic nerve head is thought to be the site of initial injury to retinal ganglion cell injury in glaucoma. In the initial segment of the optic nerve directly behind the globe, the ganglion cell axons are unmyelinated and come into direct contact to astrocytes, suggesting that astrocytes may play a role in the pathology of glaucoma. As in other parts of the CNS, optic nerve head astrocytes respond to injury by characteristic changes in cell morphology and gene expression profile. Using RNA-sequencing of glaucomatous optic nerve heads, single-cell PCR, and an in-vivo assay, we demonstrate that an up-regulation of astrocytic phagocytosis is an early event after the onset of increased intraocular pressure. We also show that astrocytes in the glial lamina of the optic nerve are apparently functionally heterogeneous. At any time, even in naïve nerves, some of the cells show signs of reactivity-process hypertrophy, high phagocytic activity, and expression of genetic markers of reactivity whereas neighboring cells apparently are inactive. A period of increased intraocular pressure moves more astrocytes towards the reactive phenotype; however, some cells remain unreactive even in glaucomatous nerves.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Schepens Eye Research Institute, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
- Department of Ophthalmology, Stanford University, 1651 Page Mill Road, Palo Alto, CA 94304, USA
| | - Rui Wang
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Schepens Eye Research Institute, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
- Department of Ophthalmology, The First Affiliated Hospital of Northwest University, Xi’an 710002, China
| | - Anthony C. Pappas
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Schepens Eye Research Institute, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| | - Philip Seifert
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Schepens Eye Research Institute, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| | - Andrej Savol
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge St., Boston, MA 02114, USA
| | - Ruslan I. Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge St., Boston, MA 02114, USA
| | - Daniel Sun
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Schepens Eye Research Institute, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| | - Tatjana C. Jakobs
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Schepens Eye Research Institute, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| |
Collapse
|
22
|
Li S, Jakobs TC. Vitamin C protects retinal ganglion cells via SPP1 in glaucoma and after optic nerve damage. Life Sci Alliance 2023; 6:e202301976. [PMID: 37160307 PMCID: PMC10172762 DOI: 10.26508/lsa.202301976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/11/2023] Open
Abstract
Glaucoma is a common neurodegenerative disorder characterized by retinal ganglion cell death, astrocyte reactivity in the optic nerve, and vision loss. Currently, lowering the intraocular pressure (IOP) is the first-line treatment, but adjuvant neuroprotective approaches would be welcome. Vitamin C possesses neuroprotective activities that are thought to be related to its properties as a co-factor of enzymes and its antioxidant effects. Here, we show that vitamin C promotes a neuroprotective phenotype and increases gene expression related to neurotropic factors, phagocytosis, and mitochondrial ATP production. This effect is dependent on the up-regulation of secreted phosphoprotein 1 (SPP1) in reactive astrocytes via the transcription factor E2F1. SPP1+ astrocytes in turn promote retinal ganglion cell survival in a mouse model of glaucoma. In addition, oral administration of vitamin C lowers the IOP in mice. This study identifies an additional neuroprotective pathway for vitamin C and suggests a potential therapeutic role of vitamin C in neurodegenerative diseases such as glaucoma.
Collapse
Affiliation(s)
- Song Li
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA, USA
| | - Tatjana C Jakobs
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA, USA
| |
Collapse
|
23
|
Agarwal R, Agarwal P, Iezhitsa I. Exploring the current use of animal models in glaucoma drug discovery: where are we in 2023? Expert Opin Drug Discov 2023; 18:1287-1300. [PMID: 37608634 DOI: 10.1080/17460441.2023.2246892] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/08/2023] [Indexed: 08/24/2023]
Abstract
INTRODUCTION Animal models are widely used in glaucoma-related research. Since the elevated intraocular pressure (IOP) is a major risk factor underlying the disease pathogenesis, animal models with high IOP are commonly used. However, models are also used to represent the clinical context of glaucomatous changes developing despite a normal IOP. AREAS COVERED Herein, the authors discuss the various factors that contribute to the quality of studies using animal models based on the evaluation of studies published in 2022. The factors affecting the quality of studies using animal models, such as the animal species, age, and sex, are discussed, along with various methods and outcomes of studies involving different animal models of glaucoma. EXPERT OPINION Translating animal research data to clinical applications remains challenging. Our observations in this review clearly indicate that many studies lack scientific robustness not only in their experiment conduct but also in data analysis, interpretation, and presentation. In this context, ensuring the internal validity of animal studies is the first step in quality assurance. External validity, however, is more challenging, and steps should be taken to satisfy external validity at least to some extent.
Collapse
Affiliation(s)
- Renu Agarwal
- School of Medicine, International Medical University, Bukit Jalil, Malaysia
| | - Puneet Agarwal
- School of Medicine, International Medical University, Bukit Jalil, Malaysia
| | - Igor Iezhitsa
- School of Medicine, International Medical University, Bukit Jalil, Malaysia
| |
Collapse
|
24
|
Moore SM, Christoforidis JB. Advances in Ophthalmic Epigenetics and Implications for Epigenetic Therapies: A Review. Genes (Basel) 2023; 14:417. [PMID: 36833344 PMCID: PMC9957018 DOI: 10.3390/genes14020417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
The epigenome represents a vast molecular apparatus that writes, reads, and erases chemical modifications to the DNA and histone code without changing the DNA base-pair sequence itself. Recent advances in molecular sequencing technology have revealed that epigenetic chromatin marks directly mediate critical events in retinal development, aging, and degeneration. Epigenetic signaling regulates retinal progenitor (RPC) cell cycle exit during retinal laminar development, giving rise to retinal ganglion cells (RGCs), amacrine cells, horizontal cells, bipolar cells, photoreceptors, and Müller glia. Age-related epigenetic changes such as DNA methylation in the retina and optic nerve are accelerated in pathogenic conditions such as glaucoma and macular degeneration, but reversing these epigenetic marks may represent a novel therapeutic target. Epigenetic writers also integrate environmental signals such as hypoxia, inflammation, and hyperglycemia in complex retinal conditions such as diabetic retinopathy (DR) and choroidal neovascularization (CNV). Histone deacetylase (HDAC) inhibitors protect against apoptosis and photoreceptor degeneration in animal models of retinitis pigmentosa (RP). The epigenome represents an intriguing therapeutic target for age-, genetic-, and neovascular-related retinal diseases, though more work is needed before advancement to clinical trials.
Collapse
Affiliation(s)
- Spencer M. Moore
- Department of Ophthalmology & Vision Science, University of Arizona College of Medicine-Tucson, Tucson, AZ 85711, USA
| | - John B. Christoforidis
- Department of Ophthalmology & Vision Science, University of Arizona College of Medicine-Tucson, Tucson, AZ 85711, USA
- Retina Specialists of Southern Arizonam, Tucson, AZ 85712, USA
| |
Collapse
|
25
|
Xu Q, Rydz C, Nguyen Huu VA, Rocha L, Palomino La Torre C, Lee I, Cho W, Jabari M, Donello J, Lyon DC, Brooke RT, Horvath S, Weinreb RN, Ju W, Foik A, Skowronska‐Krawczyk D. Stress induced aging in mouse eye. Aging Cell 2022; 21:e13737. [PMID: 36397653 PMCID: PMC9741506 DOI: 10.1111/acel.13737] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/17/2022] [Accepted: 10/23/2022] [Indexed: 11/21/2022] Open
Abstract
Aging, a universal process that affects all cells in an organism, is a major risk factor for a group of neuropathies called glaucoma, where elevated intraocular pressure is one of the known stresses affecting the tissue. Our understanding of molecular impact of aging on response to stress in retina is very limited; therefore, we developed a new mouse model to approach this question experimentally. Here we show that susceptibility to response to stress increases with age and is primed on chromatin level. We demonstrate that ocular hypertension activates a stress response that is similar to natural aging and involves activation of inflammation and senescence. We show that multiple instances of pressure elevation cause aging of young retina as measured on transcriptional and DNA methylation level and are accompanied by local histone modification changes. Our data show that repeated stress accelerates appearance of aging features in tissues and suggest chromatin modifications as the key molecular components of aging. Lastly, our work further emphasizes the importance of early diagnosis and prevention as well as age-specific management of age-related diseases, including glaucoma.
Collapse
Affiliation(s)
- Qianlan Xu
- Department of Physiology and Biophysics, Center for Translational Vision Research, School of MedicineUniversity of California, IrvineIrvineCaliforniaUSA
| | - Cezary Rydz
- Department of Physiology and Biophysics, Center for Translational Vision Research, School of MedicineUniversity of California, IrvineIrvineCaliforniaUSA
| | - Viet Anh Nguyen Huu
- Viterbi Family Department of Ophthalmology, Hamilton Glaucoma Center and Shiley Eye Institute, School of MedicineUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Lorena Rocha
- Viterbi Family Department of Ophthalmology, Hamilton Glaucoma Center and Shiley Eye Institute, School of MedicineUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Claudia Palomino La Torre
- Viterbi Family Department of Ophthalmology, Hamilton Glaucoma Center and Shiley Eye Institute, School of MedicineUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Irene Lee
- Department of Physiology and Biophysics, Center for Translational Vision Research, School of MedicineUniversity of California, IrvineIrvineCaliforniaUSA
| | - William Cho
- Department of Physiology and Biophysics, Center for Translational Vision Research, School of MedicineUniversity of California, IrvineIrvineCaliforniaUSA
| | - Mary Jabari
- Viterbi Family Department of Ophthalmology, Hamilton Glaucoma Center and Shiley Eye Institute, School of MedicineUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - John Donello
- Department of Physiology and Biophysics, Center for Translational Vision Research, School of MedicineUniversity of California, IrvineIrvineCaliforniaUSA
| | - David C. Lyon
- Department of Anatomy and Neurobiology, School of MedicineUniversity of California, IrvineIrvineCaliforniaUSA
| | | | - Steve Horvath
- Epigenetic Clock Development FoundationTorranceCaliforniaUSA
| | - Robert N. Weinreb
- Viterbi Family Department of Ophthalmology, Hamilton Glaucoma Center and Shiley Eye Institute, School of MedicineUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Won‐Kyu Ju
- Viterbi Family Department of Ophthalmology, Hamilton Glaucoma Center and Shiley Eye Institute, School of MedicineUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Andrzej Foik
- Department of Anatomy and Neurobiology, School of MedicineUniversity of California, IrvineIrvineCaliforniaUSA
- International Centre for Translational Eye Research, Institute of Physical ChemistryPolish Academy of SciencesWarsawPoland
| | - Dorota Skowronska‐Krawczyk
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of MedicineUniversity of California, IrvineCaliforniaUSA
| |
Collapse
|